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Abstract

In this manuscript, we present existence and uniqueness theorem for the solution of nonlinear sum-
mation equation with delay. Furthermore, we present Hyers–Ulam stability, generalized Hyers–Ulam
stability, Hyers–Ulam–Rassias stability and generalized Hyers–Ulam–Rassias stability of mentioned
equation by utilizing discrete Grönwall Lemma. We finalized our manuscript through examples to
help our primary outcomes.
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1. Introduction

Stability of functional equations was analyzed by Ulam [36] in 1940 and raised some questions.
The answer to these question was first given by Hyers in [19]. Then the well known result was
established named as Hyers–Ulam stability (HUS) and then generalized it by Aoki [5] and Rassias
[31]. The concept of this stability for differential equation was extended by Obloza [28, 29]. The
various methods used for the analysis of HUS of differential and difference operators can be seen in
[7, 17, 18, 20, 23, 37, 38, 41].

Time–delay usually occurs in practical systems which causes instability, bad performance and
oscillation [11, 33]. Therefore, from the last few decades the problem of time–delay and stability
analysis have been studied, very well in [12, 13, 16], as these have many applications in theoretical
as well as in practical systems. But still there are some limitation, which are to be over come. In
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practical systems, we examine the solution of some challenging equations like differential, integral
and integro differential equations, which can be manipulated by using Volterra equations e.g. in
[26, 34, 40]. Furthermore, direct Lyapunov methods help in studying the theory of stability, regarding
Volterra summation equations via boundedness [8, 10, 14]. In [4] Agarval et al. studied the solutions
(existence and approximation) for Lyapunov summation equations. The stability criteria for Volterra
summation equations with degenerate Kernels is studied in [9]. However, Kolmanowski and Myshkis
in [21] gave brief details about the stability problems and circumstances in respect of characteristic
equations of some Volterra summation equations. On the other hand weighted norms are exploited
for the occurrence of unique solutions of Volterra equation in [22, 24]. Also in [27], the weighted
norms are utilized for the asymptotic equivalence of Volterra summation equations. Baker et al. in [6]
discussed convolution and non-convolution types periodic solutions of linear and nonlinear summation
equations. Oscillation and asymptotic behavior of the solution of summation equation plays an
essential character in the qualitative theory of dynamic equation, see [2, 3]. In [15, 25, 26, 34, 35],
there is a brief discussion on qualitative analysis and the properties of Volterra summation equations.

Recently, Zada et al. studied the HUS of linear summation equation [39]. To the best of
our knowledge, in the literature so for there is no paper loyal to the study of HUS of non-linear
summation equation. Our interest in this paper is to prove the HUS, GHUS, HURS and GHURS
of the non–linear summation equations with delay

yn = ξn + λ
n∑

a=0

K(n, a, ya, yh(a)), ∀ n ∈ Z+ (1.1)

where h : Z+ → Z+ such that h(n) ≤ n on Z+, ξn ∈ B
(
Z+,Φ

)
, K ∈ [Z+2×Φ2,Φ] and y ∈ B

(
Z+,Φ

)
is called a solution of equation (1.1). For validity, we checked our main results through the following
non–linear summation equation having delay operator

yn = ξn +
n∑

a=0

(n− a)p
(
ya + yh(a) + fa

)
, ∀ n ∈ Z+ (1.2)

where ξ, f ∈ B
(
Z+,Φ

)
and p is any arbitrary fixed integer.

Following is the organization of this manuscript. Section 2 contains basic definitions, auxiliary
lemma and theorems regarding of the problem (1.1). Four types HU stabilities are presented in
Section 3 and in section 4, we present examples for section 3.

2. Preliminaries

Let Φ be a Banach space, Z+ is the set of all positive integers and B
(
Z+,Φ

)
denote the space of

all bounded linear operators with norm ‖ · ‖∞, defined by

‖f‖∞ = sup
a∈Z+

‖fa‖, f ∈ B
(
Z+,Φ

)
. (2.1)

Here, we give the definitions of HUS, GHUS, HURS and GHURS of the non–linear summation
equation (1.1). For this, we focus on the following inequalities:∥∥∥∥xn − ξn − λ n∑

a=0

K(n, a, x(a), x(h(a)))

∥∥∥∥ ≤ ε, (2.2)
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a=0

K(n, a, x(a), x(h(a)))

∥∥∥∥ ≤ ϕn (2.3)

and ∥∥∥∥xn − ξn − λ n∑
a=0

K(n, a, x(a), x(h(a)))

∥∥∥∥ ≤ εϕn, (2.4)

where ε > 0 and ϕ be a non–decreasing function.

Definition 2.1. The summation equation (1.1) is said to be HU stable on Z+ if there exists a real
number NK such that, for every ε > 0 and for every sequence xn ∈ B

(
Z+,Φ

)
of (2.2), there exists a

solution un ∈ B
(
Z+,Φ

)
of (1.1) with

‖xn − un‖ ≤ NKε,

for all n ∈ Z+.

Definition 2.2. The summation equation (1.1) is said to be GHU stable on Z+ if there is a non–
decreasing function ΥK with ΥK(0) = 0 such that, for every ε > 0 and for every solution xn ∈
B
(
Z+,Φ

)
of (2.2), there exists a solution un ∈ B

(
Z+,Φ

)
of (1.1) with

‖xn − un‖ ≤ ΥK(ε),

for all n ∈ Z+.

Definition 2.3. The summation equation (1.1) is said to be HUR stable on Z+ if there exists
NK,ϕ > 0 such that, for every ε > 0 and for every solution xn ∈ B

(
Z+,Φ

)
of (2.4), there exists a

solution un ∈ B
(
Z+,Φ

)
of (1.1) with

‖xn − un‖ ≤ NK,ϕεϕn,

for all n ∈ Z+.

Definition 2.4. The summation equation (1.1) is said to be GHUR stable on Z+ if there exists
NK,ϕ > 0 such that, for every solution xn ∈ B

(
Z+,Φ

)
of (2.3), there exists a solution un ∈ B

(
Z+,Φ

)
of (1.1) with

‖xn − un‖ ≤ NK,ϕϕn,

for all n ∈ Z+.

Remark 2.5. It is clear that: Definition 2.2⇒ Definition 2.1, Definition 2.3⇒ Definition 2.4 and
for ϕ = 1 Definition 2.3⇒ Definition 2.1.

Now, we present discrete Grönwall lemma (see [1]).

Lemma 2.6. Let for n ∈ Z+ the inequality

yn ≤ ξn +
n∑

a=0

H(n, a)ya,

holds, where ξ ∈ B(Z+,Φ) is a nondecreasing sequence, y ∈ B(Z+,Φ) and H(n, a) is a convergent
sequence for n ≥ a ≥ 0. Then, for n ≥ 0 the following inequality is hold:

yn ≤ ξn +
n∑

a=0

H(n, a)ξa

n∏
r=a+1

(H(n, r) + 1).
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Lemma 2.7. [32] Let (Φ, d,≤) be an ordered metric space and ∆ : Φ → Φ be an increasing Picard
operator with fixed point y∗ ∈ Φ. Then for any y ∈ Φ, y ≤ ∆(y) implies y ≤ y∗ and y ≥ ∆(y) implies
y ≥ y∗.

Lemma 2.8. [30] Let T : Φ→ Φ is an operator on a metric space Φ such that for some n ∈ Z+ the
operator Tn is strictly contractive on Φ, then T and Tn have same unique fixed point in Φ.

3. Results

Our first result has given in this section.

Theorem 3.1. Assume that ξ ∈ B
(
Z+,Φ

)
and K ∈ Z+2 × Φ2 → Φ are convergent sequences with

K satisfying the Lipschitz condition∥∥∥K(n, a, x1, x2)−K(n, a, y1, y2)
∥∥∥ ≤ JK 2∑

j=1

‖xj − yj‖,

for all x1, x2, y1, y2 ∈ Φ and n ≥ a, n, a ∈ Z+, then
(C1) The equation (1.1) has unique solution in B

(
Z+,Φ

)
.

(C2) The equation (1.1) has GHURS on Z+.

Proof .(C1) For n ∈ Z+, we defined an operator ∆ : B
(
Z+,Φ

)
→ B

(
Z+,Φ

)
by

(∆y)(n) = ξn + λ
n∑

a=0

K(n, a, y(a), y(h(a))). (3.1)

Clearly, ∆ is well-defined. We claim that

sup
n∈Z+

∥∥∥(∆ju)(n)− (∆jx)(n)
∥∥∥ ≤ 2j|λ|jJ j

K(n+ 1)j‖u− x‖∞, (3.2)

for all u, x ∈ B
(
Z+,Φ

)
, n ∈ Z+ and positive integers j. To prove (3.2), we use mathematical

induction:
For j = 1, consider

sup
n∈Z+

∥∥∥∥(∆u)(n)− (∆x)(n)

∥∥∥∥ = sup
n∈Z+

∥∥∥∥λ n∑
a=0

K(n, a, u(a), u(h(a)))− λ
n∑

a=0

K(n, a, x(a), x(h(a)))

∥∥∥∥
≤ sup

n∈Z+

|λ|
n∑

a=0

∥∥∥K(n, a, u(a), u(h(a)))−K(n, a, x(a), x(h(a)))
∥∥∥

≤ sup
n∈Z+

|λ|
n∑

a=0

JK
{∥∥u(a)− x(a)

∥∥+
∥∥u(h(a))− x(h(a))

∥∥}
≤|λ|JK

n∑
a=0

{
sup
a∈Z+

∥∥u(a)− x(a)
∥∥+ sup

a∈Z+

∥∥u(h(a))− x(h(a))
∥∥}

≤2|λ|JK(n+ 1)‖u− x‖∞.

Which agrees with (3.2) for j = 1. Now assume that (3.2) holds for j = s, i.e.

sup
n∈Z+

∥∥∥∥(∆su)(n)− (∆sx)(n)

∥∥∥∥ ≤ 2s|λ|sJ s
K(n+ 1)s‖u− x‖∞, (3.3)
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is true for all n ∈ Z+. For j = s+ 1, using (3.3), we proceed as follows:

sup
n∈Z+

∥∥∥∥(∆s+1u)(n)− (∆s+1x)(n)

∥∥∥∥ = sup
n∈Z+

∥∥∥∥∆(∆su)(n)−∆(∆sx)(n)

∥∥∥∥
= sup

n∈Z+

∥∥∥∥λ n∑
a=0

K
(
n, a, (∆su)(a), (∆su)(h(a))

)
− λ

n∑
a=0

K
(
n, a, (∆sx)(a), (∆sx)(h(a))

)∥∥∥∥
≤ sup

n∈Z+

|λ|
n∑

a=0

∥∥∥K(n, a, (∆su)(a), (∆su)(h(a))
)

−K
(
n, a, (∆sx)(a), (∆sx)(h(a))

)∥∥∥
≤ sup

n∈Z+

|λ|
n∑

a=0

JK
{∥∥(∆su)(a)− (∆sx)(a)

∥∥
+
∥∥(∆su)(h(a))− (∆sx)(h(a))

∥∥}
≤2|λ|JK

n∑
a=0

sup
a∈Z+

∥∥(∆su)(a)− (∆sx)(a)
∥∥

≤2|λ|JK2s|λ|sJ s
K(n+ 1)s‖u− x‖∞

n∑
a=0

≤2s+1|λ|s+1J s+1
K (n+ 1)s+1‖u− x‖∞.

Thus (3.3) holds for all integers j. Finally, we write

sup
n∈Z+

∥∥∥∥(∆ju)(n)− (∆jx)(n)

∥∥∥∥ ≤ γj‖u− x‖∞,

where

γj = 2j|λ|jJ j
K(n+ 1)j.

For any fixed λ, JK and sufficiently large j we have γj < 1. Hence the corresponding operator ∆j

is strictly contractive on B
(
Z+,Φ

)
. Using Lemma 2.8, we conclude that ∆ has a unique fixed point

in B
(
Z+,Φ

)
. Following from (3.1), therefore the unique fixed point is in fact the unique solution of

(1.1).
(C2) Let u ∈ B

(
Z+,Φ

)
be such that∥∥∥∥un − ξn − λ n∑

a=0

K(n, a, u(a), u(h(a)))

∥∥∥∥ ≤ ϕn, n ∈ Z+,
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where ϕ : Z+ → R+ is non-decreasing sequence. We consider the absolute difference

‖un − yn‖ ≤
∥∥∥∥un − ξn − λ n∑

a=0

K(n, a, u(a), u(h(a)))

∥∥∥∥
+

∥∥∥∥λ n∑
a=0

K(n, a, u(a), u(h(a)))− λ
n∑

a=0

K(n, a, y(a), y(h(a)))

∥∥∥∥
≤ϕn + |λ|JK

[
n∑

a=0

‖u(a)− y(a)‖+
n∑

a=0

‖u(h(a))− y(h(a))‖

]
.

For last inequality, we define an operator T : B
(
Z+,Φ

)
→ B

(
Z+,Φ

)
by

(Tx)(n) = ϕn + |λ|JK

[
n∑

a=0

x(a) +
n∑

a=0

x(h(a))

]
, n ∈ Z+.

We show that T is an increasing Picard operator. To do this, similarly as above we assert that

sup
n∈Z+

∥∥∥∥(Tju)(n)− (Tjy)(n)

∥∥∥∥ ≤ 2j|λ|jJ j
K(n+ 1)j‖u− x‖∞,

for all n ∈ Z+ and positive integer j. Finally, we write

sup
n∈Z+

∥∥∥∥(Tju)(n)− (Tjy)(n)

∥∥∥∥ ≤ γj‖u− x‖∞,

where
γj = 2j|λ|jJ j

K(n+ 1)j.

For any fixed λ and JK, we can find a positive integers j, sufficiently large, such that γj < 1. Hence
the corresponding operator Tj is strictly contractive on B

(
Z+,Φ

)
. Using Lemma 2.8, we conclude

that ∆ has a unique fixed point u∗ in B
(
Z+,Φ

)
i.e. T is a Picard operator on B

(
Z+,Φ

)
. Thus,

u∗(n) = ϕn + |λ|JK

[
n∑

a=0

u∗(a) +
n∑

a=0

u∗(h(a))

]
, n ∈ Z+.

We see that ∆u∗(n) ≥ 0 for all n ∈ Z+, so u∗ is increasing and hence u∗(n) ≥ u∗(h(n)) for all
n ∈ Z+. This leads us to

u∗(n) ≤ ϕn + 2|λ|JK
n∑

a=0

u∗(a), n ∈ Z+.

Using Grönwall Lemma 2.6, we get

‖un − yn‖ ≤ ϕn + 2|λ|JK
n∑

a=0

ϕa(2|λ|JK + 1)a. (3.4)

In particular, if x = ‖un − yn‖, then xn ≤ (Tx)(n) i.e. xn ≤ u∗(n).

Let NK,ϕϕn = 1 + 2|λ|JK
n∑

a=0

ϕa

ϕn
(2|λ|JK + 1), then (3.4) is written as:

‖un − yn‖ ≤ NK,ϕϕn, for all n ∈ Z+.

�
In the following theorems, we state about the HUS, GHUS and HURS of (1.1) on Z+. The

proofs can be established by performing the same steps as that of above theorem.
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Theorem 3.2. Assume that ξ ∈ B
(
Z+,Φ

)
and K ∈ Z+2 × Φ2 → Φ are convergent sequences with

K satisfying the Lipschitz condition

∥∥∥K(n, a, x1, x2)−K(n, a, y1, y2)
∥∥∥ ≤ JK 2∑

j=1

‖xj − yj‖,

for all x1, x2, y1, y2 ∈ Φ and n ≥ a, n, a ∈ Z+, then
(C1) The equation (1.1) has unique solution in B

(
Z+,Φ

)
.

(C2) The equation (1.1) has HUS on Z+.

Theorem 3.3. Assume that ξ ∈ B
(
Z+,Φ

)
and K ∈ Z+2 × Φ2 → Φ are convergent sequences with

K satisfying the Lipschitz condition

∥∥∥K(n, a, x1, x2)−K(n, a, y1, y2)
∥∥∥ ≤ JK 2∑

j=1

‖xj − yj‖,

for all x1, x2, y1, y2 ∈ Φ and n ≥ a, n, a ∈ Z+, then
(C1) The equation (1.1) has unique solution in B

(
Z+,Φ

)
.

(C2) The equation (1.1) has GHUS on Z+.

Theorem 3.4. Assume that ξ ∈ B
(
Z+,Φ

)
and K ∈ Z+2 × Φ2 → Φ are convergent sequences with

K satisfying the Lipschitz condition

∥∥∥K(n, a, x1, x2)−K(n, a, y1, y2)
∥∥∥ ≤ JK 2∑

j=1

‖xj − yj‖,

for all x1, x2, y1, y2 ∈ Φ and n ≥ a, n, a ∈ Z+, then
(C1) The equation (1.1) has unique solution in B

(
Z+,Φ

)
.

(C2) The equation (1.1) has HURS on Z+.

4. Example

In this section, we present two examples of non–linear summation equation, having delay.

Example 4.1. Let λ > 0, p be any arbitrary fixed constant and h is a delay operator such that
h(n) ≤ n for all n ∈ Z+. Consider the non–linear summation equation having delay

yn = gn + λ

n∑
a=0

(n− a)p(ya + yh(a) + fn), (4.1)

for all n ∈ Z+, where gn and fn are convergent sequences.
Let un : Z+ → Φ such that∥∥∥∥∥un − gn − λ

n∑
a=0

(n− a)p(ua + uh(a) + fn)

∥∥∥∥∥ < ϕn, (4.2)
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where ϕ be a non-decreasing sequence. Theorem 3.1 convincing the existence of unique convergent
sequence un : Z+ → Φ that solves (4.1) and

‖yn − un‖ ≤ ϕn + 2|λ|
n∑

a=0

(n− a)pϕa

n∏
r=a+1

(
2|λ|(n− r)p + 1

)
≤ NK,ϕϕn,

where NK,ϕ = 1 + 2|λ|
n∑

a=0

(n− a)p ϕa

ϕn

n∏
r=a+1

(
2|λ|(n− r)p + 1

)
. Hence, (4.1) is GHUR stable.

Example 4.2. Let λ > 0, p be any arbitrary fixed constant and h is a delay operator such that
h(n) ≤ n for all n ∈ Z+. Consider the non–linear summation equation with delay

yn = gn + λ

n∑
a=0

(n− a)p(ya + yh(a) + fn), (4.3)

for all n ∈ Z+, where gn and fn are convergent sequences.
Let u : Z+ → Φ such that ∥∥∥∥∥un − gn − λ

n∑
a=0

(n− a)p(ua + uh(a) + fn)

∥∥∥∥∥ < ε, (4.4)

where ε > 0. Theorem 3.3 ensure the existence of unique convergent sequence un : Z+ → Φ that
solves (4.3) and

‖yn − un‖ ≤ ε+ 2ε|λ|
n∑

a=0

(n− a)p
n∏

r=a+1

(
2|λ|(n− r)p + 1

)
≤ ΥK(ε).

Hence, (4.3) is GHU stable.

Conclusion

In this manuscript, we exhibit the existence and uniqueness theorem for the solutions of a non-
linear summation equation with delay on B

(
Z+,Φ

)
. Moreover, with the help of discrete Grönwall

Lemma, we investigate four types of stabilities (HUS, GHUS, HURS and GHURS) of non-linear
summation equation with delay. A particular example for nonlinear summation equations are de-
scribed to uphold our main outcomes.
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