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Abstract

The early school dropout is very significant portents that controls the future of societies and determine
the nature of its elements. Therefore, studying this phenomenon and find explanations of it is a
necessary matter, by finding or developing appropriate models to predict it in the future. The
variables that affect the early school dropout Iraq takes a large size and multiple sources and types
due the political and economic situation, which attributes it as a sort of Big Data that must be
explored by using new statistical approaches. The research aims at using one Covariate at a Time
Multiple Testing OCMT Method to analyze the data from surveys collected by the Central Statistical
Organization IRAQ, which contains many indicators related to school dropout and meaningfully
affect the life of the Iraqi persons. The Ridge Regression Method as well as the OCMT method were
chosen to analyze data and the Mean Square Errors MSE was used to compare the two methods
and From the results we find that OCMT estimator is better than Ridge estimator with Big Data
conditions.
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1. Introduction

Early school dropout is a foremost topic to study and analyze due its effect over a numerous
properties of society political, psychological and financial, moreover; its represents an important
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variable in the demographic studies, demography science interested in population dynamics and the
reason behind changing people composition and poverty [1]. Early school dropout bring the courtesy
of many researchers over the word because lack of education is a main reason of poverty and ignorance
inside the society. Demography surveys in many of its shapes deals with the educational levels and
school attending.

Therefore, demographical data afford searchers with massive information to analyze school dropout.
Demographical data can be calculated from many sources like health agencies of official organiza-
tions [6] and this kind of data is complex and containing many kinds of data like ordinal, binary,
quantitative, etc . . .

The variety in types and sources makes demographical data kind of Big Data as the following def-
initions ” Extensive datasets, primarily in the characteristics of volume, velocity and/or variety, that
require a scalable architecture for efficient storage, manipulation, and analysis [2]. Demographical
data is big sets of data that need new statistical methods to study and analyze. The study aims at
using new statistical methods to analyze Big Data in demography field. The study consists of seven
sections, section 2 is Big Data Analysis, section 3 shows One Covariate at a Time Multiple Testing
OCMT, section 4 introduce the Ridge Regression, section 5 introduce Mean Squares Error MSE,
section 6 introduces data under study and results, and section 7 is the conclusion of the study. Big
Data issues and challenges attract researches around the world to present new statistical methods
and procedures due to the fast development of technology and life at all aspects, Big Data have been
studied by many researches such as.Hoerl & Kennard [7] (1970) presented a new shrinkage estimator,
in case of multicollinearity that seem in data with high dimensions and variety of data source, and
they call it Ridge regression. Tibshirani [10] (1996) recommended to use the L1-norm to grow a new
penalty function to use with specific conditions of high dimension and it is called LASSO estimator.
Lv & Fan [10] (2009) studied a group of penalty functions that be contingent upon the Lp-norm
and they announced new estimator with a mixed Lp-norms penalty functions for Big Data analysis.
Chudik at al [3] (2018) studied a kind of nonparametric estimators for the regression coefficients over
a penalizing optimization and they presented the OCMT One-Covariate at Time Multiple testing
method.

2. Big Data Analysis

Information about variables under study is the main concern to choose appropriate method of
analysis either parametric or non-parametric method to analyze Big Data, many approaches have
been submitted to analyze Big Data most of them aimed at reducing data dimension to avoid poor
inference and bad performance of parameters under high dimensions conditions.

Decreasing data dimensions entices attention of many researchers over the world that they create
different methods like penalizing over parameters or use appropriate prior distribution or select
regressors to reduce high dimensions data into small sets of data to avoid over fitting and improve
forecasting.

Introducing many methods to abridge information from Big Data is the first step before taking an
action in analysis like Principal Component Analysis, Factor Models, Sparse Principal Component
Analysis and Partial Least Squares [9].

In our study, we select regression model with many explanatory variables in the form

y = Xβ + ε, (2.1)

where y denotes (n × 1) independent variable vector and X is (n × p) explanatory variables matrix
containing large number of variables and ε is (n × 1) random error vector and βis (p × 1) parameters
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vector. Regression models are commonly used in diverse statistical application with different kinds
and types of data and sometimes researches choose regression models as starting models to recover
them later or develop them in new kinds of models.

3. One Covariate at a Time Multiple Testing OCMT

Many approaches of Big Data analysis focus on penalizing regression, which take the largest place
in Big Data analysis, as an alternative many researchers developed methods that focus on combining
penalizing regression with greedy algorithms technique. In this method the authors focus on the
predictive power of individual regressors instead of all the variables in the sample, which they call it
Greedy Methods. In such methods, regressors chosen one by one based on their ability to represent
the dependent variable.

OCMT method were submitted in 2016 by Chudik, Kapetanios and Pesaran [8] they focus on the
overall impact of the xi rather than the marginal impact I(β 6= 0) they give attention to the overall
impact of regressors and combine them with the marginal impact of regressors and they depend on
multiple testing overall impact of regressors can be given by.

θ =
n∑
i=1

Iβiσij β 6= 0 (3.1)

where βi and σij are OLS estimators for the model parameters, we have four possibilities for the
impact.

θ 6= 0 θ = 0
β 6= 0 Case 1 Case 2
β = 0 Case 3 Case 4

And by focusing on the overall impact it’s clear that case (1,2,3) represent the overall and the
marginal impact of regressors, the problem is that how we can select regressors that attend marginal
and that overall impact.
If we suppose k represents the number of variables with (β 6= 0) and k∗ represent the other remain
variables (p− k) then the procedure of OCMT estimator based on the following assumption [3].

Assumption

Let Xk,k∗ = (Xk, X
∗
k∗) where Xk = (x1, x2, . . . , xk) and X∗k∗ = (xk+1, xk+2, . . . , xk+k∗) are n ×

k and n × k∗ observations matrices on signals and noise variables, and suppose that there exist
n0 such that for all n > no, (n

−1X
′

k,k∗Xk,k∗)
−1 is nonsingular with its smallest eigenvalue uniformly

bounded away from zero. Therefore, there is an iterative selection method for regressors by using
greedy algorithm submitted to be easy, fast, and efficient for large data sets. It’s begin with choosing
k regressors then add to them until we have the regressors that have the overall impact on Y .
The OCMT procedure depends on testing each estimated parameter for each variable in the model
2.1 by applying student t test for each of regressors [8].

tβi =
βi

se(βi)
, (3.2)

where β = (X ′X)−1X ′Y is simply the OLS estimator for, and se(βi)is the standard error for βi.
Then we choose the regressors with |tβi | > Cp1 where represent the critical value for student-t test.
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Let we assume that we choose k regressors in the first stage. The critical value size Cp1 is very
important for the second stage and with modification of type 1 error we can establish a new critical
value for the next stage as follows [3].

Cp2 = exp

[
−(Cp1)

2

2

]
. (3.3)

Then we repeat the student-t test for each of the remaining (p-k) regressors as follows

tβj =
β̂j

se (β̂j)
, j = k + 1, k + 2, . . . , p. (3.4)

Then we choose the regressors with |tβi | > Cp2 and add them to the k regressors were chosen in
the first stage, and we repeat this procedure by changing the critical value size until we have no
regressors to add.

We can write the steps into Algorithm as follows

1. Test each of regressors with student-t test tβi = βi
se(βi)

.

2. Choose the k regressors that attend |tβi | > Cp1.

3. Change the critical value size Cp1 = exp[− (Cp1)2

2
].

4. Test the remaining (p-k) regressors with student-t test tβj =
βj

se(βj)
.

5. Choose the regressors that attend |tβi | > Cp2.

6. Add the new chosen regressors to the k regressors in step 2.

7. Repeat the procedure until we have no regressors to add.

In the end, we will get the effective variables that have marginal and overall impact

βOLS =

{
βOLS ifI(β 6= 0) = 1

0 otherwise
(3.5)

Where βOLSis the ordinary least square estimator.

4. Ridge Regression

Estimating the parameters of the model in (2.1) require an efficient estimation method, that can
endures all the problems in data. Classical methods such as Least Squares and Maximum Likelihood
methods oblige some assumptions in the model (2.1) such as E(εi) = 0 and E(ε2i ) = σ2 that is hard
to attend in real data. Moreover; the correlation matrix of X must be near unit matrix. And these
assumption will be hard to attend in Big Data sets due the variety of the data types and different
sources of it. In case of not attending these assumptions, the Least Square and Maximum Methods
will lead to inefficient estimates.

Ridge regression is from early methods that were recommended to analyze large sets of data it
is a kind of panelized regression which is simply a linear approach to deal with large sets of data, in
equation (2.1) the basic idea of OLS method is estimate β that minimizes the errors ε where ε1, . . . , εn
are independent identically distributed random variables with mean equal to zero and variance σ2.
In other words to find the estimators that minimize ε

′
ε this optimization leads to the OLS estimators

of parameters βOLS = (X ′X)−1X ′Y [7].
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Under the conditions of large data sets, the penalized regression minimizing errors subject to
additional condition called penalty function.

βPR = argmin
β

1

n
(ε
′
ε+ f(λ, β)) (4.1)

Where f(λ, β) is the penalty function that used to minimizes the sum of squared errors where
λ ≥ 0 is a complexity parameter that controls the amount of shrinkage the larger the value of λ,
the greater the amount of shrinkage, there is many kinds of penalty functions that make a rise of
different types of estimators. Ridge regression first submitted by [7]. Hoerl and Kennard 1970 by
minimizing β throughout a Lp-norm penalty function ‖.‖p , where the Lp-norm is ‖β‖p =

∑n
i=1 |βi|p.

Moreover, they used the L2-norm as a penalty function in the following form.

βRidge = argmin
β

1

n

(
ε
′
ε+ λI‖β‖2

)
(4.2)

where I is (p × p) identity matrix and by solving the optimization in (4.2) we will apply shrinkage
over β which minimize the sum of square errors, Ridge regression achieves sparse recovery and have
some very good qualities and it’s good choice for high dimensions and Big Data analysis.

In terms of matrices, the optimization in (4.2) will be as follows.

= (Y −Xβ)
′
(Y −Xβ) + λIβ′β

= Y
′
Y − 2β′X

′
Y + β

′
X
′
Xβ + λIβ′β

By differentiating with respect to β and equalize to zero [6].

0 = −2X
′
Y + 2X

′
Xβ + 2λIβ (4.3)

X
′
Y = (X

′
X − λI)β (4.4)

βRidge = (X
′
X − λI)−1X ′Y (4.5)

The estimation in (4.5) has been labeled ” Ridge Regression”. Choosing the complexity parameter
λ which is called ridge parameter, has been developed in many approaches some of them suggest to
use numerical value 0 < λ < 1 while others suggest to use λ which minimizes the mean of the square
errors of the parameters in the model (2.1) so if we express it in the canonical form and let D be
an orthogonal matrix, which implies D

′
X
′
XD = Λ where Λ = diag(k1, k2 . . . kp)consist of the eagen

vales of X ′X, then the equivalent regression model will be Y = X∗α+ ε, where X∗ = XD,α = D′β
, here α = Λ−1X∗Y represent the OLS estimators for the equivalent model [3, 5].

Hoerl and Kennard 1970 [7] suggest using λHK = σ2

maxα
as a ridge parameter where

σ2 = Y ′[I−X(X
′
X)−1X′]Y

(n−p) , this ridge parameter is a suitable to estimate parameters the model (2.1)
when there are large sets of data under study.

In 2014 Dorugade [4] suggest a new ridge parameter to use in case of a very large sets of data for
the ridge regression estimators in (4.5) as follows.

λ =
2σ2

Kmax

p∑
j=1

1

α2
j

, (4.6)

where Kmax the maximum value from Eigenvalues for the matrix X ′X. The formula in (4.5) will be
used in our study for the ridge regression method to analyze Big Data sets. The relation between
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the Ridge estimates and the Ordinary Least Squares estimate is through the following alternative
form so if we multiplies the equation (2.4) by X ′X(X ′X)−1 we can easily get [7]

βRidge = (I − λ(X
′
X)−1)−1βOLS (4.7)

βRidge = ZβOLS (4.8)

where Z =
(
I − λ(X

′
X)−1

)−1
. In addition, that will lead to the following result.

βRidge < βOLS. (4.9)

The result above constructed upon (4.8) because from definition it is clear that both Z and X
′
X are

symmetric positive definite matrices then ridge regression estimator is better than OLS estimator.

5. Mean Square Errors MSE

Comparison among estimators is very important for any scientific research because it helps the
researchers to take the better and the efficient statistical method of analyzing or model selection.
Moreover, it helps managers to take decisions. Here we chose the classical Mean Square errors MSE
to be as a comparison tool between the two methods OCMT and the Ridge Regression as follows [5].

MSE =
1

n

n∑
i=1

(yi − yi)2 (5.1)

In addition, the value of MSE in (5.1) will determine the better method of analyzing as it is small
as its better.

6. Data and Results

We have sets of surveys data from the Central Statistical Organization IRAQ represent 300 group
of families, and from it, we get the School Dropout rate SDR as follows.

SDR =
D

T
(6.1)

Where D is the number of the kids who left school under 12 years age and T is the total kids under
12 years age for each group and this will be vector (300 × 1) represents our independent variable
vector y.

We also have data from for the same groups of families represents many biological and social
scales, we get 100 variables from different types quantitative, ordinal, nominal . . . etc., as it shows in
Appendix. Then these variables construct the matrix X with (200 × 100) where n = 300, p = 100.
Estimators is evaluated for both OCMT and Ridge methods according to equations (5),(8) and MSE
was calculated according to (13).

From Figure 1, the values of MSE for the both methods, we can notice that the Ridge Estimator
is better than the OCMT estimator when the number of variables under study is small but when
p > 75 we can see that OCMT estimator provides a better act than Ridge estimator. In addition,
the difference between the two methods get quite bigger as p goes larger. The figure above make it
clear that the OCMT estimator begin with weak values of MSE due the procedure of obtaining it.
But it get better as the number of variables grow bigger.

For the Ridge estimator the Figure (1) shows that its good performance with small number of
variables in the model .
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Figure 1: MSE for OCMT and Ridge methods

Table 1: MSE values for both methods

p Ridge OCMT p Ridge OCMT
5 0.052 0.0666 50 0.4798 0.3654
10 0.5388 0.5959 55 0.1369 0.928
15 0.0671 0.0765 60 0.1698 0.0971
20 0.1994 0.2001 65 0.0543 0.0342
25 0.0516 0.0512 70 0.7543 0.5588
30 0.2737 0.296 75 0.0531 0.0322
35 0.0555 0.0543 80 0.5921 0.4123
40 0.3354 0.2498 85 0.2084 0.1645
45 0.3813 0.2893 90 0.9273 0.6838
50 0.4659 0.3505 100 0.1315 0.0982

7. Conclusions

From section 6 data and results, we can conclude that the Ridge estimator is better method
when the number of variables p are quite small relative to the sample size, and when p grows larger
relative to the sample size we can determine that OCMT estimator is remarkably better than Ridge
estimator with Big Data conditions.
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Appendix A. Demographical Data details.

Table A.2: N: Nominal - Q: Quantitative - O: Ordered - B: Binary (0,1)

N Variable Type N Variable Type
1 Household type N 26 Highest grade completed at that level B
2 Line number Q 27 Age 4-24 Q
3 Relationship to the head Q 28 Check: Ever attended school or any Early Childhood

Education programmed
B

4 Sex N 29 Attended school during current school
year(2017-2018)

B

5 Month of birth O 30 Level of education attended current school
year(2017-2018)

N

6 Age Q 31 Grade of education attended current school
year(2017-2018)

O

7 Line number of woman age 15 - 49 Q 32 Attended public school current school year(2017-2018) B
8 Line number of man age 15 - 49 Q 33 School tuition in the current school year B
9 Line number for children age 0-4 Q 34 Material support in the current school year B
10 Member age 0-17 Q 35 Attended school previous school year(2016-2017) B
9 Is natural mother alive B 36 Level of education attended previous school

year(2016-2017)
B

12 Does natural mother live in HH B 37 Grade of education attended previous school
year(2016-2017)

O

13 Natural mother’s line number in HH Q 38 Day of interview Q
14 Where does natural mother live B 39 Month of interview O
15 Is natural father alive B 40 Area N
16 Does natural father live in HH B 41 Region/Governorate N
17 Natural father’s line number in HH Q 42 Region N
18 Where does natural father live B 43 Mother’s line number Q
19 Line number of mother or primary caretaker

for children 0-17 years of age
Q 44 Father’s line number Q

20 Line number Q 45 Education of household head O
21 Age Q 46 Functional difficulties B
22 Age 4 and above B 47 Health insurance B
23 Ever attended school or Early Childhood

Education programmed
B 48 Age at beginning of school year Q

24 Highest level of education attended N 49 Mother’s education O
25 Highest grade attended at that level N 50 Mother’s functional disabilities (age 18-49 years) B

Table A.3: N: Nominal - Q: Quantitative - O: Ordered - B: Binary (0,1)

N Variable Type N Variable Type
51 Mother’s functional disabilities (age 18-49 years) B 76 child no attending B
52 Father’s education O 77 any child not attend B
53 Household sample weight Q 78 Household has all school age children up to class 8 in school B
54 Combined wealth score R 79 Woman’s line number Q
55 Wealth Quintile O 80 Women BH B
56 Percentile Group of com1 Q 81 Total child death for each women (birth recode) Q
57 Urban wealth score Q 82 Total child death for each women in the last 5 years (birth recode) Q
58 Wealt Quintile Urban Q 83 Result of woman’s interview O
59 Percentile Group of urb1 Q 84 Ever given birth B
60 Rural wealth score Q 85 Ever had child who later died B
61 Wealth Quintile Rural Q 86 Boys dead B
62 Percentile Group of rur1 Q 87 Girls dead B
63 Primary sampling unit Q 88 Women WM B
64 Stratum Q 89 Martial B
65 Household ID Q 90 Native language of the Respondent B
66 Individual ID Q 91 Translator used B
67 Highest educational level attended O 92 Rank number of the selected child O
68 Highest year of education completed O 93 Child line number O
69 Total number of years of education accomplished Q 94 Child’s age Q
70 Child education u 6 Q 95 Consent for interview girls 15-17 Q
71 years of education u 6 Q 96 Consent for interview boys 15-17 Q
72 Household has at least one member with 6 years of edu Q 97 Consent for Water Quality Testing B
73 Attended school during current school year B 98 Respondent to HH questionnaire B
74 child schooled B 99 Number of HH members Q
75 No missing school attendance for at least 2/3 of the

school aged children
B 100 Native language of the Respondent B
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