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Abstract

Face recognition is one of the most important tools of identification in biometrics. Face recognition
has attracted great attention in the last decades and numerous algorithms have been proposed.
Different researches have shown that face recognition with Sparse Representation based Classification
(SRC) has great classification performance. In some applications such as face recognition, it is
appropriate to limit the search space of sparse solver because of local minima problem. In this
paper, we apply this limitation via two methods. In the first, we apply the nonnegative constraint
of sparse coefficients. As finding the sparse representation is a problem with very local minima,
at first we use a simple classifier such as nearest subspace and then add the obtained information
of this classifier to the sparse representation problem with some weights. Based on this view, we
propose Weighted Non-negative Sparse Representation WNNSR for the face recognition problem.
A quick and effective way to identify faces based on the sparse representation (SR) is smoothed
Lo-norm (S'Ly) approach. In this paper, we solve the WNNSR problem based on the SLg idea. This
approach is called Weighted Non-Negative Smoothed Ly norm (W NNSLg). The simulation results
on the Extended Yale B database demonstrate that the proposed method has high accuracy in face
recognition better than the ultramodern sparse solvers approach.
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1. Introduction

Given the increasing need for the creation and development of automated systems, the problem
of detecting and identifying the faces of people in the images has been considered by the researchers.
Although face recognition methods have experienced significant advances in various applications and
research areas, they still face major challenges such as lightness, gesture, expression and occlusion
[T, 2, B, 4], B 6l [7, §]. In recent years, the sparse representation based classification (SRC) has been
of great interest to researchers [9) [10, 11, 12} 13]. In the first step, all training images are used to
calculate the SR coefficients of the test image. Then, the reconstruction errors between the test
images and representation of each class are obtained. Finally, the test image is assigned to the class
label that has the least amount of residual in the reconstruction errors. The results of the test
show that SRC will provide excellent performance especially with respect to occlusion and resistance
against noisy environments. In this method, the L;-norm optimization, Linear Programming (LP)
or Basis Pursuit (BP) [I4] [15] are used to find the sparse solution. To minimize the computational
complexity and execution time of the program, the Smoothed Lg-norm optimization (SLg) [16],
which has a higher convergence rate than BP, is used instead of the BP algorithm. If the uniqueness
conditions are correctly met, S Ly algorithm is superior to BP algorithm in both terms of performance
and speed [16].

Sparse recovery is an optimization problem with local minima. In the BP approach the sparse
recovery problem has been replaced with a convex problem. SLj tries to minimize the zero-norm
directly with the smoothed version of zero-norm. In some applications such as classification, it is
need to limit the search space of sparse solutions. Here, to avoid the local minima problem, we
propose two approaches for increasing the face recognition accuracy. The first approach is adding
the non-negative condition to sparse recovery problem. In [9], researches showed that the condition
improved the accuracy of facial expression recognition. The second approach to limit the search
space is fusion of SRC and a simple classifier such as Nearest Subspace NS [17]. This fusion is
accomplished via weighted sparse representation that its weights are determined via NS classifier.
Based on these approaches we propose weighted non-negative sparse representation WNNSR problem
for face recognition. To obtain sparse solution of WNNSR, we use the smoothed Ly norm idea. In
fact we propose a new version of SLg called Weighted Non-Negative Smoothed Ly norm (W NNSLy).
This decomposition is used in the face recognition problem. In this application, the WNNSR is a
fusion operator of NS and SRC classifiers considering the non-negative constrain.

The remainder of the paper is organized as follows. The sparse solvers are surveyed in Section
2l The Proposed Approach based on weighted sparse representation with non- negative constraint
is discussed In Section |3, the experimental results for simulated in extended Yale b are reported in
Section [ Finally, the paper is summarized in Section

2. Sparse Representation Based Classifier

The fundamental issue in identifying an object is to determine the test data class using labeled
training samples of k distinct classes. n; Training samples of i-th class are placed in columns of the
matrix A; = [Vi1, Via, -+, Vin] x R™™. In the face recognition, a black and white image with a
dimension of w x h is represented through the vector R by sequentially placing the image columns.
The columns of Ai denote the training facial images related to i-th person.

A variety of models and representations have been presented for A;. According to one of the
simplest and most effective models, every image or feature extracted from a class belongs to a linear
subspace. Based on another model called as “face subspace”, the same facial images under lightness
changes cover the approximate subspace with a low dimension in space R™ [I8] 19], i.e. each image
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class occupies a small part of the m-dimensional space. For simplicity, it is assumed that the training
samples of each class form a subspace. Hence, each test vector sample X € R™ of i-th class can be
approximated as a linear combination of the training sample vectors of i-th class with scalar values
a; €ER, j=1,2,--- n;:

X = ;101 + Q200 + -+ Qi Vip, (2.1)

Since the test sample belonging to i-th class is not clear, we define the matrix A by putting in
sequential order the matrices A; as follows:

A=[A, Ag, -+ Ay e R (2.2)
Therefore, the linear representation of the test vector sample x € R™ is rewritten as follows:

X =Asp e R™ (23)

Where sg = [0,---,0,a;1, -+ ,ain,0,- - ,O]T is the coefficients vector. All entries of the coefficients
vector are zero except for i-th class. Since entries of the vector sy specify the identity of the test
sample x, the solution of the linear equation X = As is important. Compared to local NS and NN
methods, the methodology used here is global. It is clear that the solution of the linear equation
X = As depends on the ratio of the number of equations m to the number of unknowns n. If m > n,
then the linear equation X = As will be over determined and the unique solution can be found.
For face recognition, the equation X = As is usually underdetermined (m < n) and then the
solution is not unique. To solve this problem, we can usually use the Lo-norm solution as follows:

(Ls) So = argmin||s|ls  s.t, X = As (2.4)

Although the optimization of this problem can be simply solved by quasi-inverse matrix A, but
because the solution is not sparse (in general), this solution does not contain specific information for
the face recognition application.

Considering the nature of the problem and concept of the face subspace model, SR techniques are
suggested to solve this problem. Each very sparse solution can identify the identity of the test sample
X according to the stated concepts. Hence, the method for finding the sparsest solution of Equation
X = As by solving the following optimization problem is proposed.

(Lo) So = argmin||s|la  s.t, X = As (2.5)

|| - |Jo Denotes the Lyp-norm and counts the number of non-zero entries. It is shown that if the matrix
A is random and the equation X = As has the answer that the number of its non-zero elements is
less than half the number of equations m/2, this answer is unique, i.e. 5y = so [14].

The general theorem of uniqueness of sparse solution is expressed by the definition of the spark
of the matrix A. The problem of finding the sparsest answer is a hard problem because Lg-norm is
not derivable. Several approximate approaches have been presented to solve this problem. In the
following, we summarize the two methods proposed to solve this problem.

2.1. Finding the sparse solution by Li-norm minimization

Many methods of solving (2.5 using the cost function, which is a measure of response sparseness,
try to find the sparsest answer by solving an optimization problem. If the selected cost function is a
better criterion for being sparse the vector x, then the accuracy of the final solution is higher. On the
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other hand, the desirable cost function is a function that simplifies the solving of the optimization
problem.
Some methods use the L;-norm minimization metric to measure the vector sparsity, namely:

(Ly) So = argman||s|ly s.t, X = As (2.6)

Substituting of Lg-norm with L;-norm converts the optimization problem into a convex one, which
has appropriate methods (e.g. BP). In [15], it has been proven that in majority of underdetermined
linear systems, Lo-norm and L;-norm minimization leads to one solution, which is the sparsest one.
Of course, in this method, the uniqueness condition is very limited compared to that of the answer
. This is one of the reasons that some researchers have focused on ideas that directly solve the
Lg-norm problem.

In [10], researchers utilize the noise model for face recognition as follows:

(Ly) S0 = argminl||s||y  s.t, || X — As|ls <€ (2.7)

Here we use the model X = Asy + 2z to represent the test sample, which z € R™ includes the noise
model with limited energy ||z||s < e.

2.2. Finding the sparse solution by smoothed Lgy-norm minimization

As shown below, the main idea of this method is to use a continuous and smooth function for the
Lg-norm approximation of the vector s:

—52
||s||0%m—Zexp i
- 202

If o tends to zero, this approximation is converted to equality. Therefore, maximizing the function
F,(s) for a small ¢ is equivalent to minimizing the Lg-norm. Therefore, the optimization problem
will be as follows:

)zm—n@ 2.5)

(SLy) S0 = argmaxF,(s) s.t, X = As (2.9)

To find the answer of the above problem, we can use the steepest descent maximization algorithm.
For details of the optimization algorithm of problem called as S Ly, refer to [16]. An important
feature of this algorithm is the high convergence rate and its good performance compared with the
BP algorithm.

2.3. Classification based on sparse representation

For the new test sample x associated with one of training set classes, firstly we obtain SR by
using or or or . Ideally, non-zero entries in sy estimation are related to i-th class
columns. Therefore, we can easily assign the test sample x to that class. However, this is not the
case due to model error and noise. In fact, small non-zero entries corresponding to other classes can
also be found. Accordingly, many classifications can be designed for the identification area. In one of
the easiest ways, the class with the largest non-zero entry is considered as the winner. Nevertheless,
the method presented in [10] is a more logical and subjective one. This approach examines which
linear combination of classes training samples with coefficients obtained from SR offers a better
approximation of the test sample x.

For each class i, vector §;(5p) € R™ derived from 5 is a vector in which entries corresponding to
classes other than i are set to zero. By this definition, the approximation of the test sample x using
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the training samples of i-th class is equal to z; = Ad;(Sp). So the classification of x is based on the
best approximation, that is, the class with the least estimation error is the winner one:

minr;(x) = min ||z — A;(50)]|2 (2.10)

The classification algorithm is summarized in Table [I}

Table 1: SRC algorithm’s summary
Input: matrix of training samples A € R™™ and test sample z € R™.
normalizing the columns of matrix A.
obtaining SR for the test sample using or or or (2.9).
calculating the estimation error for all classes by r;(z) = ||z — Ad;(So)|]2, i =1, , k.
output: identifying x with min; r;(z).

3. The Proposed Approach: SRC based on Weighted Non-Negative Sparse Recovery

In the SRC classifier, finding the sparse solution has a key role. The recognition accuracy is
dependent on this optimization problem. The presence of noise in the real data and the error of
linear model affect this problem which has local minima. Here, to improve the SRC performance
we propose two considerations of non-negative constrain and weighted sparse representation in the
sparse recovery problem. In rest of this section, at first these considerations are illustrated and then
the proposed approach is demonstrated.

3.1. Non-Negative Constrain

Researchers show that in the application of face recognition the non-negative constrain of sparse
coefficients improves the SRC performance [9]. This optimization problem is in the following form:

(NNYy) S0 = argmin||s|lo st, T=As, Vis; >0 (3.1)

Similar to the sparse recovery, this optimization problem also can be solved via some approaches
such as L1-norm minimization [I] or constrain smoothed Lo(C'SLy).

3.2. Weighted Sparse Representation: Combination of SRC and a simple classifier

The goal of this method is to obtain some information about the query data via a simple classifier
such as NS and add this information to the problem of sparse recovery. In traditional sparse recovery
([2.5), the probability of activity of all columns of A (activity of i-th column means large |s;|) is the
same. This activity is dependent on the sample of the input signal and the column of the dictionary
matrix A. There is not external factor controlling the activity of the columns in SR of the x signal.
Here, we provide a strategy for controlling the activity probability of each column by weight. To this
end, we will change the optimization problem as follows:

(wLo) S0 = argminZwisf) st, x=As (3.2)

where w; denotes the controlling weight and is a positive number. Here, the probability of activity
of all columns in A is not the same, and w;’s specify the probability of activity of the atoms.
The performance of weight can be interpreted as follows: if is large in the cost function (3.2]),
the probability of activity of i-th column is low and if w; is small, the probability of activity of i-th
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column is high. In other words, these weights limit the search space with respect to some information
obtained from a simple classifier. In this way, we can control the activity of the columns in SR of
the signal x by changing the w;’s. Here, the weights of all training columns of class j is same and
determined based on the distance between the vector x and the class subspace of A;. In fact we use
the information of nearest subspace to determine weights. The NS classifier assigns the test sample
x to j-th class, provided that distance from x to j-th class subspace created by the training samples
A; € R™*" has the lowest value compared with all classes. This distance is defined as follows:

mse;(z) = min ||z — AjsH; (3.3)
s€R™J
Where mse;(x) represents the degree of similarity of the test sample x to j-th class.
In summary, we extract some preliminary information about the classification of the test sample

by very simple algorithms such as NS, and then use this information to optimize the sparse recovery.
Problem ({3.2)) can be solved similar to the traditional sparse recovery [20)].

3.3. SRC based on Weighted Non-Negative Sparse Recovery

In this subsection, we propose the weighted non-negative sparse recovery WNNSR for the appli-
cation face recognition. In fact, here we combine two discussed considerations in the following sparse
recovery problem.

(WNN Ly) S = argminZwis? st, x=As Vi s;,>0 (3.4)

Where the weights w; are determined based on the NS classifier. To solve this optimization problem,
we propose two approaches based L; norm and smoothed Lo norm as follows. As solving Ly norm
is NP-hard, inspired to the methods of BP, SLy and C'SL, . We propose two approaches to solve
W NN Ly problem in the following subsections.

3.3.1. WNN Ly Solver based on L1 norm
Here, to solve the W NN Ly problem we replace the L; norm with the Ly norm in the following
mathematical form:

(WNNLy) S0 = argmmei|si| st, x=As Vi s;,>0 (3.5)

This optimization problem is convex and can be solved via linear programming [14]. As the weight w;
is positive we have w;|s;| = |w;s;|, hence the W NN L, problem can be converted to the non-negative
basis pursuit with changing variables of s and A.

3.8.2. WNNLy Solver based on smoothed Ly norm

Here, the idea of smoothed L norm is used to find the sparse solution of W NN Lg. To consider the
non-negative constraint, inspired by the C'S' Ly algorithm we apply a penalty for negative coefficients
by adding the another weights to the sparse recovery problem as follows

(WNNLE) 5 = a'r’gmz’nZwipk(si)s? st, x=As Vi s >0 (3.6)

7

Where

E+1 k-1 )
= (57 =S {1 150 @
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And k is a constant that k£ > 1. This weight is dependent on the sign of coefficients. This function
results in the penalty of negative coefficients be higher than the positive ones. If k is infinite and
w; > 0 then the penalty term of negative coefficient w;pi(s;) is infinite. Hence the entries of sparse
vector cannot be negative via the optimization of problem WNNL{. To find the sparse solution
of WNNLE inspired by the idea of SLy we use a continuous and smooth function for the Ly norm
approximation of the SY and reformulate the SLy for WNNLE as follows:

2

~ . _Si . .
(WNNSLy) S0 = argmmzi:wipk(si) (1 — exp (Tﬂ)) st, x=As Vi s; >0 (3.8)

The problem W N NS Ly is equivalent to W NN LE when o — 0. The idea of WN NS Ly is to minimize

FYk(s) = 3, wipk(s;) (1 — exp <—%)> for small o subject to z = As. To escape from trapping

into local minima, it uses a decreasing sequence of o and the minimize of FV%(s) is used as a starting
point to search the minimizer of FV*(s) for the next (smaller) o. In the process of decreasing of o,
the penalty parameter k is also increased.

To minimize FV*(s) for two fixed parameters of k and o, subject to x = As, it uses a steepest
descent approach: each iteration composed of an unconstrained minimization step (s < s—usy FYVF),
followed by projection to the feasible set of space r = As with the following equation:

s s— AT (AAT) ' (As — X) (3.9)

In the process of steepest descent we need the gradient of FV*(s) as follows:

OFWk S —Si
e = wipk(si); exp (—202) (3.10)
OFWk OFWk T
FWk — g_...Z2¢° 11
A (3.11)

Note that if the weight w; is equal to zero, then the penalty of non-negative constraint is not
considered for the coefficient s;. In the face recognition application, this is not an important problem
because w; = 0 means that the distant between query data and one of class subspaces is zero. Hence
the class of query data is determined. Here, to consider this problem in the general framework, we
also add a projection operator on the non-negative subspace in the minimization process of function
FWVE(s).

Another note of the proposed approach is robustness of W NNL{ in the presence noise. To
consider this problem, we must change the constraint x = As to relaxed form |z — As||3 <.
Inspired by [2I] to consider this problem in the SLg algorithm, we perform the projection process
when the solution is outside of the feasible region ||z — As||3 < e.

The proposed algorithm is illustrated in Table [2 The following parameters are initialized in the
first step: opmin (the minimum value of o that should be a very small number), k& (the maximum
penalty for non-negative coefficients), L (the number of iterations for minimizing FV*(s) in the
gradient descent approach, p (the gradient descent factor), d (the decreasing factor of o), € (the
acceptable reconstruction error), s (the initial solution based on L; norm minimization which is
equivalent to ¢ = o0), and o (the initial value of o that should be a large number [22]).
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Table 2: The proposed sparse solver with Weighted Non-Negative Smoothed Ly (WNNSLy).

Inputs: A, x
Initialization:
(1) Choose the value oy, K, L, p, d, €
(2) 5= AT(AAT) x
(3) 0 = 2max 5|
While 0 > opin
(1) k=1+K x Zuin
(2) For1=1:1L
(a) Compute 7 F¥*(3) using and
(b) 5 5— kX TEUHG)
(c)Ifs; <0 (i=1,---,m)

(d) End if

(c) 1F (A3 — x|, > ¢
5+ 5—-AT(AAT)(AS —x)
(f) End if
(3) End for
(4)c=0xd
End while
Output: s

4. Simulation results

In this section, we examine the performance of SRC with features called as “down sampling” . The
database used is “Extended Yale B”. This database contains 2414 facial images from the front view
of 38 people. All images have been taken with 192 x 168 dimensions in different laboratory-controlled
light conditions. For each class, 54 training files and 10 test files are randomly selected. We calculate
the percentage of correct identification of the algorithm for the number of different features (36,
56,132 and 504). These numbers are proportional to the down sampling ratios of 1/32, 1/24, 1/16
and 1/8, respectively. In this experiment, we use the following parameters for the N N.S L, algorithm:
Omin =107, k =n/2 =135 L =5, u=2,d=0.75 and ¢ = 102. Here, the performance of SRC
is computed for the algorithms SLy, NNSLg, and their results are compared. The test results are
presented in Figure In the following performance of SRC is computed for the algorithms 5Ly,
NNSLy, WSLo, WNNS Ly, and their results are compared. The test results are presented in Figure
2 It’s important to note that in the final dictionary an identity matrix is added and their coefficients
can be negative. The recognition rate using this method (NNSLg) on the Extended Yale B dataset
in comparison to the result of the SLg algorithm illustrated in the figure. As shown, the recognition
rate of the proposed NN S L method is higher than SLg algorithm, which demonstrates the accuracy
of using the non-negativity constraint in the SRC.

As shown in simulation results, the W NN SLj algorithm has low computational power and high
accuracy compared to the proposed algorithm base on SR classification. When the number of features
is high, has the much higher performance as other proposed algorithms, but in each case it has a lower
computational volume and a much higher speed, and its ideal identification rate is approximately
100%.



Face recognition via weighted non-negative sparse representation 12 (2021) No. 2,

Recagnition rate (%)

1141-1152 1149

e e —+—SL0-SUM
- NNSLO-SUM
-

’ SLO: 94.7368
’ NNSLO : 95.7895

92.3684
93.4211

87.8947  78.1579
90.2632 826316

+ | 1 1 1 |

Recognition rate (%)

80 i~

60 80 100 120 140 160 180
Feature Dimension

Figure 1: the face recognition rate for the data base “Extended Yale B”
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Figure 2: the face recognition rate for the data base “Extended Yale B”

In this paper, in addition to the performance of the classification methods base on SRC in face
recognition, a sparse solver with non-negative constraint was suggested that minimizes a weighted L
norm instead of Ly norm. In the weighted Ly norm, the penalty of negative coefficients is larger than
positive ones unlike Ly norm where the penalty of all non-zero coeffi- cients is equal. We demonstrated
that if the penalty of negative coefficients is larger than a finite value, it is sufficient to force all
coefficients to be non-negative. The introduced algorithm for optimizing the weighted Ly norm is
based on non-negative Smoothed Ly norm (NN SLg) that tries to minimize the discontinuous cost
function in a coarse to fine approach. Then in the proposed algorithm to achieve better performance,
the combined method of NS and SR classifiers using weighted Lyp-norm and SLy and Non-negative
sparse decomposition has been investigated that We call the W N NS L algorithm. In other words, we
used the idea of the NN SLg algorithm to achieve Better performance and precision in SRC and the
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combination of weighted Lg-norm, SLg, NS simple classifier and Non-negative sparse decomposition
to achieve better classification performance, also WNNSLy algorithm performs better when the
number of features is high. The proposed algorithm was assessed on some simulated data that
confirms the higher accuracy and efficiency of the proposed algorithm compared with the other
sparse algorithms. Some of the works that can be done in the future are to improve the estimation
of weighted Lg-norm weights and use the different algorithms for feature extraction in terms of the
challenges available to increase the performance of proposed methods.
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