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Abstract

Cloud computing is a massively distributed system in which existing resources interact with user-
requested tasks to meet their requests. In such a system, the problem of optimizing Resource Al-
location and Scheduling (RAS) is vital, because recourse allocation and scheduling deals with the
mapping between recourses and user requests and also is responsible for optimal allocating of tasks to
available resources. In the cloud environment, a user may face hundreds of computational resources
to do his work. Therefore, manually recourse allocation and scheduling are impossible, and having a
schedule between user requests and available recourses seems logical. In this paper, we used Whale
Optimization Algorithm (WOA) to solve resource allocation and task scheduling problem in cloud
computing to have optimal resource allocation and reduce the total runtime of requested services by
users. The proposed algorithm is compared with the other existed algorithms. Results indicate the
proper performance of the proposed algorithm than other ones.
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1. Introduction

Cloud computing is defined as a new generation of computing that make it possible to implement
computational services and resources available in data centers (such as machines, networks, storage
space, operation systems, application software) in the network platform [1, 26]. The logic of the
cloud computing is based on virtualization (a technique that separates computational functions from
physical hardware). This technique allows users to divide and share the infrastructure of physical
machines (such as CPU, memory, I / O, storage space, and network interface) [3]. Programs are not
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run on physical machines, but they are run on virtual machines instead. Virtual Machine (VM) is
a implementation of software for a computational environment related to simulation of a physical
machine running directly on a physical hardware [5, 27]. Virtual Machine Monitor (VMM) is also
applied to create and manage VMs (including Xen, VMware, VirtualBox, and KVM) [6]. Virtual
machine configuration or resource allocation controls the sharing of assigned physical resources (CPU,
memory, I/O bandwidth) to VMs. The problem of optimizing the performance of virtual programs
(such as applications running on VMs) is very important in the success of cloud computing paradigm,
since the VM configuration affects the program’s performance[2, 4].

Recently, cloud computing has emerged like a new paradigm for service provisioning on the
Internet using a dynamic pool of virtual computing resources. Most cloud service providers such
as Microsoft, Amazon, and Google, have increasingly expanded their data centers to meet customer
needs, which in turn increased energy consumption and CO2 emissions to the environment.

According to studies, the energy consumption of large data centers in the world equals to that of
25000 homes. Between the years 2005 and 2010, data centers’ power consumption has increased by
56% and it is expected that if this trend continues, the annual energy costs of data centers’ operators
will exceeds their equipment costs. It is also estimated that 2% of global carbon emission is related to
information and communication technologies and 14% of it is related to data centers. With respect
to the economic and environmental impact of data centers’ energy consumption, the existence of
energy-aware approaches that lead to significant reduction in operational costs of data centers and
negative effects of CO2 emission into the environment is necessary [7, 27, 29].

In this paper whale optimization algorithm is used to solve resource allocation optimization in
cloud computing and then an optimal solution is suggested to solve the mentioned problem.

The structure of the paper is organized as follows: Section 2 describes the related works. Whale
optimization algorithm is explained in Section 3. Proposed algorithm is introduced in Section 4.
Simulation results and conclusions are presented in Sections 5 and 6 respectively.

2. Related work

Many researchers have been working on the optimization problems and the applications of the com-
puters in order to optimize them[[32] -[34]]. In particular, many kinds of research have been done on
the optimization running programs in virtual environments and resource allocation. In the following
we investigate some of them.

Baranwal and Vidyarthi [8] proposed a multi-attribute combinatorial double auction for Cloud
resource allocation by considering price and other quality of service parameters. Proposed approach
imposes a penalty on the provider for false QoS assurance in order to win the auction and at the
same time customer is compensated.

Ma et al. [9] explored existing RAS policies and algorithms with their associated parameters and
then classified five major topics in cloud computing, namely locality-aware task scheduling, reliability-
aware scheduling, energy-aware RAS, Software as a Service (SaaS) layer RAS and workflow scheduling
into three parts: performance-based RAS, cost-based RAS, and performance- and cost-based RAS.

Shrimali and Patel [10] proposed an energy-efficient resource allocation using Multi-Objective
Optimization (MOO) method and implemented it in CloudSim environment. They considered power
consumption and SLA violations and achieved on average, 32% power consumption and 5.41% SLA
violations over a 24-h period with maintaining QoS requirements, 51% improvement in SLAV and
13% reduction in power consumption.

Pradhan et al. [11] have used round robin resource allocation algorithm to satisfy customer
demands and reducing waiting time. Authors have answered the question ”what is the optimal time
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quantum in round robin algorithm?” using dynamic time quantum instead of fixed time quantum.
Lin et al. [12] discussed on resource allocation at the application level and proposed a threshold-

based dynamic resource allocation scheme for cloud computing that can allocate virtual resources
(virtual machines) dynamically based on their load changes and therefore improve resource utilization
and reduce user usage cost.

Kheiri et al. [13] proposed an Genetic Algorithm (GA) based approach to guarantee service
quality through providing adequate resources and improving system performance, meeting users’
requirements and providing maximum resource efficiency. To do so, they considered the effects of
resource allocation on the service performance and cost.

Jena and Mohanty [14] proposed a two-phase approach including genetic algorithm-based resource
allocation and shortest task first scheduling in multi-cloud computing in order to remove the gap
existed between customers fluctuating requirements and existed infrastructure for the service with
the aim of mapping tasks to VMs to minimize makespan and maximize customer satisfaction.

Boloni and Turgut [15] explored applications ranging from weather prediction to financial mod-
eling in which output quality increases with the deployed computational power and proposed a
computation scheduling by considering both the financial cost of the computation and the predicted
financial benefit of the output named value of information (VoI)-based scheduling algorithm.

Hallawi et al. [16] proposed two algorithms, namely Combinatorial Ordering First-Fit Genetic
Algorithm (COFFGA) and Combinatorial Ordering Next Fit Genetic Algorithm (CONFGA) and
then combined them. The aim of the combined algorithm is to reduce the total number of running
servers and resources wastage per server. Authors compared their algorithm with existing algorithms
in terms of performance and robustness.

Samimi et al. [17] proposed a new market model called ”Combinatorial Double Auction Resource
Allocation” (CDARA) to meet both users and providers requirements and then evaluated its efficiency
from an economic point of view. Li et al. [18] developed comprehensive models of cloud resource
provisioning for both private and public cloud-based automotive system by considering issues such
as stochastic communication delays and task deadlines. In fact they developed centralized resource
provisioning model for private cloud by using chance constrained optimization to utilize the cloud
resources for best Quality of Services and a decentralized auction-based model for public cloud by
using reinforcement learning to obtain an optimal bidding policy for a ”selfish” agent.

Maguluri et al. [19] divided resource allocation problem into a routing or load balancing problem
and a scheduling problem in which jobs arrive according to a stochastic process and request resources
like CPU, memory and storage space and used the join-the-shortest-queue routing and power-of-two-
choices routing algorithms with MaxWeight scheduling algorithm to solve the mentioned problem
which are queue length optimal in the heavy traffic limit.

Xiaoying et al. [20] proposed two dynamic resource allocation methods: (1) speed switching
(SS) method and (2) speed increasing (SI) method in order to enhance storage utilization and reduce
download time in cloud download service. Muthu and Enoch [21] proposed a new optimized approach
named GABFO by combining bacterial foraging optimization algorithm and GA in order to schedule
jobs and allocate resources in a efficient manner then compared their method with PSO, GA, BFO.

Sheuly et al. [22] investigated three different allocation-based GA algorithms, Particle Swarm
Optimization (PSO) and Best-fit heuristic algorithm for cost optimization and computational time
minimization as well they investigated the effect of the algorithm parameters (i.e. population size,
probability of mutation and probability of crossover) on the objective function in GA and found that
the performance of the algorithm is condition-dependent, the conditions such as available resource,
number of VMs etc.

Ficco et al. [23] oroposed a bio-inspired coral-reefs optimization based approach to model cloud
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elasticity in a cloud-data center in which they utilized classic Game Theory to optimize resource re-
allocation by considering cloud provider’s objectives and customer requirements through formalizing
Service Level Agreements using a fuzzy linguistic method.

HU et al. [24] focused on the advantages and disadvantages of ACO algorithm and its combination
with GA for increasing the speed of the searching ability in order to overcome the shortage of initial
pheromone decomposition and increase the convergence speed to solve resource allocation problems
in cloud computing.

3. Whale optimization algorithm (WOA)

The WOA is a novel meta-heuristic algorithm that is inspired by the Humpback whales [25]. In
this algorithm, the optimization process starts with producing a randomly generated population for
whales. These whales try to find the prey’s (optimum) location, then append (optimize) them by
encompassing or bubble-net or method. In the encompassing method [25], the Humpback whales
improve their current location according to the best location as follows:

D = |C �X∗(t)−X(t)| (3.1)

X(t+ 1) = |X∗(t)− A�D|, (3.2)

In which, D is the distance between the position vector of both prey X(t)∗ and whale X(t), and t is
the current iteration number. A and C are coefficient vectors, and are defined as follows:

A = 2a� r − a (3.3)

C = 2r, (3.4)

In which, r is a random vector ∈ [0, 1], and the value of a is decreased linearly from 2 to 0 in the
iterations.

Whereas the bubble-net method can be performed in two ways. The first is the shrinking en-
compassing in which, the value of a in equation (3.3) and A are decreased. The second is the spiral
updating position which is applied to get inspired by the helix-shaped movement of Humpback whales
around prey:

X(t+ 1) = D′ � ebl � cos(2πl)X∗(t).

In which, D′ = |X∗(t)−X(t)| is defined as the distance between the whale and prey, b is a constant
value used for specifying the logarithmic spiral shape, � is an element-by-element multiplication, and
l is a randomly generated value ∈ [−1, 1].

The whales can swim around the victim through a shrinking circle and along a spiral-shaped path
concurrently:

X(t+ 1) =

{
X∗(t)− A�D if p ≥ 0.5

D′ � ebl � cos(2πl) +X∗(t) if p ≤ 0.5.

In which, p ∈ [0, 1] is a random value for describing the probability of taking either the shrinking
encompassing method or the spiral model to set the whales position. In the discovery phase, the
Humpback whales explore for prey with a random manner. The position of a whale is set by specifying
a random search agent rather than the best search agent as below:

D = |C �Xrand −X(t)| (3.5)

X(t+) = |Xrand − A�D|, (3.6)

In which, Xrand is a position specified randomly among the current population. The first algorithm
depicts the total structure of the WOA.
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4. The proposed algorithm

Evolutionary algorithms have been widely used to solve complex optimization problems. Given
that the resource allocation problem is an NP-complete problem, evolutionary algorithms can be
used to find an optimal solution for that. In this paper, a new evolutionary technique called whale
optimization algorithm is used to solve the resource allocation problem in cloud computing. The
whale algorithm is inspired by the collective hunting way of a kind of Whale named Humpback
Whale. In the following we will investigate the details of whale optimization algorithm to solve
resource allocation problem.

4.1. Steps of the proposed algorithm

The proposed algorithm begins by creating a number of whales using ’whalecreat’ function. Each
whale represents a random solution for the scheduling problem. After this step, the fitness of each
whale is calculated and the best solution is considered as the current optimal whale. Fitness function
is equal to the total communication required in the resource allocation form of a whale. This function
is named ’fitness’ and explained in the following sections. After this step, whales begin to move. For
each whale, the values of a,A,C, l, p are updated. A and C are constant coefficients. a is a descending
number ∈ [2, 0]. p is a random number ∈ [2, 0] and l ∈ [2, 0]. The use of these numbers is explained
in the following sections.

One of the most important functions in the whale algorithm is the distance between two whales.
Since the whale algorithm is designed for a continuous problems and the resource allocation problem
is a discrete problem, this function needs to be rewritten. This function is used as ’distance’ function
in the algorithm. In total, three functions are designed for whale motion. The first one is ”shrinking”
function that reduces the distance between the current whale and the best whale. The second one
is ”spiral” function that simulates the current whale spin around the best whale. The third one is
”searchprey” that moves a whale toward a random whale. The flowchart of the proposed algorithm
is shown in Figure 1.

4.2. Whale creating

In this algorithm, each whale represents a solution to the problem of resource allocation. There
are two types of nodes in the mentioned problem: gateway and resource. Each gateway is assigned a
number of resources, and their information is sent just to this gateway. On the other hand, gateways
are connected based on a specific topology in order to create the complete flow of information in the
cloud. Due to the cost of data transmission between the gateways, their connection is created with
the least edges and in the form of a spanning tree or a ring. Accordingly, each whale represents two
sets of communications: edges that show the connection between gateways and edges that show the
resources assigned to each gateway. A one-dimensional array w of size k + n is used to display a
whale, where k is the number of gateways and n is the number of resources. The first k entries of
array w (w[1.k]) show the relationship between gateways. w[i] = j means that gateway I sends its
information to gateway j (i 6= j). The second n entries of array w (w[k + 1.n]) represent gateway of
each resource. w[p] = q indicates that resource p − k sends its information to gateway q. Table 1
shows an example of how the whale is displayed in the proposed algorithm. There are 4 gateways
and 7 resources in this example. The length of the array is equal to 11. To create a random whale,
two parts of the array are filled individually. The first part is filled firstly.

If j is the random number generated for ith cell, then 1 ≤ j ≤ k and i 6= j. Then next n cells
are filled. For each generated random number like j, we have 1 ≤ j ≤ k. In fact, each resource is
assigned to one gateway.
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Figure 1: Flowchart of the proposed algorithm
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Table 1: A whale with 4 gateways and 7 resources

Gateway Resource
Indices 1 2 3 4 5(r1) 6(r2) 7(r3) 8(r4) 9(r5) 10(r6) 11(r7)
allocate 3 1 4 3 1 4 4 4 3 2 1

4.3. Fitness function

In a cloud computing environment, it is assumed that all resource nodes must communicate with
each other. Therefore, for each whale (or the solution of the recourse allocation problem) the total
cost of network communications should be calculated. That is assumed that each resource sent a
message to all other resources. The total cost of these messages are calculated and considered as
whale fitness. The function named total cost and denoted as Tc. The proposed algorithm tries to
minimize this function. Equation4.1 calculates Tc.

Tc =

∑|Vg |
j=1(d

r
j × dg)
p

(4.1)

In which, |Vg| is the total gateways, drj is the total cost of transferring data between jth gateway and
all resources connected with it and dg is the total cost of communication between gateways which is
calculated using equation(4.2).

dg =

|Vg |∑
j=1

|Vg |∑
j=1
j 6=i

lij (4.2)

In which, lij is the cost of communication between gateways i and j. drj is calculated using equation
(4.3).

drj =

|Vg |∑
k=1

εjk (4.3)

In which, εjk is the cost of communication between jth gateway and all resources connected with it.
is the number of connected resources to gateway j.

Another part of fitness function is penalty p which is considered for balancing in resource alloca-
tion. Given that, the proposed algorithm should reduce Tc , and p is the denominator of this function
so p = 0 indicates penalty and p = 1 indicates normal mode. The value of p is calculated for all
gateways. For gateways having resources more than |Vr|/|Vg|, p = 0 is mentioned to increase the
value of Tc. Equation(4.4) calculates p.

p = 1 +

|Vg |∑
i=1

pi (4.4)

In which, |Vg| is the total gateways and pi is the penalty of each gateway which is calculated using
equation (4.5).

pi =

{
1 if gti ≤ ε |Vr|

|Vg |

0 if gti > ε |Vr|
|Vg |

(4.5)

In which, gti is the number of resources assigned to gateway i, |Vr| is the number of resources and ε
is a constant number.
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4.4. Distance function

One of the most important functions used in the proposed algorithm, is the distance function
which calculates the distance between two whales. Since the basic whale algorithm is a continues
algorithm and resource allocation problem is a continuous problem, the concept of distance must be
re-defined. All operators of the whale algorithm work based on the distance. So the precise design
of the distance function will have a great effect on the performance of the proposed algorithm.

Each whale is equivalent to a resource allocation graph that has maximum k + n edges. k is the
number of gateways and n is the number of resources. The distance between two whales is defined
as the number of non-common edges in two resource allocation graphs. Accordingly, the minimum
distance is equal to zero and the maximum distance is equal to k+n. The pseudocode of the distance
function is given in Algorithm 1.

Algorithm: distance W1,W2

c = 0;
for (i = 1; i < k + n; i+ +)

if (W1(i) 6= W2(j))
c = c+ 1;

returnc;

Below we show an example of how distance function works. There are 2 whales and 4 gateways
in table 2. The distance between these two whales is calculated based on the corresponding cells of
the array that do not have the same value. These cells are shown in red. Accordingly, the distance
between two whales is 5.

Table 2: The distance between two whales
Gateway Resource

Indices 1 2 3 4 5(r1) 6(r2) 7(r3) 8(r4) 9(r5) 10(r6) 11(r7)
W1 3 1 4 3 1 4 4 4 3 2 1
W1 1 3 4 2 1 2 2 4 3 4 1

4.5. Spiral function

To determine the type of each whale motion, a randomly generated number p is in [0, 1]. If this
number is greater than half, whale motion is performed using spiral function which means spiral
around the best whale. The concept of spiral must be re-defined for the resource allocation problem.
The pseudocode of the proposed spiral is given in Algorithm 2.

In the above pseudocode, Wi is a whale that should spiral and Wbest is the best whale. |change|
denotes the number of entries of whale array that should be changed. If the value of change is
positive, then entries having non-equal values are changed using Wbest. Otherwise, entries having
equal values are changed. Table 3 shows an example of spiral function for l = 0.125 and D = 5 in
which change = b5× 0.7c = 3. Three changed entries are in red. Green entries show the distance.

4.6. Shrinking function

At the beginning of each run of the algorithm, a random number p is generated. If this number
if less than 0.5, another random number A should be considered. If A is lee than 1, shrinking
function is performed. This function moves the current whale toward the best whale or prey. The
difference between this function and spiral function is that, spiral function spirals around the prey
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Algorithm: spiral Wi round Wbest

D = distance(Wi,Wbest);
l=random value in [-1,1];
change = bD × cos(2πl)c;
for (j = 1 : i < |change|; i+ +)

if change > 0
set a random number in Wi(k) where Wi(k) = Wbest(k);

ifelse change < 0
set a random number in Wi(k) where Wi(k) 6= Wbest(k);

returnWi;

Table 3: An example of spiral function

Gateway Resource
Indices 1 2 3 4 5(r1) 6(r2) 7(r3) 8(r4) 9(r5) 10(r6) 11(r7)
W1 3 1 4 3 1 4 4 4 3 2 1
Best 3 3 4 2 1 2 2 4 3 4 1
Sprial 3 1 4 1 1 2 4 4 3 4 1

while shrinking function moves directly and faster toward the prey. Hence, increasing the probability
of executing the searchprey function at the end of algorithm is desirable.

The shrinking function adjusts its movement toward the prey based on the distance from the
best whale. After calculating the distance, a percentage of non-equal entries is changed and moves
toward the best whale with the probability of 50%. The pseudo-code of the shrinking function is
shown in Algorithm 3.

Algorithm: shrinking Wi to Wbest

D = distance(Wi,Wbest);
change = bA×Dc;
for (j = 0; i < |change|; i+ +)

k= a random indice in Wi where Wi(k) 6= Wbest(k);
rand= a random number in [0, 1];
if (rand < 0.5)

Wi(k) = Wbest(k);
else

set a random number in Wi(k);
returnWi;

Below we show the shrinking function in an example. In table 4, the distance between W1 and
Wbest is 4 which is shown in green. If A = 0.5, then two entries from entries having non-equal values
are changed. One of them become the best whale and the other one had a random change. These
two changed entries are shown in red.

4.7. Searchprey function

An important aspect of evolutionary algorithms is the ability to produce new solutions for the
problem which prevents stuck in local optimum. In the proposed method, the searchprey function
is used for this purpose. The higher probability of performing this function at the beginning is
desirable. So that exploitation and optimization phase will start with a greater variety of solutions.
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Table 4: An example shrinking function

Gateway Resource
Indices 1 2 3 4 5(r1) 6(r2) 7(r3) 8(r4) 9(r5) 10(r6) 11(r7)
W1 3 1 4 3 1 4 4 4 3 2 1

Best 3 1 4 2 1 2 2 4 3 4 1
Shrinking 3 1 4 2 1 3 4 4 3 2 1

Searchprey function moves a whale toward a randomly selected whale. The basis of the movement
is the distance between the two whales, but different methods have been used for motion as described
in the following sections. The pseudocode of the searchprey function is given in Algorithm 4.

Four functions, shrinking, join, swap and randomwalk are used within this function. Shrinking
function is explained in the previous section, with this difference that is used instead of . The other
three functions are described below.

Algorithm: searchprey Wi

select Wj randomly from whale group;
D = distance(Wi,Wj);
change = bA×Dc;
rand= a random number in [0, 1];
if (rand < 0.25)

shirinking(Wi,Wj);
elseif (rand < 0.5)

join (Wi,Wj, change);
elseif (rand < 0.75)

swap (Wi,Wj);
else

random walk (Wi, change);
returnWi;

4.7.1. Join function

Join function changes some parts of Wi into the entries of Wj. The number of entries being
changed is equal to |change|. Changing process can be sequential or random. After joining, whale
Wi get in in new position, part of which is inherited from Wj.

Table 5 shows an example of performing join function. In this example, W1 moves toward W2.
The distance is 4 shown in green. Changed entries are selected linearly at the end of the array. These
entries are shown in red.

Table 5: An example of join function

Gateway Resource
Indices 1 2 3 4 5(r1) 6(r2) 7(r3) 8(r4) 9(r5) 10(r6) 11(r7)
W1 3 1 4 3 1 4 4 4 3 2 1
W2 3 1 4 2 1 2 4 4 2 4 1
join 3 1 4 3 1 3 4 4 2 4 1
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4.7.2. Swap function

The swap function is the same as join function with this difference that the number of changed
entries in join function is equal to |change|, while in swap function is exactly equal to the number of
gateways (|Vg|) or the number of resources (|Vr|). In fact, in swap function, the new position of Wi

includes connection sub-graph of gateways in Wi and connection sub-graph of resources in Wj (and
vice versa). The value of |change| has no effect on this function.

Table 6 shows an example of swap function, in which W1 moves toward W2. The distance is 4
and shown in green and also has no effect on the result. Changed entries belong to the first part of
the array which show the type of connection between gateways. These entries are shown in red.

Table 6: An example of swap function

Gateway Resource
Indices 1 2 3 4 5(r1) 6(r2) 7(r3) 8(r4) 9(r5) 10(r6) 11(r7)
W1 3 1 4 3 1 4 4 4 3 2 1
W2 3 3 4 2 1 4 4 4 2 4 1

swap 3 3 4 2 1 4 4 4 3 2 1

4.7.3. Randomwalk function

Randomwalk function changes a number of entries of Wi randomly. The number of entries being
changed is equal to |change|. The values of whale Wj have no effect on the generated numbers for
Wi. The only effect of Wj in running this functin is the value of |change| that is generated based on
the distance between Wi and Wj.

In fact, randomwalk function produces a completely random movement in Wi and takes the whale
to a new position. So it is likely to discover new solutions after performing this function.

4.8. Parameter a

One of the most important parameters in the proposed method is a. The value of A which
determines the type of executing function in any steps of the algorithm is calculated based on
parameter a according to equation (4.6).

A = 2ar − a (4.6)

The value of a is considered between 2 to 0 in descending form. So, at the beginning of the algorithm
it is likely that the value of A is greater than one and the searchprey function is executed. As the value
of a decreases, the value of A also becomes less than one in most cases. Therefor shrinking function
will be executed. In this way, after discovery new solutions, the algorithm enters the exploitation
phase. In fact, decreasing thevalue of a helps to narrow the spiral movement around the prey and
whales focus on optimizing the final solution.

5. Simulation result

This section provides the simulation of the proposed algorithm and then evaluates its performance.
Simulation is done in MATLAB software environment on a desktop computer. Given that there is
no processing time in the evaluations, it is not necessary to introduce the computer specifications
and software version.

None of the prior researches on resource allocation problem in cloud computing hadn’t used a
common and public dataset. Creating a dataset covers all conditions of the scheduling problem.
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Given that, data are not the same, we re-implemented some of them in order to compare with
previous works.

5.1. Dataset

The test data are generated in small, medium and large size. The number of gateways varies
from4 to 100 and the number of resources varies from 10 to 800. A total of eight test samples are
designed for the proposed method. The list of sample tests is shown in table 7.

Table 7: Data set list
Data Set name Number of Gateways Number of Resources

DS1 4 10
DS2 4 12
DS3 4 16
DS4 40 100
DS5 40 200
DS6 40 400
DS7 100 400
DS8 100 800

In Table 7, three datasets DS1, DS2 and DS3 are of small size, two datasets DS4 and DS5

are of medium size and datasets DS7 and DS8 are of large size. Regardless of scale, the cost
of communication between resources and gateways is a random number ∈ [1, 20] and the cost of
communication between gateways is a random number ∈ [20, 40]. The cost of connection between
gateways is always higher than the cost of connection between resources and gateways.

Each dataset has two matrices. If k is defined as the number of gateways and n denotes the
number of resources, then one of these matrices is a symmetric matrix called Gatewayk×k of size
k× k which shows the cost of communication between gateways and the other one is a matrix called
of size which shows the cost of connection between resources and gateways. You can see the dataset
DS1. In Figure 2.

Figure 2: Dataset DS1
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5.2. Simulation results

We applied the proposed algorithm on the generated dataset and in order to compare with other
methods, we also applied two methods GA [30] and Search Economics for IOT Resource Allocation
(SEIRA) [31] on this data. The main criterion is the comparison of different methods of resource
allocation problem is Tc (the total cost of the messages in resource allocation).

Table 8 shows the results of the proposed algorithm in comparison with previous methods. Given
the fact that data is randomly generated and the resource allocation problem is a np-complete
problem, the optimal solution is not available and only the results of different methods can be used
to compare them. For the results shown in Table 8, the proposed algorithm has been executed for
10000 and 20000 times. Other methods are also executed for the relatively same initial population
and rounds in order to have fair results.

Table 8: Data set list
GA [30] SEIRA [31] WOA (proposed)

DS1 180.5 180.5 180.5
DS2 214 214 214
DS3 242.5 242.5 242.5
DS4 841 835 836.6
DS5 1260.4 1233 1230
DS6 1920.6 1905.3 1901.4
DS7 2728.8 2669.1 2661.8
DS8 3857.3 3753.7 3725

The results of the simulation of the proposed algorithm and its comparison with the other two
algorithms indicate that whale algorithm is good at solving resource allocation problem. Obtained
results for whale algorithm are always better than GA. In comparison with SEIRA algorithm, whale
algorithm has the same results and in some cases better results.

One criterion to evaluate the performance of the proposed algorithm is convergence speed. To do
this, we save the fitness of the best whale in each round of whale motions. Figures 3, 4, and 5 show
the fitness of three datasets DS1, DS5 and DS8.

Figure 3: The fitness of the best whale during whales’ motion in DS1

The whale algorithm is inspired by the group haunting of whales. Hence, in each round of the
proposed algorithm, all whales should approach the prey. From the resource allocation problem
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Figure 4: The fitness of the best whale during whales’ motion in DS5

Figure 5: The fitness of the best whale during whales’ motion in DS8

solving point of view, it means that, all whales change over time. Figures 6, 7, and 8 show the fitness
of all whales for three datasets DS1, DS5 and DS8.

Figure 6: Whale fitness during motion in DS1
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Figure 7: Whale fitness during motion in DS5

Figure 8: Whale fitness during motion in DS8

5.3. The effect of spiral, shrinking and searchprey functions

One of the most important points to be considered in the proposed method is the efficiency of
the designed functions. Three main functions named spiral, shrinking and searchprey functions have
been designed in the proposed method. Spiral function is designed to spiral around the best solution
(or prey). The shrinking function moves a whale directly toward the best whale and searchprey
function moves a whale toward a random whale. The first and second functions are used to optimize
the existing solutions and the third one is used to discover new solutions.

If the designed functions do not have the necessary performance, then the proposed algorithm
has the same performance as a random algorithm which produces many random solutions for the
problem. In contrast, the high efficiency of these functions makes it possible to quickly converge to an
optimum solution. To investigate this issue, we ran the proposed algorithm with different numbers
of whales and motions. In all runs, the multiplication of the number of whales in the number of
steps is a constant number. That is, in all simulations, the same number of solutions is produced
for the problem. The results of three datasets DS1, DS5 and DS8 are shown in tables 9, 10, and 11
respectively.

The results of the three above tables indicate that, using three main functions to produce solution
yields to better solutions than random ones. In contrast, If we increase the number of rounds and
reduce the number of whales, we will not get good results. We must balance between the number of
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Table 9: The best solution of DS1 for different modes

Number of Whales Number of rounds Best solution
1000000 1 270.5
100000 10 233
10000 100 197.5
1000 1000 180.5

Table 10: The best solution of DS5 for different modes

Number of Whales Number of rounds Best solution
25000000 1 1470.1
500000 50 1431.4
50000 500 1298.8
5000 5000 1230

Table 11: The best solution of DS18 for different modes

Number of Whales Number of rounds Best solution
100000000 1 4357
10000000 10 4124.5
1000000 100 4023.2
10000 10000 3725

whales and the number of rounds.

6. Conclusion

Cloud computing is a popular model for users to use cloud resources because of the ”pay-per-use”
model. But resource allocation problem is one of the most important challenges in this kind of system
due to the high volume of resources and users’ requests which attracted many researchers. Resource
allocation and scheduling is a method for allocating resources to users and the main objective of a
schedule is reducing runtime and allocating optimal resources to tasks. On one hand, improper use of
resources leads to increased energy consumption and as a result environmental warming. Therefore
task scheduling and resource allocation in large systems such as cloud computing are also important
besides runtime and can’t be ignored. In this paper a novel algorithm based on whale optimization
is proposed with the aim of reducing runtime of tasks and allocating optimal resources to tasks. The
proposed method suggested a discrete definition for the whale algorithm in order to optimize resource
allocation problem in cloud environment. Each whale is designed in the form of an array. Based on
this array, a new concept of distance is defined for distance function. This function is very useful
for whale algorithm. Spiral function is designed for spiral movement and shrinking and searchprey
functions are designed for direct movement. Obtained results show that the proposed whale algorithm
has a high ability to solve the resource allocation problem in the cloud. The functions designed for
base operators of the whale algorithm have been able to search the solution space of the problem well
and then found reasonable solutions for the mentioned problem by optimizing discovered solutions.
An important point in the correct execution of the algorithm is the logical adjustment of the value
of the which enters the algorithm to the exploitation phase from discovery phase.
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