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Abstract

In this paper, we introduce a new space which is a generalization of function weighted metric space
introduced by Jleli and Samet [On a new generalization of metric spaces, J. Fixed Point Theory
Appl. 2018, 20:128] where namely function weighted G-metric space. Also, a Hausdorff ∆-distance
is introduced in these spaces. Then several fixed point results for both single-valued and multi-
valued mappings in such spaces are proved. We also construct some examples for the validity of the
given results and present an application to the existence of a solution of the Volterra-type integral
equation.
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1. Introduction and preliminaries

In the last century, nonlinear functional analysis has experienced many advances. One of these
improvements is the introduction of various metric spaces and is the proof of fixed point results in
these spaces along with its applications in engineering science. One of these spaces is G-metric space
introduced by Mustafa [13]. This is a generalization of metric spaces in which every triple of elements
is assigned to a non-negative real number. Another of these spaces is function weighted metric spaces
defined by Jleli and Samet [9].

∗Corresponding author
Email addresses: e-lotfali@stu.scu.ac.ir (Ehsan Lotfali Ghasab), h.majani@scu.ac.ir;

majani.hamid@gmail.com (Hamid Majani)

Received: July 2020 Accepted: September 2020

http://dx.doi.org/10.22075/ijnaa.2020.20547.2167


1442 Lotfali Ghasab, Majani

Definition 1.1. [2, 9] Let g : (0,+∞) → R be a function such that for every sequence {bn} ⊂
(0,+∞) we have lim

n→∞
bn = 0 if and only if lim

n→∞
g(bn) = −∞. This function is called logarithmic-like

and is called a non-decreasing function if for all u, v ∈ (0,+∞) where u ≤ v we have g(u) ≤ g(v).

It the sequel, the set of all functions that are non-decreasing and logarithmic-like is denoted by F .
In 2019, some of researchers such as: Alqahtani et al. [2], Aydi et al. [3] and Bera et al. [4] discussed
on the structure of this space and on the fixed points of mappings satisfying in various contractive
conditions.

Definition 1.2. [9] Let : η : X ×X → [0,+∞) be a mapping and there exist a g ∈ F and a constant
B ∈ [0,+∞) such that

η1) η(x, y) = 0⇔ x = y for all x, y ∈ X ;

η2) η(x, y) = η(y, x) for all x, y ∈ X ;

η3) for all (x, y) ∈ X × X and for each N ∈ N with N ≥ 2, we have

η(x, y) > 0⇒ g(η(x, y)) ≤ g(
N−1∑
i=1

η(vi, vi+1)) +B

for all (vi)
N
i=1 ⊂ X with (v1, vN) = (x, y).

Then, the function η is named as a function weighted metric or an F-metric on X , and the pair
(X , η) is called a function weighted metric space or a F-metric space.

On the other hands, Bhaskar and Lakshmikantham [5] defined the concept of coupled fixed point
and presented some coupled fixed point results for a mixed monotone mapping in partially ordered
matric spaces. Also, they studied the existence and uniqueness of a solution to a periodic boundary
value problem. For more details on coupled, tripled and n-tupled fixed point theorems, we refer to
[6, 7, 8, 10, 12, 14].

Definition 1.3. [1, 11] An element (x, y) ∈ X 2 is called a coupled coincidence point of two mappings
h : X 2 → X and r : X → X if h(x, y) = rx and h(y, x) = ry. Also, an element (x, y) ∈ X 2 is
called a common fixed point of a mapping h : X 2 → X and r : X → X if h(x, y) = rx = x and
h(y, x) = ry = y.

Note that if r is the identity mapping, then (x, y) is called a coupled fixed point of h [5].

Definition 1.4. [11] Let X be a nonempty set. For two given mappings h : X 2 → X and r : X →
X , h and r is said to be commutative if h(rx, ry) = r(h(x, y)) for all x, y ∈ X .

In this paper, we introduced the generalization of both G-metric spaces and function weighted
metric spaces, namely, function weighted G-metric space. Also, we define a Hausdorff ∆-distance in
these spaces. Then, we introduce some common fixed point results in such spaces and prove them.
For this goal, this paper is organized as follows. In the next section, we define a function weighted
G-metric space and introduce the definition of convergent in this space. Then we prove a common
fixed point theorem and a common coupled fixed point result in this space. In Section 3, we introduce
a Hausdorff ∆-distance and obtain a coincidence point results for multi-valued mappings concerning
this distance. In the final section, an application of these results considered for the existence of
solution of a Volterra-type integral equation.
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2. Function weighted G-metric space and fixed point theory

Let’s start by introducing the following space.

Definition 2.1. Let ∆ : X × X × X → [0,+∞) be a given mapping. Suppose that there exist a
f ∈ F and a constant C ∈ [0,+∞) such that

∆1) ∆(x, y, z) = 0 iff x = y = z for all x, y, z ∈ X ;

∆2) ∆(x, y, z) = ∆(y, x, z) = · · · for all x, y, z ∈ X ;

∆3) 0 < ∆(x, x, y) for all x, y ∈ X with x 6= y;

∆4) ∆(x, x, y) ≤ ∆(x, y, z) for all x, y, z ∈ X with z 6= y;

∆5) For all (x, y, z) ∈ X × X × X and for each N ∈ N with N ≥ 2, we have

∆(x, y, z) > 0 =⇒ f(∆(x, y, z)) ≤ f(
N−1∑
i=3

∆(ui−2, ui−1, ui−1) + ∆(ui−1, ui, ui+1)) + C

for each (ui)
N
i=1 ⊂ X with (u1, uN−1, uN) = (x, y, z).

Then, the function ∆ is said to be a function weighted generalized metric or an FG-metric on X ,
and the pair (X ,∆) is said to be a function weighted generalized metric space or an FG-metric space.

Example 2.2. Let X be a set of all real number and f(t) = ln(t) be a non-decreasing function. Then,
for all distinct x, y, z ∈ X , for every N ∈ N with N ≥ 3, for each (ui)

N
i=1 ⊂ X with (u1, uN−1, uN) =

(x, y, z), and every G-metric on X , we have

G(x, y, z) > 0 =⇒ ln(G(x, y, z)) ≤ ln(
N−1∑
i=3

G(ui−2, ui−1, ui−1) +G(ui−1, ui, ui+1)).

since G(x, y, z) ≤
∑N−1

i=3 G(ui−2, ui−1, ui−1) + G(ui−1, ui, ui+1). Here, we take C = 0. Thus, (X , G)
is an FG-metric space.

Definition 2.3. Let (X ,∆) be an FG-metric space. A subset O of X is said to be open if for every
x ∈ O, there is some r > 0 such that B(x, r) ⊂ O, where

B(x, r) = {y ∈ X : ∆(x, y, y) < r}.

We say that a subset C of X is closed if X − C is open.

Now, we consider the definition of convergence, Cauchy and completeness of an FG-metric space.

Definition 2.4. Let (X ,∆) be an FG-metric space and {xn} be a sequence of points of X .

1. {xn} is called convergent sequence if there exist x ∈ X such that

lim
n→∞

∆(x, xn, xn) = 0.

2. {xn} is called ∆-Cauchy if for every ε > 0, there is a N ∈ N such that ∆(xn, xm, xl) < ε for
all n,m, l ≥ N ; that is, if ∆(xn, xm, xl)→ 0, as n,m, l→∞.
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3. (X ,∆) is said to be ∆-complete (or complete ∆-metric space) if every ∆-Cauchy sequence in
(X ,∆) is convergent in X .

Theorem 2.5. Let (X ,∆) be a complete function weighted G-metric space. Also, r,H : X → X be
two arbitrary mappings such that H, r are commutative, H(X ) ⊂ r(X ), and r(X ) is closed. Suppose
that there exists k ∈ (0, 1) such that

∆(Hx,Hy,Hz) ≤ k∆(rx, ry, rz) (2.1)

for all x, y, z ∈ X . Then H and r have a unique common fixed point in X .

Proof . Since H(X ) ⊂ r(X ), we can choose a point x1 ∈ X such that Hx0 = rx1 for a given x0 ∈ X .
We construct a sequence xn in X such that yn = Hxn = rxn+1 for n = 0, 1, · · ·. First, observe that
H and r possess a unique coincidence point. Indeed, suppose on the contrary that u, v ∈ X is two
distinct coincidence points of H and r. Thus, ∆(u, u, v) > 0, r(u) = H(u) and r(v) = H(v). Then,
from 2.1, we have

∆(u, u, v) = ∆(Hu,Hu,Hv) ≤ k∆(ru, ru, rv) = k∆(u, u, v) < ∆(u, u, v),

which is a contradiction.
Suppose (f, C) ∈ F × [0,+∞) so that (∆5) is fulfilled. For a given ε > 0 and on account of (∆5),

there exists γ > 0 such that

0 < t < γ ⇒ f(t) < f(ε)− C. (2.2)

Consider the sequence {yn} ⊂ X . Now, without loss of generality, we assume that ∆(Hx0, Hx0, Hx1) >
0. Otherwise, x1 will be a coincidence point of H and r. By 2.1, we obtain

∆(Hxn, Hxn, Hxn+1) ≤ k∆(rxn, rxn, rxn+1)

= k∆(Hxn−1, Hxn−1, Hxn)

≤ k2∆(rxn−1, rxn−1, rxn),

which implies by induction that

∆(Hxn, Hxn, Hxn+1) ≤ kn∆(Hx0, Hx0, Hx1)

for all n ∈ N. Hence, for all m,n ∈ N with m > n, we have

m−1∑
i=n

∆(Hxi, Hxi, Hxi+1) ≤ kn

1− k
∆(Hx0, Hx0, Hx1).

Since

lim
n→∞

kn

1− k
∆(Hx0, Hx0, Hx1) = 0,

there exists some N ∈ N such that 0 < kn

1−k∆(Hx0, Hx0, Hx1) < γ for all n ≥ N . Hence, by 2.2 and
(∆1), we have

f(
m−1∑
i=n

∆(Hxi, Hxi, Hxi+1)) ≤ f(
kn

1− k
∆(Hx0, Hx0, Hx1)) < f(ε)− C (2.3)
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for m > n ≥ N . Employing (∆5) together with 2.3, we find if ∆(Hxn, Hxn, Hxm) > 0, then

f(∆(Hxn, Hxn, Hxm)) ≤ f(
m−1∑
i=n

∆(Hxi, Hxi, Hxi+1)) + C < f(ε)

which implies by (∆1) that ∆(Hxn, Hxn, Hxm) < ε. This proves that {yn} = {Hxn} is Cauchy. Since
{Hxn} = {rxn+1} ⊂ r(X) and r(X ) is closed, there exists z ∈ X such that lim

n,m→∞
∆(rxn, rxm, rz) =

0. As a next step, we shall indicate that z is a coincidence point of H and r. On the contrary, assume
that ∆(Hz,Hz, rz) > 0. Then we have

f(∆(Hz,Hz, rz)) ≤ f(∆(Hz,Hz,Hxn) + ∆(Hxn, Hxn, rz)) + C

≤ f(k∆(rz, rz, rxn) + ∆(rxn+1, rxn+1, rz)) + C.

As n→∞ in the inequality above, we obtain

lim
n→∞

f(k∆(rz, rz, rxn) + ∆(rxn+1, rxn+1, rz)) + C = −∞,

which is a contradiction. Hence, ∆(Hz,Hz, rz) = 0; that is, z is a unique coincidence point of
H and r. Therefore, r and H have a unique point of coincidence w = rz = Hz. By commutativity
of H and r, we have rw = r(rz) = rH(z) = Hr(z) = Hw. This implies that rw is another point of
coincidence of r and H. By uniqueness of point of coincidence of r and H, we have w = rw = Hw;
that is r and H have a unique common fixed point. This completes the proof. �

In the sequel, denote for simplicity X × · · · × X by X n, where X is a non-empty set and n ∈ N.

Lemma 2.6. Let (X ,∆) be an FG-metric space. Then the following assertions hold:

1. (X n,D) is an FG-metric space with

D((x1, · · · , xn), (y1, · · · , yn), (z1, · · · , zn)) = max[∆(x1, y1, z1),

∆(x2, y2, z2), · · · ,∆(xn, yn, zn)].

2. The mapping h : X n → X and r : X → X have a n-tuple common fixed point if and only if the
mapping H : X n → X n and R : X n → X n defined by

H(x1, x2, · · · , xn) = (h(x1, x2, · · · , xn), h(x2, · · · , xn, x1), · · · , h(xn, x1, · · · , xn−1))

and

R(x1, x2, · · · , xn) = (rx1, rx2, · · · , rxn)

have a common fixed point in X n.

3. (X ,∆) is complete if and only if (X n,D) is complete.
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Proof . 1. Clearly, D satisfies in (∆1)-(∆4). We show that D satisfies in (∆5). For every (ui,j) ⊂ X
for 1 ≤ i ≤ N and 1 ≤ j ≤ n, consider (ui1, uiN−1, uiN) = (x1, yN−1, zN−1). Suppose that

∆(xj, yj, zj) = max[∆(x1, y1, z1),∆(x2, y2, z2), · · · ,∆(xn, yn, zn)].

Then, we have

fj(∆(xj, yj, zj)) ≤ fj(
N−1∑
i=3

∆(ui−2j, ui−1j, ui−1j) + ∆(ui−1j, uij, ui+1j)) + Cj,

where fj ∈ F and Cj ∈ [0,+∞). Therefore, we obtain

fj(D((x1, x2, · · · , xn), (y1, y2, · · · , yn), (z1, z2, · · · , zn)))

= fj(max[∆(x1, y1, z1),∆(x2, y2, z2), · · · ,∆(xn, yn, zn)])

= fj(∆(xj, yj, zj))

≤ fj(
N−1∑
i=3

∆(ui−2,j, ui−1,j, ui−1,j) + ∆(ui−1,j, ui,j, ui+1,j)) + Cj)

≤ fj(
N−1∑
i=3

D((ui−2,1, ui−2,2, · · · , ui−2,n), (ui−1,1, ui−1,2, · · · , ui−1,n), (ui−1,1, ui−1,2, · · · , ui−1,n))

+D((ui−1,1, ui−1,2, · · · , ui−1,n), (ui,1, ui,2, · · · , ui,n), (ui+1,1, ui+1,2, · · · , ui+1,n))) + Cj.

The proof of 2. and 3. are straightforward and left to the reader. �
Note that the Lemma 2.6 is a two-way relationship. Thus, we can obtain n-tuple fixed point results
from fixed point theorems and conversely. Now, set n = 2 in Lemma 2.6. Then we have the following
theorem.

Theorem 2.7. Let (X ,∆) be a complete function weighted G-metric spaces. Also, let r : X → X
and H : X 2 → X be two mappings such that H, r are commutative, H(X 2) ⊂ r(X ) and r(X ) is
closed. Suppose that there exists k ∈ (0, 1) such that

∆(H(x, y), H(u, v), H(w, z)) ≤ k

2
(∆(rx, ru, rw) + ∆(ry, rv, rz)) (2.4)

for all (x, y), (u.v), (w, z) ∈ X 2. Then H and r have a unique common coupled fixed point in X ×X .

Proof . Let us define D : X 2 ×X 2 ×X 2 → X by

D((x1, x2), (y1, y2), (z1, z2)) = max[∆(x1, y1, z1),∆(x2, y2, z2)],

H : X 2 → X 2 by H(x, y) = (H(x, y), H(y, x)) and R : X 2 → X 2 by R(x, y) = (rx, ry). Using
Lemma 2.6, (X 2,D) is a complete FG-metric space. Also, (x, y) ∈ X 2 is a common coupled fixed
point of H and r if and only if it is a common fixed point of H and R. On the other hands, from
2.4, we have either

D(H(x, y),H(u, v),H(w, z))

= D((H(x, y), H(y, x)), (H(u, v), H(v, u)), (H(w, z), H(z, w)))

= max[∆(H(x, y), H(u, v), H(w, z)),∆(H(y, x), H(v, u), H(z, w))]

= ∆(H(x, y), H(u, v), H(w, z))

≤ k

2
(∆(rx, ru, rw) + ∆(ry, rv, rz))

≤ kmax[∆(rx, ru, rw),∆(ry, rv, rz)]

= kD(R(x, y),R(u, v),R(w, z))



Function weighted G-metric spaces 12 (2021) No. 2,1441–1452 1447

or

D(H(x, y),H(u, v),H(w, z))

= D((H(x, y), H(y, x)), (H(u, v), H(v, u)), (H(w, z), H(z, w)))

= max[∆(H(x, y), H(u, v), H(w, z)),∆(H(y, x), H(v, u), H(z, w))]

= ∆(H(y, x), H(v, u), H(z, w))

≤ k

2
(∆(ry, rv, rz) + ∆(rx, ru, rw))

≤ kmax[∆(ry, rv, rz),∆(rx, ru, rw)]

= kD(R(y, x),R(v, u),R(z, w)).

Now, by Theorem 2.5, H and R have a common fixed point and by Lemma 2.6, H and r have a
common coupled fixed point. �

Example 2.8. Let X = [0, 1]. Define ∆ : X × X × X → [0,∞) by

∆(x, y, z) = |x− y|+ |x− z|+ |y − z|

for all x, y, z ∈ X . Then ∆ is a complete FG-metric with f(t) = Ln(t) and C = 0. Consider
H : X 2 → X and r : X → X by

H(x, y) =
x

2
+
y

2
and r(x) = 2x.

Clearly, H and r are commutative. Also, we have

∆(H(x, y), H(u, v), H(w, z)) = |x
2

+
y

2
− (

u

2
+
v

2
)|+ |x

2
+
y

2
− (

w

2
+
z

2
)|

+|u
2

+
v

2
− (

w

2
+
z

2
)|

=
1

2
(|x+ y − (u+ v)|+ |x+ y − (w + z)|

+|u+ v − (w + z)|)

≤ 1

2
∆(rx, ru, rw) +

1

2
∆(ry, rv, rz).

Therefore, by letting k = 1
2
, all the hypothesis of Theorem 2.7 are satisfied. Thus, H and r have a

unique common coupled fixed point in X × X .

3. Hausdorff ∆-distance and fixed point results

First, we introduce the following definition.

Definition 3.1. Let (X ,∆) be an FG-metric space and CB(X ) be the family of all nonempty closed
bounded subsets of X . We say H(·, ·, ·) is a Hausdorff ∆-distance on CB(X ), if

H∆(A,B,C) = max{sup
x∈A

∆(x,B,C), sup
x∈B

∆(x,C,A), sup
x∈C

∆(x,A,B)},

where

∆(x,B,C) = d∆(x,B) + d∆(B,C) + d∆(x,C),

d∆(x,B) = inf{d∆(x, y), y ∈ B},
d∆(A,B) = inf{d∆(a, b), a ∈ A, b ∈ B}.
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Definition 3.2. [15] Let X be a nonempty set. Assume that g : X → X and T : X → CB(X ). If
w = gx ∈ Tx for some x ∈ X , then x is called a coincidence point of g and T and w is a point of
coincidence of g and T

Theorem 3.3. Let (X ,∆) be a complete FG-metric space. Also, let g : X → X and T : X →
CB(X ) be two function T (X ) ⊂ g(X ), g(X ) is closed and g is continuous. Assume that there exists
k ∈ (0, 1) such that

H∆(Tx, Ty, Tz) ≤ k∆(gx, gy, gz) (3.1)

for all x, y, z ∈ X . Then T and g have coincidence point in X .

Proof . Since T (X ) ⊂ g(X ), we can choose a point x1 ∈ X such that gx1 ∈ Tx0. We shall construct
a sequence xn in X such that gxn+1 ∈ Txn for n = 0, 1, · · · . Suppose (f, C) ∈ F × [0,+∞) so that
(∆5) is fulfilled. For a given ε > 0 and on account of (∆5), there exists γ > 0 such that

0 < t < γ ⇒ f(t) < f(ε)− C. (3.2)

Consider the sequence {gxn} ⊂ X . Now, without loss of generality, assume thatH∆(Tx0, Tx0, Tx1) >
0. Otherwise, x1 will be a coincidence point of T and g. Now, from 3.1, we have

∆(gxn+1, gxn+1, gxn+2) ≤ H∆(Txn, Txn, Txn+1)

≤ k∆(gxn, gxn, gxn+1)

≤ kH∆(Txn−1, Txn−1, Txn)

≤ k2∆(gxn−1, gxn−1, gxn),

which implies that ∆(gxn, gxn, gxn) ≤ kn∆(Tx0, Tx0, Tx1) for all n ∈ N. Now, let m,n ∈ N with
m > n. Then we have

m−1∑
i=n

∆(gxi, gxi, gxi+1) ≤ kn

1− k
∆(gx0, gx0, gx1).

On the other hand, since limn→∞
kn

1−k∆(gx0, gx0, gx1) = 0, there exists N ∈ N such that

0 <
kn

1− k
∆(gx0, gx0, gx1) < γ

for n ≥ N . Hence, by 3.2 and (∆1), we have

f(
m−1∑
i=n

∆(gxi, gxi, gxi+1)) ≤ f(
kn

1− k
∆(gx0, gx0, gx1)) < f(ε)− C (3.3)

for all m > n ≥ N . Employing (∆5) together with 3.3, we obtain

∆(gxn, gxn, gxm) > 0⇒ f(∆(gxn, gxn, gxm)) ≤ f(
m−1∑
i=n

∆(gxi, gxi, gxi+1)) + C < f(ε),

which implies by (∆1) that ∆(gxn, gxn, gxm) < ε. This proves that {gxn} is Cauchy. Since X is a
complete FG-metric space and g(X ) is closed, there exists x ∈ X such that lim

n→∞
gxn = gx. Now, we

claim that gx ∈ Tx. For this, from 3.1, we have

∆(gxn+1, Tx, Tx) ≤ H∆(T (xn), Tx, Tx) ≤ k∆(gxn, gx, gx).
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Thus,
lim
n→∞

∆(gxn+1, Tx, Tx) = ∆(gx, Tx, Tx) = 0.

Hence, gx ∈ Tx; that is, T and g have a point of coincidence. �

Example 3.4. Let X = [0, 1], T : X → CB(X ) and g : X → X be defined by Tx = [0, 1
16
x] and

gx =
√
x. Define ∆ : X × X × X → [0,∞) by

∆(x, y, z) = max{|x− y|, |x− z|, |y − z|}.

Then ∆ is an complete FG-metric with f(t) = Ln(t) and C = 0. Clearly, T (X ) ⊂ g(X ) and g(X )
is closed. If x = y = z = 0, then

H∆(Tx, Ty, Tz) = 0 ≤ k∆(gx, gy, gz).

Thus, we may assume that x, y and z are not all zero. Without loss of the generality, assume that
x ≤ y ≤ z. Then

H∆(Tx, Ty, Tz) = H∆([0,
1

16
x], [0,

1

16
y], [0,

1

16
z])

= max[ sup
0≤a≤ 1

16
x

∆(a, [0,
1

16
y], [0,

1

16
z]), sup

0≤b≤ 1
16
y

∆(b, [0,
1

16
z], [0,

1

16
x]),

sup
0≤c≤ 1

16
z

∆(c, [0,
1

16
x], [0,

1

16
y])].

Since x ≤ y ≤ z, so [0, 1
16
x] ⊂ [0, 1

16
y] ⊂ [0, 1

16
z]. This implies that

d∆([0,
1

16
x], [0,

1

16
y]) = d∆([0,

1

16
y], [0,

1

16
z]) = d∆([0,

1

16
x], [0,

1

16
z]) = 0.

For each 0 ≤ a ≤ 1
16
x, we have

∆(a, [0,
1

16
y], [0,

1

16
z]) = d∆(a, [0,

1

16
y]) + d∆([0,

1

16
y], [0,

1

16
z]) + d∆(a, [0,

1

16
z]) = 0.

Also, for each 0 ≤ b ≤ 1
16
y, we have

∆(b, [0,
1

16
x], [0,

1

16
z]) = d∆(b, [0,

1

16
x]) + d∆([0,

1

16
x], d∆(a, [0,

1

16
z])) + d∆(b, [0,

1

16
z])

=

{
0, b ≤ x

16

2b− x
8
, b ≥ x

16

This yields that

sup
0≤b≤ 1

16
y

∆(b, [0,
1

16
z], [0,

1

16
x]) =

y

8
− x

8
.

Moreover, for each 0 ≤ c ≤ 1
16
z, we have

∆(c, [0,
1

16
x], [0,

1

16
y]) = d∆(c, [0,

1

16
x]) + d∆([0,

1

16
x], d∆(a, [0,

1

16
y])) + d∆(c, [0,

1

16
y])

=


0, c ≤ x

16

2c− x
8
, x

16
≤ c ≤ y

16

4c− x
8
− y

8
, c ≥ y

16
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This yields that

sup
0≤c≤ 1

16
z

∆(c, [0,
1

16
x], [0,

1

16
y]) =

z

4
− y

8
− x

8
.

We deduce that

H∆(Tx, Ty, Tz) =
z

4
− x

8
− y

8
≤ 1

4
(z − x) =

1

2
(
1

2
(z − x))

≤ 1

2
(

z − x√
x+
√
z

) =
1

2
(
√
z −
√
x).

On the other hand, it is obvious that all other hypotheses of Theorem 3.3 are satisfied and so g and
T have a unique common fixed point.

4. An application to a Volterra integral equations

As an application of our results, we consider the following Volterra integral equation:

x(t) =

∫ t

0

K(t, s, x(s))ds+ v(t), (4.1)

where t ∈ I = [0, 1], K ∈ C(I × I × R,R) and v ∈ C(I,R).
Let C(I,R) be the Banach space of all real continuous functions defined on I with norm ||x||∞ =

max
t∈I
|x(t)| for all x ∈ C(I,R) and C(I × I × C(I,R),R) be the space of all continuous functions

defined on I × I × C(I,R). Alternatively, the Banach space C(I,R) can be endowed with Bielecki
norm ||x||B = supt∈I{|x(t)|e−τt} for all x ∈ C(I,R) and τ > 0, and the induced metric ∆B(x, y, z) =
||x− y||B + ||x− z||B + ||y − z||B for all x, y, z ∈ C(I,R). Also, define T : C(I,R)→ C(I,R) by

Tx(t) =

∫ t

0

K(t, s, x(s))ds+ v(t), v ∈ C(I,R).

Theorem 4.1. Let (C(I,R),∆B) be a complete FG-metric space by f(t) = Ln(t), T : C(I,R) →
C(I,R) be a operator with Tx(t) =

∫ t
0
K(t, s, x(s))ds + v(t) and rx = I(x). Assume that K ∈

C(I × I × R,R) is an operator such that

(i) K is continuous;

(ii)
∫ t

0
K(t, s, ·) for all t, s ∈ I is increasing;

(iii) there exists τ > 0 such that

|K(t, s, x(s))−K(t, s, y(s))| ≤ e−τ |x(s)− y(s)|

for all x, y ∈ C(I,R) and t, s ∈ I.

Then, the Volterra-type integral equation 4.1 has a solution in C(I,R).
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Proof . By definition of T , we have

∆B(Tx, Ty, Tz) = ‖
∫ t

0

K(t, s, x(s))ds−
∫ t

0

K(t, s, y(s))ds‖B

+‖
∫ t

0

K(t, s, x(s))ds−
∫ t

0

K(t, s, z(s))ds‖B

+‖
∫ t

0

K(t, s, y(s))ds−
∫ t

0

K(t, s, z(s))ds‖B

= sup
t∈I
{|
∫ t

0

K(t, s, x(s))ds−
∫ t

0

K(t, s, y(s))ds| e−τt}

+ sup
t∈I
{|
∫ t

0

K(t, s, x(s))ds−
∫ t

0

K(t, s, z(s))ds| e−τt}

+ sup
t∈I
{|
∫ t

0

K(t, s, y(s))ds−
∫ t

0

K(t, s, z(s))ds| e−τt}

≤ sup
t∈I
{
∫ t

0

|K(t, s, x(s))−K(t, s, y(s))|e−τt ds}

+ sup
t∈I
{
∫ t

0

|K(t, s, x(s))−K(t, s, z(s))|e−τt ds}

+ sup
t∈I
{
∫ t

0

|K(t, s, y(s))−K(t, s, z(s))|e−τt ds}

≤ sup
t∈I
{
∫ t

0

e−τ |x(s)− y(s)|e−τt ds}+ sup
t∈I
{
∫ t

0

e−τ |x(s)− z(s)|e−τt ds}

+ sup
t∈I
{
∫ t

0

e−τ |y(s)− z(s)|e−τt ds}

≤ (||x− y||B + ||x− z||B + ||y − z||B) sup
t∈I
{
∫ t

0

e−τds}

≤ e−τ∆B(x, y, z).

Now, we consider that the function f(t) = ln(t) for each t ∈ I, C = 0 and k = e−τ . Therefore,
all conditions of Theorem 2.5 are satisfied. Consequently, Theorem 2.5 ensures the existence of fixed
point of T that this fixed point is the solution of the integral equation. �
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