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Abstract

In this article, we extended an efficient computational method based on Walsh operational matrix
to find an approximate solution of nonlinear fractional order Volterra integro-differential equation.
First, we present the fractional Walsh operational matrix of integration and differentiation. Then
by applying this method, the nonlinear fractional Volterra integro-differential equation is reduced
into a system of algebraic equation. The benefits of this method are the low-cost of setting up the
equations without applying any projection method such as collocation, Galerkin, etc. The results
show that the method is very accuracy and efficiency.
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1. Introduction

Many problems in sciences, economics, and engineering are modeled by a fractional differential
equation and fractional integral equation. Nonlinear fractional-order Volterra integro differential
equations arise in physics, biology, reactor dynamics and visco-elasticity [10, 11, 8, 22]. Many
researchers have studied operational matrix of various orthogonal functions and polynomials, for
example, Block-pulse functions [9, 1], Bernoulli wavelet [14], Hat function [3], Triangular function
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[13, 21], Boubaker functions [15], Bernstein polynomials [2] and Legendre function [24]. Haar wavelet
operational matrix method has been applied for fractional Bagley-Torvik equation [25]. The authors
have recently applied a fractional operational matrix for solving two-dimensional (2D) nonlinear
integro-differential equations by BPFs [18]. E. Hesameddini et al. used shifted Legendre polynomi-
als operational matrix to solve two dimensional fractional integral equations [12]. In [5] the single
term Walsh series (STWS) techniques also developed to solve the system of Volterra integral equa-
tions. In [7, 6], researchers have extended the STWS method for the nonlinear Volterra integral
equations and system of linear Volterra integro-differential equations.

Consider the following nonlinear fractional-order Volterra integro-differential equations

Dαu(t) =
n∑

j=1

aj(t)D
βju(t) + a0(t)u(t) + g(t) +

∫ t

0

k(t, x)F (u(x))dx, t ∈ [0, 1] (1.1)

with the supplementary conditions

u(i)(0) = δi i = 0, 1, · · · , ⌈α⌉ − 1, (1.2)

where aj(t) for j = 0, 1, · · · , n and functions g(x), k(t, x)F (u(x)) are known and belong to Ω2 ∈ [0, 1].
Dα is the Caputo fractional derivative operator of order α. The unknown function u(x) needs to be
determined. In this work, we consider that,

F (u(x)) = (u(x))q,

where q is a positive integer number. This paper introduces a new operational method to solve the
nonlinear fractional-order Volterra integro-differential equation (1.1). The method is based on reduc-
ing the equation to a system of algebraic equations by expanding the solution as Walsh functions.

2. Preliminaries and Basic Definitions

In this section, we initially recall some basic definitions and properties of the fractional integral
and derivative.

Definition 2.1. [19] A real function f(x), x > 0 is said to be in the space Cµ, µ ∈ R, if there exists
a real number p > µ such that f(x) = xpf1(x), where f1 ∈ C[0,∞). Clearly, Cµ ∈ Cβ if β < µ.

Definition 2.2. [19] A function f(x), x > 0 is said to be in the space Cn
µ if and only if f (n) ∈ Cµ,

n ∈ N .

Definition 2.3. [19] The Riemann-Liouville fractional integral operator Iθ1 of order θ1 ≥ 0, of a
function f ∈ Cµ, µ ≥ 1, is defined as

(Iθ1)f(x) =

{
1

Γ(θ1)

∫ x

0
f(s)

(x−s)1−θ1
ds, θ1 > 0,

f(x), θ1 = 0,

for θ2 ≥ −1, the property of the operator Iθ1 that is needed in this article as

Iθ1xθ2 =
Γ(θ2 + 1)

Γ(θ2 + θ1 + 1)
xθ1+θ2 .
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Definition 2.4. [19] The Caputo fractional derivative Dθ1 of order θ1 is defined as

(Dθ1f)(x) =
1

Γ(n− θ1)

∫ x

0

f (n)(s)

(x− s)θ1+1−n
ds, θ1 > 0,

for n− 1 < θ1 ≤ n, n ∈ N and f ∈ Cn
−1, where D = d

dx
and Γ(.) is the Gamma function.

A relation between Riemann-Liouville and Caputo fractional differentiation operator can be defined
as follows:

Lemma 2.5. [19] If m− 1 < α ≤ m, m ∈ N, then DαIαu(x) = u(x), and:

IαDαu(x) = u(x)−
m−1∑
k=0

u(k)(0+)
xk

k!
, x > 0.

3. Definition and properties of Walsh function

Let f be an integrable function defined in [0, 1). The expansion of f(x) with respect to the Walsh
series is as follows:

f(x) =
∞∑
i=0

fiΦi(x), (3.1)

where Φi(x) is the ith Walsh function (WF), and fi is the corresponding coefficient [23]. In the Walsh
series approach, we consider only a finite number of terms. Then,

f(x) ≃ F TΦ(x), (3.2)

where F = [f0, . . . , fm−1]
T and Φm(x) = [ϕ0(x), ϕ1(x), . . . , ϕm−1(x)]

T .
The coefficients fi are chosen to minimize the mean integrated squared error

ε =

∫ 1

0

[
f(x)− F TΦm(x)

]2
dx, (3.3)

and are given by

fi =

∫ 1

0

f(x)Φi(x)dx. (3.4)

It has been proved that ∫ t

0

f(x)dx = F TΥΦm(t), (3.5)

where Υ is the operational matrix of the integration of the Walsh series. In Single Term Walsh Series,

Υ1×1 =
1

2
[5, 4]. The operational matrix of integration of Φm(t) is defined as∫ t

0

Φm(x)dx ∼= Pm×mΦm(t), (3.6)

where Pm×m is the operational matrix of WFs [8]. This matrix can be expressed as follows:

Pm×m =



1
2

. . . − 2
m
I(m

8
) − 1

m
I(m

4
)

2
m
I(m

8
) O(m

8
) − 1

2m
I(m

2
)

1
m
I(m

4
) O(m

4 )
1
2m

I(m
2
) O(m

2 )

 . (3.7)
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Let A be a m-vector and B be a m×m matrix, then, it can be concluded that

Φm(t)Φ
T
m(t)A = ÃΦm(t), (3.8)

and
Φm(t)BΦT

m(t) = B̂Φm(t), (3.9)

in which Ã = diag(A) and B is a m vector with elements equal to the diagonal entries of B [8]. Let
Ψm = [b0, b1, · · · , bm−1]

T . Clearly we can define

Φm(t) = Wm×mΨm(t), (3.10)

where Wm×m is the Walsh matrix, and Ψi are Block-pulse functions (BPFs) with unity height and
1/m width. BPFs are a set of piecewise constant orthogonal functions, defined in the time interval
[0, T1]:

bi =

{
1, (i− 1)T1

m
≤ t < iT1

m
,

0, otherwise,

where i = 0, 1, · · · ,m−1 with m as a positive integer. The Wm×m matrix has the following properties
that will be considered:

W 2
m×m = mIm

or

W−1
m×m =

1

m
Wm×m. (3.11)

Substituting (3.10) into (3.6), yields∫ t

0

Wm×mΨm(x)dx = Pm×mWm×mΨm(t) (3.12)

Therefore, ∫ t

0

Ψm(x)dx = W−1
m×mPm×mWm×mΨm(t). (3.13)

Let
W−1

m×mPm×mWm×m = Υm×m. (3.14)

Using (3.11), we have

Υm×m =
1

m
WPW. (3.15)

Evaluating the similarity transformation yields:

Υm×m =
1

m


1
2

1 1 . . . 1
0 1

2
1 . . . 1

...
...

...
. . .

...
0 0 0 . . . 1

2

 , (3.16)

where Υm×m is an operational matrix of integration for BPFs. Inspecting the Υm×m matrix, the
following decomposition can be made:

Υm×m =
1

m
(
1

2
Im +Qm×m +Q2

m×m + · · ·+Qm−1
m×m)
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=
1

m

(
1

2
Im +

∞∑
i=1

Qi
m×m

)
(3.17)

=
1

m

(
−1

2
Im + (Im −Qm×m)

−1

)
=

1

2m
(Im +Qm×m(Im −Q−1

m×m)),

where

Qm×m =
1

m


0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 0

 . (3.18)

Also, the following property can be concluded for Qm×m

Qi
m×m =

(
O Im−i

O O

)
for i < m, (3.19)

and
Qi

m×m = Om for i ≥ m. (3.20)

3.1. Operational Matrix of Differentiation

In this section, we want to derive an explicit formula for the Walsh function of the mth degree
operational matrix of differentiation. Let us denote the operational matrix of differentiation as Υm×m

(see [8]).

Υ−1
m×m = 2m(Im +Qm×m(Im −Qm×m)

= 2m(Im − 2Qm×m + 2Q2
m×m + · · · (−1)m−1Qm−1

m×m)

= 4m(
1

2
Im +

m−1∑
i=1

(−1)iQi
m×m). (3.21)

Similarly, transformation back to the Walsh domain yields the operational matrix of differentiation,
denoted by Dm×m

Dm×m = P−1
m×m =

1

m
Wm×mΥ

−1
m×mWm×m. (3.22)

In general, the formula is

Dm×m = 2m



O(m
2
) I(m

2
)

m −4Im
8

−2I(m
4
)

. . .

−I(m
2
)

4I(m
8
) O(m

4
)

2I(m
4
) O

(
m
4

)


. (3.23)
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From (3.21) the eigenvalue, h−1, of the Υ−1
m×m matrix can be expressed as the eigenvalue, q, of Qm×m

b = 4m(
1

2
+

m−1∑
i=1

(−1)iqi) (3.24)

b = 2m
1− q

1 + q
(3.25)

3.2. Operational Matrices of Fractional Differentiation

Now we try to find the operational matrix of fractional differentiation. The general form of (3.25)
could be written as follows:

bα =

(
2m

1− q

1 + q

)α

. (3.26)

Equation (3.26) can be developed into polynomial of q and terminated at qm−1. As a result, Eq.
(3.26) becomes

bα = (2m)αΛl,m(q), (3.27)

where Λl,m is the polynomial of order m− 1 for α differentiation. Thus the operational matrix for α
differentiation from (3.21) is given by

Bα
m×m = (2m)αΛl,m(Qm×m). (3.28)

In the Walsh domain, the corresponding α differentiation operational matrix is

Dα
m×m = (2m)αW−1

m×mΛl,m(Qm×m)Wm×m. (3.29)

3.3. Operational Matrices for Fractional Integration

We can rewrite (3.17) by expressing Υm×m as a polynomial Qm×m

Υm×m = hm(Qm×m), (3.30)

where

hm(x) =
1

m
(
1

2
+ x+ x2 + · · ·+ xm−1). (3.31)

If q is an eigenvalue of Qm×m, it is known (3.7) that corresponding eigenvalue for Υm×m is

h = hm(q) =
1

2m

1 + q

1− q
. (3.32)

Therefore, it can be stated that the eigenvalues Υm×m are 1/2m with multiplicity m. To find the
operational matrix of fractional integration, we can use the same reasoning applied in the fractional
differentiation case. Generalizing Eq. (3.32), yields

h =

[
1− q

2m(1 + q)

]α
= (

1

2m
ρl,m(q))

α (3.33)

where ρl,m is the polynomial of order m− 1 for α integration.
The operational matrix for α-integration in terms of the BPF is given by

Υα
(m×m) =

1

(2m)α
ρl,m(Qm×m) (3.34)



Walsh functions and their applications for solving nonlinear. . . 2 (2021) No. 2, 1577-1589 1583

and the corresponding α-integration operational matrix in the Walsh domain is easily found as

Pα
m×m =

1

(2m)α
W−1

m×mρl,m(Qm×m)Wm×m

=
1

m(2m)α
Wm×mρl,m(Qm×m)Wm×m, (3.35)

Therefore, we have the following nonlinear system.

(IαΦm)(t) = Pα
m×mΦm(t). (3.36)

4. Applying the method

In this section, nonlinear Volterra integro-differential equations are solved using WFs. As demon-
strated before, we can write

g(t) = GTΦm(t),

Dαu(t) = CTΦm(t),

aj(t) = AT
j Φm(t), (4.1)

k(t, x) = ΦT
m(t)KΦm(x),

where Aj = [aj0, a
j
1, · · · , a

j
m−1]

T and G = [g0, g1, · · · , gm−1]
T are known m-vectors. However C =

[c0, c1, · · · , cm−1]
T is an unknown m−vector. Consider Eq. (1.1)

Dαu(t) =
n∑

j=1

aj(t)D
βju(t) + a0(t)u(t) + g(t) +

∫ t

0

k(t, x)F (u(x))dx, t ∈ [0, 1] (4.2)

subject to the initial conditions

u(k)(0) = 0, k = 0, 1, · · · , ⌈α⌉ − 1. (4.3)

Using Eq. (4.1) together with the property of fractional calculus, we have

Dβju(t) = Iα−βj [Dαu(t)] = Iα−βj [CTΦm(t)] = CTP
α−βj

m×mΦm(t). (4.4)

Substituting Eqs. (4.1) and (4.4) into (4.2), we have

CTΦm(t) =
n∑

j=1

ΦT
m(t)AjC

TP
α−βj

m×mΦm(t) + ΦT
m(t)A0CPα

m×mΦm(t)

+GTΦm(t) +

∫ t

0

k(t, x)F (u(x))dx, (4.5)

By using (3.9), we can write

CTΦm(t) =
n∑

j=1

Θ̂T
j Φm(t) + Λ̂TΦm(t) +GTΦm(t) +

∫ t

0

k(t, x)F (u(x))dx, (4.6)

where Θj = AjC
TP

α−βj

m×m and Λ = A0CPα
m×m. By using Eqs.(4.1) and (3.35) and Lemma 2.5, we

have:

u(t) ∼= CTPα
m×mΦm(t) +

m−1∑
k=0

u(k)(0+)
tk

k!
. (4.7)
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Hence, by substituting the supplementary initial conditions (1.2) in the above summation of the
above equations, we have:

u(t) ∼= (CTPα
m×m + CT

1 )Φm(t). (4.8)

It can be written as:
u(t) ≃ eTΦm(t)

where e = CPα
m×m + C1 and C1 is the corresponding vector of the function

∑m−1
k=0 u(k)(0+) t

k

k!
in the

Walsh function basis. Now, we approximate F (u(x)) = u(x)q in the following way:

(u(x))2 = eTΦm(t)Φ
T
m(x)e = eT ẽΦm(t) = eT2Φm(x), (4.9)

where ẽ is the product operational matrix for the vector e. Also,

(u(x))3 = eTΦm(x)Φ
T
m(x)e2 = eT ẽ2Φm(x) = eT3Φm(x),

...

(u(x))q = eT ẽq−1Φm(x) = eTq Φm(x), (4.10)

where ẽq−1 is the product operational matrix for the vector eq−1, by assuming eT ẽq−2 = eTq−1.
Using Eqs. (4.1), and (4.10), we have∫ t

0

k(t, x)F (u(x))dx =

∫ t

0

ΦT
m(t)KΦm(x)Φ

T
m(x)eqdx = ΦT

m(t)K

∫ t

0

Φm(x)Φ
T
m(x)eqdx

= ΦT
m(t)Kẽq

∫ t

0

Φm(x)dx = ΦT
m(t)KẽqPm×mΦm(t).

Substituting Eq. (4.11) into Eq. (4.6), yields:

CTΦm(t) =
n∑

j=1

Θ̂T
j Φm(t) + Λ̂TΦm(t) +GTΦm(t) + ̂(KẽqPm×m)Φm(t),

or

CT =
n∑

j=1

Θ̂T
j + Λ̂T +GT + ̂(KẽqPm×m),

which is a system of algebraic equations. By solving this system we can obtain the approximate
solution of Eq. (1.1) by using

u(t) ∼= (CTPα
m×m + CT

1 )Φm(t). (4.11)

5. Numerical Examples

In this section, to demonstrate the validity and applicability of the numerical scheme, we apply
the present method for the following illustrative examples.

Example 5.1. Consider the following fractional integro differential equation [20]

Dαu(t) = g(t)− tu(t) +
1

Γ(6.5)

∫ t

0

(t− x)5.5(u(t))3dx, 0 ≤ t ≤ 1, (5.1)

g(t) = Γ(
8

3
) + x

8
3 − 0.000252451x11.5

Γ(6.5)
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with the initial condition
u(0) = ú(0) = 0. (5.2)

The exact solution of this example for α = 5
3
is u(t) = t

5
3 . Table 1 displays the absolute error obtained

between the approximate solution and the exact solution (|u(t)−um(t)|) for m = 5 and different values
of α. Also, the numerical results for u(t) with m = 5 and α = 0.75, 1, 1.5 and 1.6 are shown Fig 1
and Fig 2.

Example 5.2. As the second example, we consider the following linear fourth-order fractional integro-
differential equation

Dαu(t) = t(1 + et) + 3et + u(t)−
∫ t

0

u(x)dx, (5.3)

with the following boundary conditions

u(0) = 1, u
′
(0) = 1, u

′′
(0) = 2, u

′′′
(0) = 3. (5.4)

The exact solution, when α = 4, is u(t) = 1 + tet. Numerical results are presented in the Table 2
which illustrate the absolute errors for m = 12. Also, the numerical results for u(t) with m = 12 and
α = 3.25, 3.5, 3.75 and 4 are shown Fig 3 and Fig 4.

Example 5.3. As the third example, we consider the following nonlinear fractional-order integro-
differential equation [16]

Dαu(t) = g(t)u(t) + h(t) +
√
t

∫ t

0

u2(x)dx, (5.5)

where

g(t) = 2
√
t+ 2t

3
2 − (

√
t+ t

3
2 )Ln(1 + t), h(t) =

2Arcsinh(
√
t)

√
π
√
1 + t

− 2t
3
2 (5.6)

with the initial condition
u(0) = 0. (5.7)

The exact solution of this example for α = 0.5 is u(t) = Ln(1+ t). Table 3 displays the absolute error
obtained between the approximate solution and the exact solution (|u(t) − um(t)|) for m = 12 and
different values of α. Also, the numerical results for u(t) with m = 12 and α = 0.25, 0.5, 0.75 and 1
are shown Fig 5 and Fig 6.



1586 Khajehnasiri, Ezzati, Jafari

Table 1: The absolute errors with m = 5 and different value of α for Example 1

α = 0.25 α = 0.25 α = 0.5 α = 0.5

t The method of [20] Present method The method of [20] Present method

0.0 2.56× 10−3 4.02× 10−4 8.25× 10−5 5.04× 10−5

0.1 1.91× 10−4 5.20× 10−4 1.26× 10−5 5.48× 10−6

0.2 1.19× 10−3 3.54× 10−3 1.44× 10−5 2.78× 10−6

0.3 1.78× 10−3 1.27× 10−3 8.99× 10−6 4.54× 10−6

0.4 1.59× 10−3 2.71× 10−3 8.93× 10−6 4.35× 10−6

0.5 1.02× 10−3 1.51× 10−4 1.94× 10−5 3.54× 10−5

0.6 4.51× 10−4 6.57× 10−4 1.47× 10−5 6.50× 10−5

0.7 2.45× 10−4 7.36× 10−3 1.25× 10−6 4.24× 10−5

0.8 6.97× 10−4 9.09× 10−3 1.52× 10−5 2.35× 10−5

0.9 2.06× 10−3 3.81× 10−3 6.82× 10−6 9.51× 10−6

1 4.55× 10−3 3.31× 10−3 5.00× 10−5 3.67× 10−6

Table 2: The absolute errors with m = 12 and different values of α for Example 2

α = 3.25 α = 3.5 α = 3.75 α = 4

t um(t) um(t) um(t) um(t)

0.0 4.41× 10−6 5.41× 10−6 2.01× 10−5 7.21× 10−8

0.1 1.91× 10−6 5.20× 10−4 1.26× 10−6 5.24× 10−8

0.2 2.74× 10−7 5.57× 10−5 6.37× 10−6 9.87× 10−8

0.3 6.57× 10−7 4.93× 10−5 3.58× 10−6 9.01× 10−7

0.4 9.35× 10−7 6.00× 10−6 7.29× 10−7 4.35× 10−7

0.5 7.02× 10−7 8.74× 10−6 6.17× 10−7 4.78× 10−7

0.6 6.91× 10−6 1.27× 10−6 4.27× 10−8 6.90× 10−8

0.7 6.68× 10−6 3.74× 10−6 5.14× 10−8 4.24× 10−8

0.8 2.69× 10−6 6.09× 10−7 6.27× 10−8 2.35× 10−9

0.9 3.74× 10−7 8.84× 10−7 3.89× 10−7 9.51× 10−9

1 4.40× 10−7 4.97× 10−6 6.06× 10−7 2.54× 10−8
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Table 3: The absolute errors with m = 12 and different values of α for Example 3

α = 0.25 α = 0.25 α = 0.5 α = 0.5

t The method of [20] Present method The method of [20] Present method

0.0 3.31× 10−7 2.01× 10−5 3.97× 10−11 5.80× 10−7

0.1 1.47× 10−6 1.22× 10−6 2.51× 10−5 7.74× 10−9

0.2 1.14× 10−6 3.81× 10−6 2.59× 10−9 7.78× 10−9

0.3 1.67× 10−6 8.61× 10−7 2.92× 10−9 3.31× 10−10

0.4 1.91× 10−6 3.30× 10−7 3.73× 10−9 4.87× 10−10

0.5 2.78× 10−6 5.61× 10−7 5.18× 10−9 1.75× 10−8

0.6 4.48× 10−6 7.01× 10−7 7.95× 10−9 8.64× 10−9

0.7 7.27× 10−6 8.91× 10−7 1.32× 10−8 1.01× 10−9

0.8 1.29× 10−5 7.01× 10−7 2.39× 10−8 7.74× 10−8

0.9 2.59× 10−5 9.11× 10−6 4.71× 10−8 2.42× 10−9

1 5.50× 10−5 3.31× 10−6 1.01× 10−7 2.31× 10−8

Figure 1: Approximate solution of Example 1, with m = 5
and some 0.75 ≤ α ≤ 1.6

Figure 2: A comparison between the approximate and exact
solution of Example 1.

Figure 3: Approximate solution of Example 2, with m = 12
and some 3.25 ≤ α ≤ 4

Figure 4: A comparison between the approximate and exact
solution of Example 2.
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Figure 5: Approximate solution of Example 3, with m = 12
and some 0.25 ≤ α ≤ 1

Figure 6: A comparison between the approximate and exact
solution of Example 3.

6. Conclusion

This paper aimed to extend a Walsh functions for obtaining approximate solution of nonlinear
fractional-order Volterra integro-differential equations. First, the Walsh function fractional oper-
ational matrix of differentiation and integration was presented. Using this matrix, the nonlinear
fractional-order Volterra integro-differential equation was reduced to a system of algebraic equations.
The benefits of this method are the low cost of setting up equations without applying a projection
method such as collocation, Galerkin etc. The numerical results indicated the high accuracy and
efficiency of the proposed method.
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