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Abstract

In this paper, we develop the notion of (ψ, F )-contraction mappings introduced in [49] in b-metric
spaces. To achieve this, we introduce the notion of generalized multi-valued (ψ, S, F )-contraction
type I mapping with respect to generalized dynamic process D(S, T, x0), generalized multi-valued
(ψ, S, F )-contraction type II mapping with respect to generalized dynamic process D(S, T, x0), and
establish common fixed point results for these classes of mappings in complete b-metric spaces. As
an application, we obtain the existence of solutions of dynamic programming and integral equations.
The results presented in this paper extends and complements some related results in the literature.

Keywords: fixed point, dynamic process, generalized multi-valued (ψ, S, F )-contraction type,
b-metric space; integral equations, dynamic programming.
2010 MSC: 47H09; 47H10; 49J20; 49J40

1. Introduction and Preliminaries

The theory of fixed point plays an important role in nonlinear functional analysis and is known to
be very useful in establishing the existence and uniqueness theorems for nonlinear differential and
integral equations. Banach [12] in 1922 proved the well celebrated Banach contraction principle in
the frame work of metric spaces. The importance of the Banach contraction principle cannot be over
emphasized in the study of fixed point theory and its applications. Due to its importance and fruitful
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applications, many authors have generalized this result by considering classes of nonlinear mappings
which are more general than contraction mappings and in other classical and important spaces (see
[7, 26, 27, 28, 29, 37, 38, 41, 51] and the references therein). Also, over the years, several authors
have developed several iterative schemes for solving fixed point problem for different operators in
Hilbert, Banach, Hadamard and p-uniformly convex metric spaces, (see [1, 2, 3, 4, 5, 21, 23, 30, 32,
33, 34, 35, 46, 47] and the references therein). For example, Berinde [15, 16] introduced and studied
a class of contractive mappings, which is defined as follows:

Definition 1.1. Let (X, d) be a metric space. A mapping T : X → X is said to be a generalized
almost contraction if there exist δ ∈ [0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ δd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},

for all x, y ∈ X.

Furthermore, in 2008, Suzuki [44] introduced a class of mappings satisfying condition (C), known
as Suzuki-type generalized nonexpansive mapping and he proved some fixed point theorems for this
class of mappings.

Definition 1.2. Let (X, d) be a metric space. A mapping T : X → X is said to satisfy condition
(C) if for all x, y ∈ X,

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).

Theorem 1.3. Let (X, d) be a compact metric space and T : X → X be a mapping satisfying

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) < d(x, y),

for all x, y ∈ X. Then T has a unique fixed point.

In 2012, Wardowski [50] introduced the notion of F -contractions, which is defined as follows:

Definition 1.4. Let (X, d) be a metric space. A mapping T : X → X is said to be an F -contraction
if there exists τ > 0 such that for all x, y ∈ X;

d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)), (1.1)

where F : R+ → R is a mapping satisfying the following conditions:

(F1) F is strictly increasing;
(F2) for all sequences {αn} ⊆ R+, limn→∞ αn = 0 if and only if limn→∞ F (αn) = −∞;
(F3) there exists k ∈ (0, 1) such that limα→0+ α

kF (α) = 0.

He established the following result:

Theorem 1.5. Let (X, d) be a complete metric space and T : X → X be an F -contraction. Then T
has a unique fixed point x∗ ∈ X and for each x0 ∈ X, the sequence {T nx0} converges to x∗.

Remark 1.6. [50] If we suppose that F (t) = ln t, an F -contraction mapping becomes the Banach
contraction mapping.
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In [38], Piri et al. used the continuity condition instead of condition (F3) and proved the following
result:

Theorem 1.7. Let X be a complete metric space and T : X → X be a selfmap of X. Assume that
there exists τ > 0 such that for all x, y ∈ X with Tx ̸= Ty,

1

2
d(x, Tx) ≤ d(x, y) ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

where F : R+ → R is continuous strictly increasing and inf F = −∞. Then T has a unique fixed
point z ∈ X, and for every x ∈ X, the sequence {T nx} converges to z.

In 2013, Secelean in [43] replaced the condition (F2) in the definition of F -contraction with the
following condition.
(F∗) inf F = −∞
or, also by
(F∗∗) there exists a sequence {αn} of positive real numbers such that limn→∞ F (αn) = −∞. He also
established the following result:

Lemma 1.8. [43] Let F : R+ → R be an increasing mapping and {αn} be a sequence of positive
integers. Then the following assertion hold:

1. if limn→∞ F (αn) = −∞ then limn→∞ αn = 0;

2. if inf F = −∞ and limn→∞ αn = 0 then limn→∞ F (αn) = −∞.

In the same year, Turinici in [48] observed that the condition (F2) in the definition of F -contraction
can be replaced with
(F

′
2) limn→∞ F (αn) = −∞. Then, the implication is as follows

(F
′′
2 ) limn→∞ F (αn) = −∞ ⇒ αn → 0, can be derived from (F1).

Motivated by the work of Turinici [48], Wardowski [49] introduced a modified F -contraction called
(ψ, F )-contraction in the setting of a metric space. He gave the following definition:

Definition 1.9. Let (X, d) be a metric space. A mapping T : X → X is called (ψ, F )-contraction
if there are ψ : [0,∞) → [0,∞) and F : [0,∞) → R such that

1. F satisfies (F1) and (F
′
2);

2. lim infs→t+ ψ(s) > 0 for all t ≥ 0;

3. ψ(d(x, y)) + F (d(Tx, Ty)) ≤ F (d(x, y)) for all x, y ∈ X such that Tx ̸= Ty.

One of the most interesting generalizations of metric spaces is the concept of b-metric spaces (to be
defined in Section 2) introduced by Czerwik in [19]. He proved the Banach contraction principle in
this setting with the fact that d need not to be continuous. Thereafter, several results have been
extended from metric spaces to b-metric spaces. In addition, a lot of results have been published
on the fixed point theory of various classes of single-valued and multi-valued operators in the frame
work of b-metric spaces (see [10, 17, 19, 40, 51] and the references therein).

Definition 1.10. [19] Let X be a nonempty set and s ≥ 1 be a given real number. A function
d : X ×X → [0,∞) is called a b-metric if for all x, y, z ∈ X, the following conditions are satisfied:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);



1950

3. d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space. The number s ≥ 1 is called the coefficient of (X, d). It
is clear that, the class of b-metric spaces is larger than that of metric spaces. If s = 1, a b-metric
become a metric.

Example 1.11. [10] Let X = R and d(x, y) = |x− y|2 for all x, y ∈ X. It is easy to see that (x, d)
is a b-metric space with coefficient s = 2, but (X, d) is not a metric space.

Definition 1.12. [17] Let (X, d) be a b-metric space. A sequence {xn} in X is said to be

1. b-convergent if there exists x ∈ X such that d(xn, x) → 0 as n → ∞. In this case, we write
limn→∞ xn = x.

2. b-Cauchy if d(xn, xm) → 0 as n,m→ ∞.

Definition 1.13. [17] Let (X, d) be a b-metric space. Then X is said to be complete if every b-
Cauchy sequence in X is b-convergent.

Let (X, d) be a b-metric space with s ≥ 1 and CB(X) (N(X)) denote family of all bounded and
closed (nonempty) subset of X. For any x ∈ X and A,B ∈ CB(X), we define

D(x,A) = inf
a∈A

d(x, a) and D(A,B) = sup
a∈A

D(a,B).

Define a mapping H : CB(X)× CB(X) → [0,∞) by

H(A,B) = max{sup
a∈A

D(a,B), sup
b∈B

D(A, b)}

for any A,B ∈ CB(X). Then the mapping H is a b-metric and it is called a Hausdorff b-metric
induced by a b-metric.

Lemma 1.14. [20] Let (X, d) be a b-metric space with s ≥ 1. For any A,B,C ∈ CB(X) and any
x, y ∈ X, we have the following.

1. D(x,B) ≤ d(x, b);

2. D(x,B) ≤ H(A,B);

3. D(x,A) ≤ s[d(x, y) +D(y,B)];

4. D(x,A) = 0 ⇔ x ∈ A;

5. H(A,B) ≤ s[H(A,C) +H(C,B)].

Let S : X → X and T : X → N(X). The pair (S, T ) is said to satisfy range inclusion condition
if S(X) ⊂ T (X). A point x ∈ X is a fixed point of T if x ∈ Tx. The set of all fixed point of T is
denoted by F (T ). Also, a point x ∈ X is called a coincidence point of S and T if Sx ∈ Tx.We denote
the set of all coincidence point by C(S, T ). In addition, if for some x ∈ X, we have x = Sx ∈ Tx,
then the point x is called a common fixed point of the pair (S, T ). We denote the set of all common
fixed point of S and T by F (S, T ).
Let x0 be an arbitrary but fixed element in X. The set

D(S, T, x0) = {(xn)n∈N ∪ {0} : xn+1 = Sxn ∈ Txn−1 ∀ n ∈ N}
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is called a generalized dynamic process of S and T starting at x0. It is worth mentioning that the set
D(S, T, x0) reduces to the well-known dynamic process of T if S = I (identity mapping), for details
abour dynamic process see [25]. The generalized dynamic process D(S, T, x0) will simply be written
as (Sxn). The sequence {xn} for which (Sxn) is a generalized dynamic process is called S iterative
sequence of T starting with x0. It is well-known that if the pair (S, T ) satisfy the range inclusion
condition, then for any x0 ∈ X, construction of S iterative sequence of T starting with x0 follows
directly and consequently D(S, T, x0) ̸= ∅. More so, if D(S, T, x0) ̸= ∅, then such situation may arise
that even the range inclusion condition does not hold.

Example 1.15. Let X = [0,∞). Define S : X → X and T : X → N(X) by S(x) = x−1
3

and
T (x) = [0, x

3
]. The sequence {xn} defined by xn = xn−1 + 1 for all n ∈ N. Suppose that x0 = 1, we

have that

S(x1) =
1

3
∈ Tx0 = [0,

1

3
],

S(x2) =
2

3
∈ Tx1 = [0,

2

3
],

S(x3) = 1 ∈ Tx2 = [0, 1],

S(x4) =
4

3
∈ Tx3 = [0,

4

3
],

...

Thus D(S, T, 1) = {1
3
, 2
3
, 1, 4

3
, · · · } is a generalized dynamic process of S and T with an initial point

1.

Example 1.16. Let X = [0,∞). Define S : X → X and T : X → N(X) by S(x) = x2 and
T (x) = [3 + x, x

3
]. The sequence {xn} defined by

xn =
√
xn−1 + 3

is an S iterative sequence of T with a starting point 0.

We denote by F the family of all functions F : R+ → R and ψ : [0,∞) → [0,∞) which satisfy
conditions
(F ∗

1 ) F satisfies (F1) and (F
′
2);

(F ∗
2 ) F is continuous on (0,∞);

(F ∗
3 ) lim infs→t+ ψ(s) > 0 for all t ≥ 0.

Motivated by the works of Kim [25], Wardowski [49, 50], and ongoing research interest in this
direction, in this work we develop the notion of (ψ, F )-contraction in the framework of b-metric
spaces. To do this, we introduce the notion of generalized multi-valued (ψ, S, F )-contraction type I
mapping with respect to generalized dynamic process D(S, T, x0), generalized multi-valued (ψ, S, F )-
contraction type II mapping with respect to generalized dynamic process D(S, T, x0), and establish
common fixed point results for these classes of mappings in complete b-metric spaces. Finally, we
apply our fixed point result in establishing the solutions of dynamic programming and integral
equations.
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2. Main Result

In this section, we introduce the notion of generalized multi-valued (ψ, S, F )-contraction type I
mapping with respect to generalized dynamic process D(S, T, x0) with x0 ∈ X, generalized multi-
valued (ψ, S, F )-contraction type II mapping with respect to generalized dynamic process D(S, T, x0)
with x0 ∈ X, and establish common fixed point for these classes of mappings in complete b-metric
spaces. In the sequel, we will consider only the dynamic process (Sxn) satisfying the following
condition:

(E) For any n ∈ N, d(Sxn, Sxn+1) > 0 ⇒ d(Sxn−1, Sxn) > 0.

If the dynamic process (Sxn) does not satisfy property (E), then there exists n0 ∈ N such that

d(Sxn0 , Sxn0+1) > 0 and d(Sxn0−1, Sxn0) = 0

which implies that Sxn0−1 = Sxn0 ∈ Txn0−1, that is, the set of coincidence point of hybrid pair (S, T )
is nonempty. It follows that under some suitable conditions on the pair (S, T ), one can obtain the
existence of common fixed point.

Lemma 2.1. Suppose (X, d) is a b-metric space with s ≥ 1. Let {Sxn} be a sequence in X such that
d(Sxn, Sxn+1) → 0 as n → ∞. If {Sxn} is not a Cauchy sequence then there exist an ϵ > 0 and
sequences of positive integers {Smk} and {Snk} with mk > nk > k satisfying d(Sxmk

, Sxnk
) ≥ ϵ and

d(Sxmk
, Sxnk−1

) < ϵ such that

1. ϵ ≤ lim infk→∞ d(Sxmk
, Sxnk

) ≤ lim supk→∞ d(Sxmk
, Sxnk

) ≤ sϵ;

2. ϵ
s2

≤ lim infk→∞ d(Sxmk+1
, Sxnk+1

) ≤ lim supk→∞ d(Sxmk+1
, Sxnk+1

) ≤ s3ϵ;

3. ϵ
s
≤ lim infk→∞ d(Sxmk

, Sxnk+1
) ≤ lim supk→∞ d(Sxmk

, Sxnk+1
) ≤ s2ϵ;

4. ϵ
s2

≤ lim infk→∞ d(Sxmk+1
, Sxnk+1

) ≤ lim supk→∞ d(Sxmk+1
, Sxnk+1

) ≤ s3ϵ.

Proof . Suppose {Sxn} is not a Cauchy sequence, then there exist an ϵ > 0 and sequences of positive
integers {mk} and {nk} with mk > nk > k satisfying

d(Sxmk
, Sxnk

) ≥ ϵ and d(Sxmk
, Sxnk−1

) < ϵ. (2.1)

We choose mk, the least positive integer satisfying (2.1).

We now prove (1). Using (2.1)

ϵ ≤ d(Sxmk
, Sxnk

) ≤ sd(Sxmk
, Sxnk−1

) + sd(Sxnk−1
, Sxnk

)

< sϵ+ sd(Sxnk−1
, Sxnk

). (2.2)

Clearly, using our hypothesis, we have that

ϵ ≤ lim inf
k→∞

d(Sxmk
, Sxnk

) ≤ lim sup
k→∞

d(Sxmk
, Sxnk

) ≤ sϵ. (2.3)

We now prove (2).
Now observe that

d(Sxmk
, Sxnk

) ≤ sd(Sxmk
, Sxmk+1

) + sd(Sxmk+1
, Sxnk

)

≤ sd(Sxmk
, Sxmk+1

) + s2d(Sxmk+1
, Sxnk+1

) + s2d(Sxnk+1
, Sxnk

)) (2.4)
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and

d(Sxmk+1
, Sxnk+1

) ≤ sd(Sxmk+1
, Sxmk

) + sd(Sxmk
, Sxnk+1

)

≤ sd(Sxmk+1
, Sxmk

) + s2d(Sxmk
, Sxnk

) + s2d(Sxnk
, Sxnk+1

). (2.5)

Using our hypothesis, (2.4) and (2.5), we have that

ϵ

s2
≤ lim inf

k→∞
d(Sxmk+1

, Sxnk+1
) ≤ lim sup

k→∞
d(Sxmk+1

, Sxnk+1
) ≤ s3ϵ. (2.6)

We now prove (3).
Note that,

d(Sxmk
, Sxnk

) ≤ sd(Sxmk
, Sxnk+1

) + sd(Sxnk+1
, Sxnk

) (2.7)

and

d(Sxmk
, Sxnk+1

) ≤ sd(Sxmk
, Sxnk

) + sd(Sxnk
, Sxnk+1

). (2.8)

Using our hypothesis, (2.8) and (2.7), we have that

ϵ

s
≤ lim inf

k→∞
d(Sxmk

, Sxnk+1
) ≤ lim sup

k→∞
d(Sxmk

, Sxnk+1
) ≤ s2ϵ. (2.9)

We now prove (4).
Now observe that

ϵ ≤ d(Sxmk
, Sxnk

) ≤ sd(Sxmk
, Sxmk+1

) + s2d(Sxmk+1
, Sxnk+1

) + s2d(Sxnk+1
, Sxnk

) (2.10)

and

d(Sxmk+1
, Sxnk+1

) ≤ sd(Sxmk+1
, Sxnk

) + sd(Sxnk
, Sxnk+1

). (2.11)

Thus, using our hypothesis, (2.10), (2.11) and (3), we have

ϵ

s2
≤ lim inf

k→∞
d(Sxmk+1

, Sxnk+1
) ≤ lim sup

k→∞
d(Sxmk+1

, Sxnk+1
) ≤ s3ϵ. (2.12)

□

We introduce the following class of functions: Let Ψ =

{
f : [0,∞) × [0,∞) → R| f(t, t) =

0 if and only if t = 0 and f(t, s) ≤ t− s
2
∀ s, t ∈ [0,∞)

}
.

Example 2.2. 1. Let f1 : [0,∞) × [0,∞) → R be defined as f1(t, s) = ϕ(t) − ψ(s), where ϕ, ψ :
[0,∞) → [0,∞) are functions such that ϕ(t) = t and ψ(s) = s

2
, ∀ s, t ∈ [0,∞). Clearly,

f1 ∈ Ψ.

2. Let f2 : [0,∞)× [0,∞) → R be defined as f2(t, s) = t− ϕ(t,s)
2ψ(t,s)

s, where ϕ, ψ : [0,∞)× [0,∞) →
[0,∞) are functions such that ϕ(t, s) ≥ ψ(t, s), ∀ s, t ∈ [0,∞). It is easy to see that f2 ∈ Ψ.

3. Let f3 : [0,∞)× [0,∞) → R be defined as f3(t, s) = t− ϕ(t)− ψ(s)− s
2
, where ϕ, ψ : [0,∞) →

[0,∞) are functions such that ϕ(t) > 0, ψ(s) > 0, ∀ s, t ∈ [0,∞) and ϕ(t) = 0 = ψ(s) if and
only if t, s = 0. Clearly, f3 ∈ Ψ.
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Definition 2.3. Let (X, d) be a b-metric space with s ≥ 1, ψ : [0,∞) → [0,∞) and S be a self map
on X. A multi-valued mapping T : X → CB(X) is said to be a generalized multi-valued (ψ, S, F )-
contraction type I mapping with respect to generalized dynamic process D(S, T, x0) with x0 ∈ X if
F ∈ F and L ≥ 0 such that

f

(
1

2s
D(Sxn−1, Txn−1), D(Sxn−1, T (Sxn−1))

)
≤ d(Sxn−1, Sxn)

⇒ ψ(M(xn−1, xn)) + F (s5d(Sxn, Sn+1)) ≤ F (M(xn−1, xn)) + LN(xn−1, xn), (2.13)

with d(Sxn−1, Sxn) > 0, where M(xn−1, xn) = max{d(Sxn−1, Sxn), D(Sxn−1, Txn−1), D(Sxn, Txn),
D(Sxn−1,Txn−1)D(Sxn,Txn)

s+d(Sxn−1,Sxn)
, D(Sxn,Txn−1)[1+D(Sxn−1,Txn−1)]

s+d(Sxn−1,Sxn)
} and

N(xn−1, xn) = min{D(Sxn−1, Txn−1), D(Sxn, Txn), D(Sxn−1, Txn), D(Sxn, Txn−1)}.

Definition 2.4. Let (X, d) be a b-metric space with s ≥ 1, ψ : [0,∞) → [0,∞) and S be a self map
on X. A multi-valued mapping T : X → CB(X) is said to be a generalized multi-valued (ψ, S, F )-
contraction type II mapping with respect to generalized dynamic process D(S, T, x0) with x0 ∈ X if
F ∈ F such that

ψ(M(xn−1, xn)) + F (s3d(Sxn, Sn+1)) ≤ F (M(xn−1, xn)), (2.14)

with d(Sxn−1, Sxn) > 0, where M(xn−1, xn) = max{d(Sxn−1, Sxn), D(Sxn−1, Txn−1), D(Sxn, Txn),
D(Sxn−1,Txn−1)D(Sxn,Txn)

s+d(Sxn−1,Sxn)
, D(Sxn,Txn−1)[1+D(Sxn−1,Txn−1)]

s+d(Sxn−1,Sxn)
}.

Theorem 2.5. Let (X, d) be a complete b-metric space with s ≥ 1, x0 be an arbitrary point in X
and T : X → CB(X) a generalized multi-valued (ψ, S, F )-contraction type I mapping with respect to
generalized dynamic process D(S, T, x0) such that S(X) is a complete subspace of X, then the pair
(S, T ) has a point of coincidence in X. More so, if S is T -weakly commuting, Sx = S2x for some
x ∈ C(S, T ), then the pair (S, T ) has a common fixed point.

Proof . Let x0 be any given point in X. In generalized multi-valued (ψ, S, F )-contraction type I
mappings with respect to a generalized dynamic process, a sequence can be formulated as follows:

D(S, T, x0) = {(xn)n∈N∪{0} : xn+1 = Sxn ∈ Txn−1 ∀ n ∈ N}.

Observe that if there exists n0 ∈ N such that Sxn0 = Sxn0+1, then we have nothing to show. As
such, we suppose that d(Sxn, Sxn+1) > 0 for all n ∈ N. Since

f

(
1

2s
D(Sxn−1, Txn−1), D(Sxn−1, T (Sxn−1))

)
≤ 1

2s
D(Sxn−1, Txn−1)−

D(Sxn−1, T (Sxn−1))

2

≤ 1

2s
d(Sxn−1, Sxn)

< d(Sxn−1, Sxn),

so, we have

ψ(M(xn−1, xn)) + F (s5d(Sxn, Sn+1)) ≤ F (M(xn−1, xn)) + LN(xn−1, xn), (2.15)
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where

M(xn−1, xn) = max{d(Sxn−1, Sxn), D(Sxn−1, Txn−1), D(Sxn, Txn),
D(Sxn−1, Txn−1)D(Sxn, Txn)

s+ d(Sxn−1, Sxn)
,

D(Sxn, Txn−1)[1 +D(Sxn−1, Txn−1)]

s+ d(Sxn−1, Sxn)
}

= max{d(Sxn−1, Sxn), d(Sxn−1, Sxn), d(Sxn, Sxn+1),
d(Sxn−1, Sxn)d(Sxn, Sxn+1)

s+ d(Sxn−1, Sxn)
,

d(Sxn, Sxn)[1 + d(Sxn−1, Sxn)]

s+ d(Sxn−1, Sxn)
}

= max{d(Sxn−1, Sxn), d(Sxn, Sxn+1),
d(Sxn−1, Sxn)d(Sxn, Sxn+1)

s+ d(Sxn−1, Sxn)
}.

Now observe that d(Sxn−1,Sxn)
s+d(Sxn−1,Sxn)

< 1, which implies that d(Sxn−1,Sxn)d(Sxn,Sxn+1)
s+d(Sxn−1,Sxn)

< d(Sxn, Sxn+1) as
such, we have that

M(xn−1, xn) = max{d(Sxn−1, Sxn), d(Sxn, Sxn+1)}

and

N(xn−1, xn) = min{D(Sxn−1, Txn−1), D(Sxn, Txn), D(Sxn−1, Txn), D(Sxn, Txn−1)}
= min{d(Sxn−1, Sxn), d(Sxn, Sxn+1), d(Sxn−1, Sxn+1), d(Sxn, Sxn)} = 0.

If we suppose that M(xn−1, xn) = max{d(Sxn−1, Sxn), d(Sxn, Sxn+1)} = d(Sxn, Sxn+1), then (2.15)
becomes

F (s5d(Sxn, Sn+1)) ≤ F (d(Sxn, Sxn+1))− ψ(d(Sxn, Sxn+1)) < F (d(Sxn, Sxn+1)),

which is a contradiction, as such we have that M(xn−1, xn) = max{d(Sxn−1, Sxn), d(Sxn, Sxn+1)} =
d(Sxn−1, Sxn), and so (2.15) becomes

F (s5d(Sxn, Sn+1)) ≤ F (d(Sxn−1, Sxn))− ψ(d(Sxn−1, Sxn)).

Using a similar approach, we also have that

F (s5d(Sxn−1, Sn)) ≤ F (d(Sxn−2, Sxn−1))− ψ(d(Sxn−2, Sxn−1)).

From the properties of ψ, there exists c > 0 and n0 ∈ N such that ψ(d(Sxn, Sxn+1)) > c for all
n > n0. We obtain the following inequalities

F (s5d(Sxn, Sn+1)) ≤ F (d(Sx0, Sx1))− (ψ(d(Sx0, Sx1)) + · · ·+ ψ(d(Sxn0−1, Sxn0)))

− (ψ(d(Sxn0 , Sxn0+1)) + · · ·+ ψ(d(Sxn−1, Sxn))) (2.16)

≤ F (d(Sx0, Sx1))− (n− n0)c.

Since F ∈ F , taking limit as n→ ∞ in (2.16) and using Lemma 1.8, we have

lim
n→∞

F (s5d(Sxn, Sxn+1)) = −∞ ⇔ lim
n→∞

d(Sxn, Sxn+1) = 0. (2.17)

In what follows, we show that {Sxn} is a b-Cauchy sequence. Suppose that {Sxn} is not a b-Cauchy
sequence, then by Lemma 2.1, there exist an ϵ > 0 and sequences of positive integers {Sxnk

} and
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{Sxmk
} with nk > mk ≥ k such that d(Sxmk

, Sxnk
) ≥ ϵ. For each k > 0, corresponding to mk, we

can choose nk to be the smallest positive integer such that d(Sxmk
, Sxnk

) ≥ ϵ, d(Sxmk
, Sxnk−1

) < ϵ
and (1)− (4) of Lemma 2.1 hold. Since

f

(
1

2s
D(Sxmk

, Txmk
), D(Sxmk

, T (Sxmk
))

)
≤ 1

2s
D(Sxmk

, Txmk
)− D(Sxmk

, T (Sxmk
)

2

≤ 1

2s
d(Sxmk

, Sxm+1)

<
ϵ

2s
< ϵ ≤ d(Sxmk

, Sxnk
),

we can choose n0 ∈ N ∪ {0} such that

ψ(M(xmk−1
, xnk−1

)) + F (d(Sxmk
, Sxnk

)) ≤ ψ(M(xmk−1
, Sxnk−1

)) + F (s5d(Sxmk
, Sxnk

))

≤ F (M(xmk−1
, xnk−1

)) + LminN(xmk−1
, xnk−1

) (2.18)

Since F ∈ F , using Lemma 2.1, and (2.17), we have that

lim inf
k→∞

ψ(M(xmk−1
, xnk−1

)) + F (sϵ) = lim inf
k→∞

ψ(M(xmk−1
, xnk−1

)) + F (sϵ)

= lim inf
k→∞

ψ(M(xmk−1
, xnk−1

)) + F (s3
ϵ

s2
)

≤ lim inf
k→∞

[ψ(M(xmk−1
, xnk−1

) + F (s5d(Sxmk
, Sxnk

))]

≤ F (lim inf
k→∞

d(Sxmk−1
, Sxnk−1

))

≤ F (sϵ),

where 0 < lim infd(Sxn,Sx)→0+ ψ(d(Sxmk
, Sx)) = µ. That is

µ+ F (sϵ) ≤ F (sϵ)

which is a contradiction. We therefore have that {Sxn} is b-Cauchy in S(X). Since S(X) is complete,
there exists x ∈ S(X) such that limn→∞ Sxn = x. In addition, there exists x∗ ∈ X such that Sx∗ = x.
We claim that x∗ is the coincidence point for pair the pair (S, T ). To establish our claim, we first
show that

f

(
1

2s
D(Sxn−1, Txn−1), D(Sxn, T (Sxn))

)
< d(Sxn−1, x

∗)

or

f

(
1

2s
D(Sxn, Txn), D(Sxn+1, T (Sxn))

)
< d(Sxn, x

∗).

Suppose on the contrary that there exists m ∈ N ∪ {0} such that

f

(
1

2s
D(Sxm−1, Txm−1), D(Sxm, T (Sxm))

)
≥ d(Sxm−1, x

∗)

or f

(
1

2s
d(Sxm, Txm), d(Sxm+1, T (Sxm))

)
≥ d(Sxm, x

∗). (2.19)
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Now observe that

d(Sxm−1, x
∗) ≤ f

(
1

2s
D(Sxm−1, Txm−1), D(Sxm, T (Sxm))

)
≤ 1

2s
D(Sxm−1, Txm−1)−

1

2
D(Sxm, T (Sxm))

≤ 1

2s
d(Sxm−1, Sxm) (2.20)

≤ 1

2
d(Sxm−1, x

∗) +
1

2
d(x∗, Sxm),

which implies that d(Sxm−1, x
∗) ≤ d(x∗, Sxm). It follows from (2.19) and (2.20), that

d(Sxm−1, x
∗) ≤ d(x∗, Sxm) ≤ f

(
1

2s
d(Sxm, Txm), d(Sxm+1, T (Sxm))

)
≤ 1

2s
d(Sxm, Sxm+1). (2.21)

Since f

(
1
2s
D(Sxm−1, Txm−1), D(Sxm, T (Sxm))

)
≤ d(Sxm−1, Sxm), we have that

ψ(M(xm−1), xm) + F (d(Sxm, Sxm+1)) ≤ ψ(M(xm−1, xm)) + F (s5d(Txm, Txm+1))

≤ F (M(xm−1, xm)) + LN(xm−1, xm) (2.22)

≤ F (d(Sxm−1, Sxm)).

It follows that

ψ(d(Sxm−1, Sxm)) + F (d(Sxm, Sxm+1)) ≤ F (d(Sxm−1, Sxm)). (2.23)

Using the fact that F is strictly increasing, we have that

d(Sxm, Sxm+1) < d(Sxm−1, Sxm).

Using this fact and (2.21), we have

d(Sxm, Sxm+1) < d(Sxm−1, Sxm)

≤ sd(Sxm−1, x
∗) + sd(x∗, Sxm)

≤ 1

2
d(Sxm, Sxm+1) +

1

2
d(Sxm, xm+1) (2.24)

= d(Sxm, Sxm+1),

which is a contradiction. Thus we must have that

f

(
1

2s
d(Sxn−1, Txn−1), d(Sxn, T (Sxn))

)
< d(Sxn−1, x

∗)

or

f

(
1

2s
d(Sxn, Txn), d(Sxn+1, T (Sxn))

)
< d(Sxn+1, x

∗).

Thus, we have that

ψ(M(xn, x
∗)) + F (D(Sxn+1, Tx

∗)) ≤ ψ(M(xn, x
∗)) + F (s5d(Sxn+1, Sx

∗))

≤ F (M(xn, x
∗)) + LN(xn, x

∗)

< F (M(xn, x)).
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Using the fact that F ∈ F and taking limit, we have that

lim
n→∞

M(xn, x
∗) = D(Sx∗, Tx∗) and lim

n→∞
N(xn, x

∗) = 0,

so, we obtain

ψ(D(Sx∗, Tx∗)) + F (D(Sx∗, Tx∗)) < F (D(Sx∗, Tx∗)),

which is a contradiction, as such D(Sx∗, Tx∗) = 0 and so we obtain

Sx∗ ∈ Tx∗.

Hence, x∗ is the coincidence point for the pair (S, T ).
Suppose that S is T -weakly commuting, for x∗ ∈ C(S, T ), we have that Sx∗ = S2x∗. Using this fact
and the fact that Sx∗ ∈ Tx∗, we have that

Sx∗ = S2x∗ = S(Sx∗) ∈ TSx∗,

we obtain that Sx∗ ∈ TSx∗. Thus Sx∗ is the common fixed point for the pair (S, T ). This complete
the proof. □

Theorem 2.6. Let (X, d) be a complete b-metric space with s ≥ 1, x0 be an arbitrary point in X
and T : X → CB(X) a generalized multi-valued (ψ, S, F )-contraction type II mapping with respect
to generalized dynamic process D(S, T, x0) such that S(X) is a complete subspace of X, then the pair
(S, T ) has a point of coincidence in X. More so, if S is T -weakly commuting, Sx = S2x for some
x ∈ C(S, T ), then the pair (S, T ) has a common fixed point.

Proof . The prove follow a similar approach as in Theorem 2.5, as such we omit it. □

3. Applications

In this section, we establish the existence of a solution for a system of functional equations and a
class of volterra integral type equations.

3.1. System of functional equations in dynamic programming:

Dynamic programming problem is made up of two critical components, the decision space and the
state space. The state space is a set of parameter representing different states. This space include
initial states, action states and transitional states. A decision space is the set of possible actions
that can be taken to solve the problem. The problem of dynamic programming related to multistage
process reduces to the problem of solving functional equations of the form:

p(x) = sup
y∈G

{g(x, y) +D1(x, y, p(η(x, y)))}, (3.1)

q(x) = sup
y∈G

{f(x, y) +D2(x, y, p(η(x, y)))} (3.2)
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for all x ∈ W, where U, V are Banach spaces, W ⊆ U,G ⊆ V, and

η : W ×G→ W,

f, g : W ×G→ R,
D1, D2 : W ×G× → R.

For details about dynamic programming see ([13, 14] and the references therein). Suppose that W
and G are the state and decision spaces respectively. Our purpose is to establish the existence of a
common and bounded solution of function equations ](3.2) and (3.1). Suppose B(W ) denote the set
of all bounded real valued function on W. For any h, k ∈ B(W ), define

d(h, k) = sup
x∈W

|h(x)− k(x)|2.

It is well-known that (B(W ), d) is a complete b-metric space with s = 2.

Suppose the following conditions hold:

1. D1, D2, f and g are bounded.

2. For any x ∈ W,h ∈ B(W ) and b > 0, define A,C : B(W ) → B(W ) by

A(h(x)) = sup
y∈G

{g(x, y) +D1(x, y, h(η(x, y)))}

C(h(x)) = sup
y∈G

{f(x, y) +D2(x, y, h(η(x, y)))}.

More so, suppose that ψ : [0,∞) → [0,∞) such that for every (x, y) ∈ W × G, h, k ∈ B(W )
and t ∈ W implies that

|D1(x, y, h(t))−D2(x, y, k(t))| ≤
√

M(h(t), k(t))

eψ(M(h(t),k(t)))s3
, (3.3)

where M(h(t), k(t)) = max{d(Ch(t), Ck(t)), d(Ch(t), Ak(t)), d(Ch(t), Ak(t)),
d(Ch(t),Ak(t))d(Ch(t),Ak(t))

s+d(Ch(t),Ck(t))
, }d(Ch(t),Ah(t))[1+d(Ch(t),Ah(t))]

s+d(Ch(t),Ck(t))
.

3. For any h ∈ B(W ), there exists k ∈ B(W ) such that x ∈ W,

A(h(x)) = C(k(x)).

4. There exists h ∈ B(W ) such that

A(h(x)) = C(h(x)) ⇒ A(C(h(x))) = C(A(h(x))).

Theorem 3.1. Suppose that the conditions (1) − (4) are satisfied and C(B(W )) is a closed convex
subspace of B(W ), then the functional equation (3.1) and (3.2) have a bounded solution.

Proof . Let γ be an arbitrary positive number and h1, h2 ∈ B(W ), x ∈ W and y1, y2 ∈ G such that

Ah1 < g(x, y1) +D1(x, y1, h1(η(x, y1))) + γ, (3.4)

Ah2 < g(x, y2) +D2(x, y2, h2(η(x, y2))) + γ, (3.5)



1960

Ah1 ≥ g(x, y2) +D1(x, y2, h1(η(x, y2))), (3.6)

Ah2 ≥ g(x, y1) +D2(x, y1, h2(η(x, y1))). (3.7)

Using (3.4), (3.7) and (3.3), we have that

Ah1(x)− Ah2(x) < D1(x, y1, h1(η(x, y1)))−D2(x, y1, h2(η(x, y1))) + γ

≤ |D1(x, y1, h1(η(x, y1)))−D2(x, y1, h2(η(x, y1)))|+ γ

≤
√

M(h1(x), h2(x))

eψ(M(h1(x),h2(x)))s3
. (3.8)

Also (3.5), (3.6) and (3.3), we have that

Ah2(x)− Ah1(x) ≤ D2(x, y2, h2(η(x, y2)))−D1(x, y2, h1(η(x, y2))) + γ

≤ |D1(x, y2, h1(η(x, y2)))−D2(x, y2, h2(η(x, y2)))|+ γ

≤
√

M(h1(x), h2(x))

eψ(M(h1(x),h2(x)))s3
. (3.9)

From (3.8) and (3.9), we have that

|Ah1(x)− Ah2(x)|2 ≤
M(h1(x), h2(x))

eψ(M(h1(x),h2(x)))s3
, (3.10)

which implies that

eψ(M(h1(x),h2(x)))s3d(Ah1(x), Ah2(x)) ≤M(h1(x), h2(x)),

ψ(M(h1(x), h2(x))) + ln(s3d(Ah1(x), Ah2(x))) ≤ ln(M(h1(x), h2(x))),

taking F (x) = ln(x), we have that

ψ(M(h1(x), h2(x))) + F (s3d(Ah1(x), Ah2(x))) ≤ F (M(h1(x), h2(x))).

It is easy to see that all the conditions in Theorem 2.6 are satisfied and thus the pair (A,C) has a
common fixed point h∗, that is h∗(x) is a bounded solution of (3.1) and (3.2). □

3.2. Existence of solution for a class of Volterra type integral inclusion:

In this section, we apply our fixed point result to the following Volterra type integral equations:

x(t) =

∫ 1

0

G1(t, s, x(s))ds+ g(t), (3.11)

y(t) =

∫ 1

0

G2(t, s, y(s))ds+ f(t), (3.12)

where G1, G2 : [0, 1]× [0, 1]× R → R and f, g : [0, 1] → R are continuous functions. Let C([0, 1],R)
be the space of all continuous function defined on [0, 1] endowed with the b-metric as defined by

d(x, y) = sup
t∈[0,1]

|x(t)− y(t)|2.
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It is well-know that (X, d) is a complete b-metric space with s = 2. We define

Tx(t) =

∫ 1

0

G1(t, s, x(s))ds+ g(t),

T y(t) =

∫ 1

0

G2(t, s, y(s))ds+ f(t).

Theorem 3.2. Let X = C([0, 1],R) and suppose the following conditions hold:

1. suppose there exist ψ : [0,∞) → [0,∞) and Γ : X → [0,∞) such that

|G1(t, s, x)−G2(t, s, y)| ≤ Γ(x(s))e−ψ(M(x,y))

√
M(x, y)

s3
, (3.13)

for all t, s ∈ [0, 1] and x, y ∈ X, where

(∫ 1

0
Γ(x(s))e−ψ(M(x,y))ds

)2

≤ e−ψ(M(x,y)) and

M(x, y) = max{|Sx− Sy|, |Sx− Tx|, |Sx− Ty|, |Sx−Tx||Sy−Ty|
s+|Sx−Sy| , |Sy−Tx|[1+|Sx−Tx|]

s+|Sx−Sy| };
2. there exists x ∈ X such that Tx(t) = Sx(t), which implies that TSx(t) = STx(t).

Then the system of integral equations (3.11) and (3.12) has a solution.

Proof .

|Tx(t)− Ty(t)|2 ≤
(∫ 1

0

|G1(t, s, x(s))−G2(t, s, y(s))|ds
)2

≤
(∫ 1

0

Γ(x(s))e−ψ(M(x,y))

√
M(x, y)

s3
ds

)2

=
M(x, y)

s3

(∫ 1

0

Γ(x(s))e−ψ(M(x,y))ds

)2

≤ M(x, y)

s3
e−ψ(M(x,y)),

which implies that

eψ(M(x,y))s3d(Tx, Ty) ≤M(x, y)

ψ(M(x, y)) + ln(s3d(Tx, Ty)) ≤ ln(M(x, y)),

taking F (x) = ln(x), we have

ψ(M(x, y)) + F (s3d(Tx, Ty)) ≤ F (M(x, y)).

It is easy to see that all the conditions in Theorem 2.6 are satisfied. Thus, the system of integral
equation (3.11) and (3.12) has a common solution.

□
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