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Abstract

The purpose of this paper is to study the approximation of solutions of split equality variational
inclusion problem in uniformly convex Banach spaces which are also uniformly smooth. We introduce
an iterative algorithm in which the stepsize does not require prior knowledge of operator norms. This
is very important in practice because norm of operators that are often involved in applications are
rarely known explicitly. We prove a strong convergence theorem for the approximation of solutions
of split equality variational inclusion problem in p-uniformly convex Banach spaces which are also
uniformly smooth. Further, we give some applications and a numerical example of our main theorem
to show how the sequence values affect the number of iterations. Our results improve, complement
and extend many recent results in literature.
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1. Introduction

Let E be a Banach space with dual E∗. For p > 1, the generalized duality mapping JEp : E → 2E
∗

is defined by
JEp (x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||p, ||x∗|| = ||x||p−1},
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where 〈·, ·〉 denotes the generalized duality pairing. For p = 2, JEp reduces to the normalized duality
mapping, JE2 ≡ JE. It is well known that if E is uniformly smooth, then JEp is single-valued and
uniformly continuous on bounded subsets of E. Moreover, if E is reflexive and strictly convex with a
strictly convex dual, then (JEp )−1 = JE

∗
q is single-valued, one-to-one, surjective and it is the duality

mapping from E∗ into E and thus JEp J
E∗
q = IE∗ and JE

∗
q JEp = IE, where IE and IE∗ are the identity

operators on E and E∗ respectively, see [31, 42, 51] for more details. We note that in a real Hilbert
space, the duality mappings reduce to the identity mapping.

A mapping A : E → 2E
∗

with domain D(A) = {x ∈ E : Ax 6= ∅} and range R(A) = ∪{Ax : x ∈
D(A)} is said to be monotone if 〈x − y, u − v〉 ≥ 0, for all x, y ∈ D(A) and u ∈ Ax, v ∈ Ay. A
monotone mapping A is said to be maximal if its graph G(A) := {(x, u) : u ∈ Ax} is not contained
in the graph of any other monotone mapping. It is know that a monotone mapping A is maximal if
and only if for (x, u) ∈ E ×E∗, 〈x− y, u− v〉 ≥ 0 for every (y, v) ∈ G(A) implies that u ∈ Ax. Also
if A is maximal monotone, then the zero of A, A−1(0) := {x ∈ E : 0 ∈ Ax} is closed and convex (see
[50]). The problem of finding a point x∗ ∈ E which satisfies

0 ∈ Ax∗, (1.1)

where A is a maximal monotone operator is known as the Variational Inclusion Problem (VIP).
Several iterative methods have been proposed for finding solutions of (1.1) and related optimization
problems in Hilbert, Banach, Hadamard and p-uniformly convex metric spaces, (see [1, 6, 8, 9, 27,
17, 36, 37, 38] and the references therein). A well-known method for solving the equation (1.1) in
Hilbert space H is the proximal point algorithm introduced by Martinet [32]: For given x1 ∈ H,

xn+1 = JAλnxn, n ≥ 1, (1.2)

where {λn} ⊂ (0,∞) and JAλ = (I + λA)−1 for λ > 0. In 1976, Rockafellar [48] proved that if
lim inf
n→∞

λn > 0 and A−1(0) 6= ∅, then the sequence {xn} defined by (1.2) converges weakly to an

element of A−1(0).
Let H1 and H2 be two real Hilbert spaces, B1 : H1 → 2H1 and B2 : H2 → 2H2 be two set-valued
maximal monotone mappings and A : H1 → H2 be a bounded linear operator, A∗ be the adjoint of
A. The Split Variational Inclusion Problems (SVIP) is formulated as:

find x∗ ∈ H1, such that 0 ∈ B1(x∗) and 0 ∈ B2(Ax∗). (1.3)

This problem was introduced by Moudafi [34] in 2011 and have been studied extensively (see for
instance [13, 34, 41]). Recently, Bryne et.al. [13] proposed the following iterative method to solve
the problem (1.3): For given x0 ∈ H1 and λ > 0, the iterative sequence {xn} is generated as follows;

xn+1 = JB1
λ (xn + γA∗(JB2

λ − I)Axn), (1.4)

and obtained a weak and a strong convergence theorem for solving problem (3.3). Inspired by the
work of Bryne et.al. [13], Kazimi and Rizvi [30] proposed the following algorithm for approximating
of solution of SVIP which is also a fixed point of a nonexpansive self-mapping S: For a given x0 ∈ H,
let the sequence {un} and {xn} be generated by;{

un = JB1
λ (xn − γA∗(JB2

λ − I)Axn),
xn+1 = αnf(xn) + (1− αn)Sun, n ≥ 0,

(1.5)
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and proved that both {un} and {xn} converge weakly to z ∈ F (S) ∩ Γ, where Γ is the solution set
of SVIP (1.3).
Recently, Guo et.al. [21] considered the Split Equality Variational Inclusion Problem SEVIP in
Hilbert spaces defined as; find x∗ ∈ H1 and y∗ ∈ H2 such that{

0 ∈ B1(x∗) and 0 ∈ B2(y∗),
Ax∗ = By∗,

(1.6)

where A : H1 → H3 and B : H2 → H3 are bounded linear operators. Recently, motivated by the
work of Moudafi [34], Bryne et.al. [13], Kazmi and Rizvi [30] among others, Guo et.al. [21] proved a
strong convergence theorem for approximating a solution SEVIP which is also a solution of certain
variational inequality problem in Hilbert space.
Recently, effort have been made to approximate the solution of split feasibility problem and split
variational inclusion problem in Hilbert and Banach spaces. For recent results on split feasibility
problems, some of its generalization, and related optimization problems, (see [2, 3, 18, 23, 24, 26, 28,
29, 40, 55] and some of the references therein).
The resolvent operator RλT associated with T for λ > 0 is given as

RλT (x) := {z ∈ E : JEp x ∈ JEp z + λT (z)}.

Equivalently, RλT := (JEp +λT )−1JEp . RλT is single valued and also T−10 = F (RλT ). It is well known
that RλT is relative nonexpansive, that is

0 ≤ 〈RλT (x)−RλT (y), JEp (x)− JEp (RλT (x))− (JEp y −RλT (y))〉, (1.7)

for all x, y ∈ E.
In this paper, motivated by the works of Bryne [13], Kazmi and Rizvi [30], Guo et.al. [21], Cruz
and Shehu [12], we proposed a simultaneous iterative algorithm for approximating solution of split
equality variational inclusion problem (1.6) in p-uniformly convex Banach spaces which are also
uniformly smooth. Even in finite dimensions, computing the norm of bounded linear operator is a
difficult task as shown by the following theorem of Hendrickx and Olshevsky [22].

Theorem 1.1. [22]: Fix a rational p ∈ [1,∞) with p 6= 1, 2. Unless P = NP , there is no algorithm
which given input ε and a matrix M with entries in {−1, 0, 1}, computes ||M ||p to relative accuracy
ε, in time which is polynomial in ε−1 and the dimensions of the matrix.

Thus, we introduce an iterative algorithm with a self adaptive stepsize and prove a strong convergence
theorem for approximating solution of split equality variational inclusion problem in p-uniformly
convex Banach spaces which are also uniformly smooth such that the ardours task of computing
operator norms is avoided.

2. Preliminaries

In this section, we recall some definitions and known results which will be use in the sequel. We
adopt the notations xn ⇀ x and xn → x to mean that xn converges weakly to x and xn converges
strongly to x respectively.
Let E be a real Banach space and 1 < q ≤ 2 ≤ p with 1

p
+ 1

q
= 1. Let dim(E) ≥ 2, the modulus of

convexity of E is the function δE : (0, 2]→ [0, 1], defined by

δE := inf
{

1− ||x+ y

2
|| : ||x|| = ||y|| = 1; ε = ||x− y||

}
.
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E is said to be uniformly smooth if and only if δE(ε) > 0, for all ε ∈ (0, 2] and p-uniformly convex if
there exists a Cp > 0, such that δE(ε) ≥ Cpε

p for any ε ∈ (0, 2].
The modulus of smoothness of E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(t) := sup
{1

2
(||x+ y||+ ||x− y||)− 1 : ||x|| ≤ 1, ||y|| ≤ t

}
.

A Banach space E is said to be uniformly smooth if and only if

lim
t→∞

ρE(t)

t
= 0,

and q-uniformly smooth if there exists a Cq > 0 such that ρE(t) ≤ Cqt
q for any t > 0.

It is well known that E is p-uniformly convex and uniformly smooth if and only if its dual space E∗

is q-uniformly smooth and uniformly convex. For more information on geometric of Banach spaces,
see [4, 50, 51, 52].

Lemma 2.1. (Xu [57]): Let x, y ∈ E and q > 1. If a Banach space E is q-uniformly smooth, then
there is a Cq > 0 so that

||x− y||q ≤ ||x||q − q〈y, JEq (x)〉+ Cq||y||q.

Definition 2.2. [54] Let f : E → R be a convex and Gáteaux differentiable function. The Bregman
distance with respect to f is defined by

Df (x, y) := f(y)− f(x)− 〈f ′(x), y − x〉, (2.1)

∀ x, y ∈ E. It is worth noting that the duality mapping JEp is actually the derivative of the function
fp(x) = 1

p
||x||p for 2 ≤ p <∞. If f = fp, then the Bregman distance with respect to fp now becomes

Dp(x, y) =
1

q
||x||p − 〈JEp x, y〉+

1

p
||y||p

=
1

p
(||y||p − ||x||p) + 〈JEp x, x− y〉

=
1

q
(||x||p − ||y||p)− 〈JEp x− JEp y, y〉. (2.2)

Infact, the Bregman distance is not symmetric and so it is not a metric but it posses the following
important properties: for all w, x, y,∈ E,

Dp(x, y) = Dp(x,w) +Dp(w, y) + 〈w − y, JEp x− JEp y〉, (2.3)

and

Dp(x, y) +Dp(y, x) = 〈x− y, JEp x− JEp y〉. (2.4)

We note that for the p-uniformly convex space, the metric and Bregman distance has the following
relation (see [45])

τ ||x− y||p ≤ Dp(x, y) ≤ 〈x− y, JEp x− JEp y〉, (2.5)

where τ > 0 is some fixed number.
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Let C be a nonempty closed and convex subset of E. The metric projection

PCx := argmin
y∈C

||x− y||,

for all x ∈ E is the unique minimizer of the norm distance which can be characterized by a variational
inequality:

〈JEp (x− PCx), z − PCx〉 ≤ 0, ∀ z ∈ C. (2.6)

Similar to the metric projection, we define the Bregman projection as

ΠCx := argmin
y∈C

Dp(x, y),

for all x ∈ E, which is the unique minimizer of the Bregman distance. The Bregman projection is
also characterized by the variational inequality:

〈JEp (x)− JEp (ΠCx), z − ΠCx〉 ≤ 0. ∀ z ∈ C, (2.7)

which implies that

Dp(ΠCx, z) ≤ Dp(x, z)−Dp(x,ΠCx), (2.8)

for all z ∈ C.
Following [7, 15], we make use of the function Vp : E∗ × E → [0,∞), defined by

Vp(x, y) :=
1

q
||x||q − 〈x, y〉+

1

p
||y||p, ∀ x ∈ E∗, y ∈ E. (2.9)

Then Vp is nonnegative and Vp(x, y) = Dp(J
E∗
p (x), y) for all x ∈ E∗ and y ∈ E. Moreover, by the

subdifferential inequality
〈f ′(x), y − x〉 ≤ f(y)− f(x),

with f(x) = 1
q
||x||q and x ∈ E∗, then f ′(x) = JE

∗
q . Then we have

〈JE∗

q (x), y〉 ≤ 1

q
||x+ y||q − 1

q
||x||q, (2.10)

and from (2.10), we obtain (see [46])

Vp(x̄+ ȳ, x) ≥ Vp(x̄, x) + 〈ȳ, JE∗

p (x̄)− x〉, (2.11)

for all x ∈ E and x̄, ȳ ∈ E∗. In addition, Vp is convex in the first variable. Thus, for all z ∈ E,

Dp(J
E∗

q

N∑
i=1

tiJ
E
p (xi), w) ≤

N∑
i=1

tiDp(xi, w), (2.12)

where {xi} ⊂ E and {ti} ⊂ (0, 1) with
∑N

i=1 = 1.

Lemma 2.3. [43] Let E be a reflexive strictly convex and smooth Banach space, let T : E → 2E
∗

be
a maximal monotone operator with T−10 6= ∅. Then for any x ∈ E, u ∈ T−1(0) and λ > 0, we have

Dp(x,RλTx) +Dp(RλTx, u) ≤ Dp(x, u).

Lemma 2.4. [53, 54] Assume {an} is a sequence of nonnegative real numbers satisfying

an+1 ≤ (1− tn)an + tnδn ∀n ≥ 0,

where {tn} is a sequence in (0, 1) and {δn} is a sequence in R such that:

i.
∑∞

n=o tn =∞,
ii. lim supn→∞ δn ≤ 0.

Then, limn→∞ an = 0.
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3. Main result

Theorem 3.1. Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are also uniformly
smooth. Let C and Q be nonempty closed and convex subsets of E1 and E2 respectively, A : E1 → E3

and B : E2 → E3 be bounded linear operators. Let T1 : E1 → 2E
∗
1 and T2 → 2E

∗
2 be maximal

monotone operators such that Γ := {(x̄, ȳ) ∈ T−1
1 (0) × T−1

2 (0);Ax̄ = Bȳ} is nonempty. For fixed
u ∈ E1 and v ∈ E2, choose an initial guess x1 ∈ E1 and y1 ∈ E2 arbitrarily and let {αn} ⊂ [0, 1].
Assume that the nth iterate (xn, yn) ∈ E1 ×E2 has been constructed; then we calculate the (n+ 1)th
iterate (xn+1, yn+1) via the formula

un = RλT1J
E∗

1
q (JE1

p (xn)− tnA∗JE3
p (Axn −Byn)),

xn+1 = J
E∗

1
q (αnJ

E1
p (u) + (1− αn)JE1

p (un)),

vn = RλT2J
E∗

2
q (JE2

p (yn) + tnB
∗JE3

p (Axn −Byn)),

yn+1 = J
E∗

2
p (αnJ

E2
p (v) + (1− αn)JE2

p (vn)),

(3.1)

where λ > 0, A∗ and B∗ are the adjoints of A and B respectively and the stepsize tn is choosen in
such a way that

tn ∈
(
ε,
( q||Axn −Byn||p
Cq||A∗JE3

p (Axn −Byn)||q +Qq||B∗JE3
p (Axn −Byn)||q

− ε
) 1

q−1
)
, n ∈ Ω, (3.2)

for small enough ε, otherwise tn = t(t being any nonegative value ), where the set of indices Ω = {n :
Axn −Byn 6= 0}. Suppose the following conditions are satisfied:

(i) lim
n→∞

αn = 0,

(ii)
∑∞

n=0 αn =∞.

Then, the sequence {(xn, yn)} strongly converges to (x̄, ȳ) = (ΠΓ1u,ΠΓ2v), where Γi = {z ∈ Ei : 0 ∈
Ti(z)} for i = 1, 2, and ΠΓ1 and ΠΓ2 are the Bregman projections onto Γ1 and Γ2 respectively.

Proof . We divide the proof into three steps:
STEP 1: We show that the step size (3.2) is well define. Observe that for any (x, y) ∈ Γ, we have

〈A∗JE3
p (Axn −Byn), xn − x〉 = 〈JE3

p (Axn −Byn), Axn − Ax〉, (3.3)

and

〈B∗JE3
p (Axn −Byn), y − yn〉 = 〈JE3

p (Axn −Byn), By −Byn〉. (3.4)

By adding (3.3) and (3.4) and taking into account the fact Ax = By, we have

||Axn −Byn||p = 〈A∗JE3
p (Axn −Byn), xn − x〉+ 〈B∗JE3

p (Axn −Byn), y − yn〉
≤ ||A∗JE3

p (Axn −Byn)||||Axn − x||+ ||B∗JE3
p (Axn −Byn)||||y − yn||. (3.5)

Therefore, for n ∈ Ω, that is, ||Axn −Byn|| > 0, we have ||A∗JE3
p (Axn −Byn)|| 6= 0

or ||B∗(Axn −Byn)|| 6= 0. Thus tn is well defined.
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STEP 2: We show that the sequences {xn} and {yn} are bounded. Now let (x∗, y∗) ∈ Γ, then from
(3.1), we have that

Dp(un, x
∗) = Dp(RλT1J

E∗
1

q (JE1
p (xn)− tnA∗JE3

p (Axn −Byn)), x∗)

≤ Dp(J
E∗

1
q (JE1

p (xn)− tnA∗JE3
p (Axn −Byn)), x∗) (3.6)

=
1

q
||JE1

p (xn)− tnA∗JE3
p (Axn −Byn)||q − 〈JE1

p (xn), x∗〉

+tn〈A∗JE3
p (Axn −Byn), x∗〉+

1

p
||x∗||p

≤ 1

q
||JE1

p (xn)||q − tn〈JE3
p (Axn −Byn), Axn〉

+
Cq
q
tqn||A∗JE3

p (Axn −Byn)||q − 〈JE1
p (xn), x∗〉

+tn〈JE3
p (Axn −Byn), Ax∗〉+

1

p
||x∗||p

=
1

q
||xn||p − 〈JE1

p (xn), x∗〉+
1

p
||x∗||p − tn〈JE3

p (Axn −Byn), Axn − Ax∗〉

+
Cq
q
tqn||A∗JE3

p (Axn −Byn)||q

= Dp(xn, x
∗)− tn〈JE3

p (Axn −Byn), Axn − Ax∗〉

+
Cqt

q
n

q
||A∗JE3

p (Axn −Byn)||q. (3.7)

Following similar process as above, we obtain

Dp(vn, y
∗) ≤ Dp(J

E∗
2

q (JE2
p (yn) + tnB

∗JE3
p (Axn −Byn)), y∗) (3.8)

≤ Dp(yn, y
∗)− tn〈JE3

p (Axn −Byn), By∗ −Byn〉

+
Qqt

q
n

q
||B∗JE3

p (Axn −Byn)||q. (3.9)

Adding (3.7) and (3.9), noting that Ax∗ = By∗, we have

Dp(un, x
∗) +Dp(vn, y

∗) ≤ Dp(xn, x
∗) +Dp(yn, y

∗)

−tn
[
||Axn −Byn||p −

tq−1
n

q
(Cq||A∗JE3

p (Axn −Byn)||q

+Qq||B∗JE3
p (Axn −Byn)||q)

]
. (3.10)

Thus
Dp(un, x

∗) +Dp(vn, y
∗) ≤ Dp(xn, x

∗) +Dp(yn, y
∗). (3.11)

Also from (3.1), we have

Dp(xn+1, x
∗) = Dp(J

E∗
1

q (αnJ
E1
p (u) + (1− αn)JE1

p (un)), x∗)

≤ αnDp(u, x
∗) + (1− αn)Dp(un, x

∗). (3.12)

Similarly, we have

Dp(yn+1, y
∗) ≤ αnDp(v, y

∗) + (1− αn)Dp(vn, y
∗). (3.13)
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Hence

Dp(xn+1, x
∗) +Dp(yn+1, y

∗) ≤ αn(Dp(u, x
∗) +Dp(v, y

∗))

+(1− αn)(Dp(un, x
∗) +Dp(vn, y

∗))

≤ αn(Dp(u, x
∗) +Dp(v, y

∗))

+(1− αn)(Dp(xn, x
∗) +Dp(yn, y

∗)) (3.14)

≤ max{Dp(u, x
∗) + (Dp(v, y

∗), Dp(xn, x
∗) +Dp(yn, y

∗)}
...

≤ max{Dp(u, x
∗) + (Dp(v, y

∗), Dp(x1, x
∗) +Dp(y1, y

∗)}.

Thus {Dp(xn+1, x
∗) + Dp(yn+1, y

∗)} is bounded. Consequently, {Dp(xn, x
∗)} and {Dp(yn, y

∗)} are
bounded. It therefore, follows that {xn}, {yn}, {un} and {vn} are bounded.

STEP 3: Next, we prove that {xn} converges strongly to x̄ = ΠΓ1u and {yn} converges strongly to
ȳ = ΠΓ2v. From (3.1), we have that

Dp(xn+1, x
∗) = Dp(J

E∗
1

q (αnJ
E1
p (u) + (1− αn)(un)), x∗)

= Vp(αnJ
E1
p (u) + (1− αn)(un), x∗)

= Vp(αnJ
E1
p (u) + (1− αn)(un)− αn(JE1

p (u)− JE1
p (x∗)), x∗)

+〈αn(JE1
p (u)− JE1

p (x∗)), JE
∗
1

q (αnJ
E1
p (u) + (1− αn)(un))− x∗〉

= Vp(αnJ
E1
p (x∗) + (1− αn)(un), x∗) + αn〈JE1

p (u)− JE1
p (x∗), xn+1 − x∗〉

= Dp(J
E∗

1
q (αnJ

E1
p (x∗) + (1− αn)(un)), x∗) + αn〈JE1

p (u)− JE1
p (x∗), xn+1 − x∗〉

≤ αnDp(x
∗, x∗) + (1− αn)Dp(un, x

∗) + αn〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉
= (1− αn)Dp(un, x

∗) + αn〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉. (3.15)

Similarly, we have

Dp(yn+1, y
∗) ≤ (1− αn)Dp(vn, y

∗) + αn〈JE2
p (u)− JE2

p (y∗), yn+1 − y∗〉. (3.16)

Therefore, from (3.11) we have

Dp(xn+1, x
∗) +Dp(yn+1, y

∗) ≤ (1− αn)(Dp(un, x
∗) +Dp(vn, y

∗))

+αn(〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉
+〈JE2

p (v)− JE2
p (y∗), yn+1 − y∗〉)

≤ (1− αn)(Dp(xn, x
∗) +Dp(yn, y

∗))

+αn(〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉
+〈JE2

p (v)− JE2
p (y∗), yn+1 − y∗〉). (3.17)

Now, we set Θn(x∗, y∗) := Dp(xn, x
∗) + Dp(yn, y

∗), and divide the remaining part of the proof into
two cases.
Case A: Suppose there exists n0 ∈ N such that {Θn(x∗, y∗)} is monotonically non-increasing for all
n ≥ n0. Then {Θn(x∗, y∗)} converges as n→∞ and so

Θn(x∗, y∗)−Θn+1(x∗, y∗)→ 0, n→∞.
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Let Mn := Cq||A∗JE3
p (Axn −Byn)||q +Qq||B∗JE3

p (Axn −Byn)||q, then from (3.10), we have

tn

[
||Axn −Byn||p −

tq−1
n

q
Mn

]
≤ Dp(xn, x

∗) +Dp(yn, y
∗)

−(Dp(un, x
∗) + (Dp(vn, y

∗)), (3.18)

and therefore,

tn

[
||Axn −Byn||p −

tq−1
n

q
Mn

]
≤ Dp(xn, x

∗) +Dp(yn, y
∗)− (Dp(un, x

∗) + (Dp(vn, y
∗))

= Θn(x∗, y∗)−Θn+1(x∗, y∗) + Θn+1(x∗, y∗)

−(Dp(un, x
∗) + (Dp(vn, y

∗)). (3.19)

Moreover, it follows from (3.17) and (3.19) and the fact that αn → 0 as n→∞ that

tn

[
||Axn −Byn||p −

tq−1
n

q
Mn

]
≤ Θn(x∗, y∗)−Θn+1(x∗, y∗)

+(1− αn)(Dp(un, x
∗) +Dp(vn, y

∗))

+αn(〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉
+〈JE2

p (v)− JE2
p (y∗), yn+1 − y∗〉)

−(Dp(un, x
∗) + (Dp(vn, y

∗))→ 0, n→∞. (3.20)

Again, by the condition on the stepsize tn, we have that

tq−1
n <

q||Axn −Byn||p
Mn

− ε,

which implies that
tq−1
n Mn < q||Axn −Byn||p − εMn,

and thus
εMn

q
< ||Axn −Byn||p −

tq−1
n

q
Mn → 0, n→∞.

Therefore,
Cq||A∗JE3

p (Axn −Byn)||q +Qq||B∗JE3
p (Axn −Byn)||q → 0, n→∞.

It follows that

lim
n→∞

||A∗JE3

p (Axn −Byn)||q = 0 and lim
n→∞

||B∗JE3

p (Axn −Byn)||q = 0. (3.21)

Also, we have from (3.20) that

tn||Axn −Byn||p ≤ αn(Dp(u, x
∗) +Dp(v, y

∗))− (1− αn)Θn(x∗, y∗)

−Θn+1(x∗, y∗) +
tqn
q
Mn → 0, n→∞.

Hence,

lim
n→∞

||Axn −Byn||p = 0. (3.22)
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Let an = J
E∗

1
q (JE1

p (xn)− tnA∗JE3
p (Axn −Byn)) and bn = JE2

q (JE2
p (yn) + tnB

∗JE3
p (Axn −Byn)), then

un = RλT1an and vn = RλT2bn. Following similar argument as in (3.6) (3.7), (3.8),(3.9) and (3.10) we
obtain

Dp(an, x
∗) +Dp(bn, y

∗) ≤ Dp(xn, x
∗) +Dp(yn, y

∗).

It follows from Lemma 2.3 that

Dp(an, un) +Dp(bn, vn) = Dp(an, RλT1an) +Dp(bn, RλT2bn)

≤ (Dp(an, x
∗) +Dp(bn, y

∗))− (Dp(un, x
∗) +Dp(vn, y

∗))

≤ (Dp(xn, x
∗) +Dp(yn, y

∗))− (Dp(un, x
∗) +Dp(vn, y

∗))

= (Dp(xn, x
∗) +Dp(yn, y

∗))− (Dp(xn+1, x
∗) +Dp(yn+1, y

∗))

+(Dp(xn+1, x
∗) +Dp(yn+1, y

∗))− (Dp(un, x
∗) +Dp(vn, y

∗))

≤ (Dp(xn, x
∗) +Dp(yn, y

∗))− (Dp(xn+1, x
∗) +Dp(yn+1, y

∗))

+αn(Dp(u, x
∗) +Dp(v, y

∗)) + (1− αn)(Dp(un, x
∗) +Dp(vn, y

∗))

−(Dp(un, x
∗) +Dp(vn, y

∗))→ 0, n→∞. (3.23)

Hence,
lim
n→∞

Dp(an, un) = 0, and lim
n→∞

Dp(bn, vn) = 0.

Thus,

lim
n→∞

||an − un|| = 0, and lim
n→∞

||bn − vn|| = 0. (3.24)

Since E1 and E2 are uniformly smooth, then JE1
p and JE2

p are uniformly continuous on bounded
subsets of E1 and E2, respectively. Thus

lim
n→∞

||JE1
p an − JE1

p un|| = 0, and lim
n→∞

||JE2
p bn − JE2

p vn|| = 0. (3.25)

It follows from the definition of an that

0 ≤ ||JE1
p (an)− JE1

p (xn)||
≤ tn||A∗||||JE3

p (Axn −Byn)||
= tn||A∗||||Axn −Byn||p−1 → 0, n→∞.

Since J
E∗

1
q is norm-to-norm uniformly continuous on bounded subsets of E∗1 , we have

lim
n→∞

||an − xn|| = 0, n→∞. (3.26)

Similarly, we can show that
lim
n→∞

||bn − yn|| = 0, n→∞. (3.27)

It follows therefore from (3.24) that

||un−xn|| ≤ ||un−an||+||an−xn|| → 0, n→∞, and ||vn−yn|| ≤ ||vn−bn||+||bn−yn|| → 0, n→∞.
(3.28)

Furthermore, from (3.1), we have

Dp(xn+1, un) ≤ αnDp(u, un) + (1− αn)Dp(un, un)

= αnDp(u, un)→ 0, n→∞,
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and

Dp(yn+1, vn) ≤ αnDp(v, vn) + (1− αn)Dp(vn, vn)

≤ αnDp(v, vn)→ 0, n→∞.
Hence

lim
n→∞
||xn+1 − un|| = lim

n→∞
||yn+1 − vn|| = 0. (3.29)

This together with (3.28) implies that

||xn+1−xn|| ≤ ||xn+1−un||+||un−xn|| → 0, and ||yn+1−yn|| ≤ ||yn+1−vn||+||vn−yn|| → 0, n→∞.
(3.30)

Since {xn} and {yn} are bounded, there exist subsequences {xni
} of {xn} and {yni

} of {yn} such that
xni

⇀ x̄ ∈ ω(xn) and yni
⇀ ω(yn) respectively. Now, since lim

n→∞
||un−xn|| = 0 and lim

n→∞
||vn−yn|| = 0,

we obtain uni
⇀ x̄ and vni

⇀ ȳ. Let (z, u) ∈ G(T1), that is z ∈ T1u. Since uni
= RλT1ani

for all
λ > 0, we have

JE1
p ani

∈ (JE1
p + λT1)uni

,

which implies that
1

λ
(JE1
p ani

− JE1
p uni

) ∈ T1uni
.

By the maximal monotonicity of T1, we have

〈z − 1

λ
(JE1
p ani

− JE1
p uni

), u− uni
〉 ≥ 0,

which implies that

〈z, u− uni
〉 ≥ 1

λ
〈u− nni

, JE1
p ani

− JE1
p uni

〉.

It follows from (3.25) and the fact that uni
⇀ x̄ that

〈z, u− x̄〉 ≥ 0.

Since T1 is maximal monotone, we have 0 ∈ T1x̄.
Following similar analysis as above, we obtain 0 ∈ T2ȳ.
Now, since A : E1 → E3 and B : E2 → E3 are bounded linear operators, we have Axni

⇀ Ax̄ and
Byni

⇀ Bȳ. By the weak lower semicontinuity of the norm and (3.22), we have

||Ax̄−Bȳ|| ≤ lim inf
i→∞

||Axni
−Byni

|| = 0.

Hence, Ax̄ = Bȳ.
We now show the sequence {(xn, yn)} strongly converges to (x∗, y∗) = (ΠΓ1u,ΠΓ2v). From (3.17), we
have

Dp(xn+1, x
∗) +D(yn+1, y

∗) ≤ (1− αn)(Dp(xn, x
∗) +Dp(yn, y

∗))

+αn(〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉
+〈JE2

p (v)− JE2
p (y∗), yn+1 − y∗〉). (3.31)

Choose subsequences {xnj
} of {xn} and {ynj

} of {yn} such that

lim sup
n→∞

〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉 = lim
j→∞
〈JE1

p (u)− JE1
p (x∗), xnj+1 − x∗〉,
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and
lim sup
n→∞

〈JE2
p (v)− JE2

p (y∗), yn+1 − y∗〉 = lim
j→∞
〈JE2

p (v)− JE2
p (y∗), ynj+1 − y∗〉.

Since xnj
⇀ x̄ and ynj

⇀ ȳ, it follows from (2.7) that

lim sup
n→∞

〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉 = lim
j→∞
〈JE1

p (u)− JE1
p (x∗), xnj+1 − x∗〉

= 〈JE1
p (u)− JE1

p (x∗), x̄− x∗〉 ≤ 0, (3.32)

and

lim sup
n→∞

〈JE2
p (v)− JE2

p (y∗), yn+1 − y∗〉 = lim
j→∞
〈JE2

p (v)− JE2
p (y∗), ynj+1 − y∗〉

= 〈JE2
p (v)− JE2

p (y∗), ȳ − y∗〉 ≤ 0. (3.33)

Using Lemma 2.4 in (3.31), we conclude that

Dp(xn, x
∗) +Dp(yn, y

∗)→ 0, n→∞. (3.34)

Thus, Dp(xn, x
∗)→ 0 and Dp(yn, y

∗)→ 0, n→∞. Therefore xn → x∗ and yn → y∗.
Case 2: Assume that {Θn(x∗, y∗)} is not monotonically decreasing. Let τ : N→ N be a mapping for
all n ≥ n0 (for some n0 large enough) defined by

τ(n) = max{k ∈ N : k ≤ n, τk ≤ τk+1}.

Clearly, τ is a nondecreasing sequence such that τ(n)→∞, as n→∞ and

0 ≤ Θτ(n)(x
∗, y∗) ≤ Θτ(n)+1(x∗, y∗), ∀n ≥ n0.

Following similar analysis as in Case 1, we conclude that lim
n→∞
||Axτ(n) −Byτ(n)|| = 0;

lim
n→∞
||xτ(n)+1 − xτ(n)|| = 0 and lim

n→∞
||yτ(n)+1 − yτ(n)|| = 0. Also we have that

lim sup
n→∞

〈JE1
p (u)−JE1

p (x∗), xτ(n)+1−x∗〉 ≤ 0 and lim sup
n→∞

〈JE2
p (v)−JE2

p (y∗), yτ(n)+1−y∗〉 ≤ 0. (3.35)

Now, since {xτ(n)} and {yτ(n)} are bounded, there exist subsequences of {xτ(n)} and {yτ(n)} still
denoted as {xτ(n)} and {yτ(n)} which converge weakly to x̄ ∈ E1 and ȳ ∈ E2 respectively. From
(3.17), we have

Θτ(n)+1(x∗, y∗) ≤ (1− ατ(n))Θτ(n)(x
∗, y∗) + ατ(n)(〈JE1

p (u)− JE1
p (x∗), xτ(n)+1 − x∗〉

+〈JE2
p (v)− JE2

p (y∗), yτ(n)+1 − y∗〉). (3.36)

Since Θτ(n)(x
∗, y∗) ≤ Θτ(n)+1(x∗, y∗), it follows from (3.36) that

Θτ(n)(x
∗, y∗) ≤ 〈JE1

p (u)− JE1
p (x∗), xτ(n)+1 − x∗〉+ 〈JE2

p (v)− JE2
p (y∗), yτ(n)+1 − y∗〉.

Then from (3.35), we have that

lim
n→∞

Θτ(n)(x
∗, y∗) = lim

n→∞
(Dp(xτ(n), x

∗) +Dp(yτ(n), y
∗)) = 0.

Hence, lim
n→∞

Dp(xτ(n), x
∗) = 0 and lim

n→∞
Dp(yτ(n), y

∗) = 0.

Thus we have lim
n→∞
||xτ(n) − x∗|| = 0 and lim

n→∞
||yτ(n) − y∗|| = 0. As a consequence, we obtain for all

n ≥ n0,
0 ≤ Θn(x∗, y∗) ≤ max{Θτ(n)(x

∗, y∗),Θτ(n)+1(x∗, y∗)} = Θτ(n)+1(x∗, y∗).
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Hence, lim
n→∞

Θn(x∗, y∗) = lim
n→∞

(Dp(xn, x
∗) +Dp(yn, y

∗)) = 0.

Thus,
lim
n→∞

Dp(xn, x
∗) = lim

n→∞
Dp(yn, y

∗) = 0.

Therefore, we have
lim
n→∞
||xn − x∗|| = 0 and lim

n→∞
||yn − y∗|| = 0.

This implies that the sequences {(xn, yn)} strongly converges to (x∗, y∗) = (ΠΓ1u,ΠΓ2v).
�

4. Applications and Numerical Example

4.1. Applications

Next, we obtain the following consequences from our main theorem.

4.1.1. Split Equality Feasibility Problem:

Let E be a p-uniformly real Banach space which is also uniformly smooth. Given a proper, convex
and lower semicontinuous function f : E → R ∪ {+∞}, the subdifferential of such function is the
mapping ∂f : E → 2E

∗
defined by

∂f(x) = {x∗ ∈ E∗ : f(x)− f(u) ≤ 〈x− u, x∗〉, ∀ u ∈ E}.

Let C be a nonempty closed and convex subset of E and iC be the indicator function of C, defined
by

iC(x) =

{
0 if x ∈ C
∞ if x /∈ C. (4.1)

We define the normal cone NC(x) to C at a point x ∈ C as follows:

NC(x) = {x∗ ∈ E∗ : 〈x∗, u− x〉 ≤ 0 ∀ u ∈ E}.

Then iC is proper, lower and semicontinuous function on E and the subdifferential ∂iC of iC is a
maximal monotone operator (see [49]). We also define the resolvent Rλ∂iC

of ∂iC for λ > 0 as

Rλ∂iC
x = (JEp + λ∂iC )−1JEp x,

for all x ∈ E. By definitions, we obtain

∂iCx = {x∗ ∈ E∗ : iCx+ 〈x∗, u− x〉 ≤ iCu, ∀ u ∈ E}
= {x∗ ∈ E∗ : 〈x∗, u− x〉 ≤ 0, ∀ u ∈ C}
= NCx, (4.2)

for all x ∈ C. Hence, for λ > 0, we have that

u = Rλ∂iC
x ⇔ JEp x ∈ JEp u+ λ∂iCu⇔ JEp (x− u) ∈ λNCu

⇔ 〈JEp (x− u), z − u〉 ≤ 0, ∀ z ∈ C
⇔ u = ΠCx. (4.3)

Now, let E1, E2 and E3 be p-uniformly convex Banach spaces which are also uniformly smooth. Let
C and Q be nonempty, closed and convex subsets of E1 and E2 respectively and let A : E1 → E3
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and B : E2 → E3 be bounded linear operators. The Split Equality Feasibility Problem (SEFP) is
defined as

find x∗ ∈ C and y∗ ∈ Q such that Ax∗ = By∗. (4.4)

When E2 = E3 and B = I the identity mapping in (4.4), the SEFP reduces to the Split Feasibility
Problem SFP introduced by Censor and Elfving [15]. Setting T1 = ∂iC and T2 = ∂iQ in Theorem 3.1,
then the algorithm (3.1) becomes

un = ΠCJ
E∗

1
q (JE1

p (xn)− tnA∗JE3
p (Axn −Byn)),

xn+1 = J
E∗

1
q (αnJ

E1
p (u) + (1− αn)JE1

p (un)),

vn = ΠQJ
E∗

2
q (JE2

p (yn) + tnB
∗JE3

p (Axn −Byn)),

yn+1 = J
E∗

2
p (αnJ

E2
p (v) + (1− αn)JE2

p (vn)),

(4.5)

and we obtain a strong convergence for approximation of solution of split equality feasibility problems
in Banach spaces.

4.1.2. Split Equality Convex Minimization Problem:

Let E be a p-uniformly convex real Banach space which is also uniformly smooth and C be
nonempty closed convex subset of E. Let φ : C → R be a proper convex lower semicontinuous
function. We know that the subdifferential ∂φ is maximal monotone and the resolvent operator
Rλ∂φ = proxλφ where

proxλφx = argmin
u∈E

{φ(u) +
1

2λ
Dp(u, x)},

for each x ∈ E (see [44] for more details).
Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are also uniformly smooth and
C and Q be nonempty closed convex subsets of E1 and E2 respectively. Let A : E1 → E3 and
B : E2 → E3 be bounded linear operators. The Split Equality Convex Minimization Problem
(SECMP) is define as: find x∗ ∈ E1 and y∗ ∈ E2 such that{

x∗ = argmin
x∈E1

φ(x) and y∗ = argmin
y∈E2

ψ(y)

Ax∗ = By∗,
(4.6)

where φ : C → R and ψ : Q→ R are proper convex lower semicontinuous functions. Now, by setting
T1 = ∂φ and T2 = ∂ψ in Theorem 3.1, then the algorithm (3.1) becomes

un = proxλφJ
E∗

1
q (JE1

p (xn)− tnA∗JE3
p (Axn −Byn)),

xn+1 = J
E∗

1
q (αnJ

E1
p (u) + (1− αn)JE1

p (un)),

vn = proxλψJ
E∗

2
q (JE2

p (yn) + tnB
∗JE3

p (Axn −Byn)),

yn+1 = J
E∗

2
p (αnJ

E2
p (v) + (1− αn)JE2

p (vn)),

(4.7)

and we can obtain a strong convergence result for approximating solutions of SECMP in Banach
spaces.

4.1.3. Split Equality Equilibrium Problem:

Let E be a p-uniformly convex Banach space which is also uniformly smooth and C be a nonempty
closed convex subset of E. Let F : C × C → R be a bifunction, the equilibrium problem introduced
by Blum and Oettli [11] in 1994 is defined as: find x ∈ C such that

F (x, y) ≥ 0, ∀ y ∈ C.
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We denote the set of solution of the equilibrium problem as EP (F ). For solving the equilibrium
problem, it is assumed that the bifunction F satisfied the following conditions:
(A1) F (x, x) = 0 for all x ∈ C,
(A2) F is monotone, that is F (x, y) + F (y, x) ≤ 0, forall x, y ∈ C,
(A3) for all x, y, z ∈ C, lim supt↓0 F (tz + (1− t)x, y) ≤ F (x, y),

(A4) for all x ∈ C, F (x, )̇ is convex and lower semicontinuous. The resolvent operator T Fr associated
with the bifunction F for r > 0 is defined as

T Fr (x) = {z ∈ C : F (z, y) +
1

r
〈y − z, JEp z − JEp x〉 ≥ 0, ∀ y ∈ C}.

It is well known that T Fr satisfy following properties:
(a) T Fr is single-valued,
(b) T Fr is a firmly nonexpansive mapping, that is,

〈T Fr z − T Fr y, JEp T Fr z − JEP T Fr y〉 ≤ 〈T Fr z − T Fr y, JEp z − JEp y〉 ∀z, y ∈ E,

(c)F (T Fr ) = EP (F ),
(d) EP (F ) is closed and convex.
Now, define a multi-valued mapping AF : E → 2E

∗
by

AF (x) :=

{
{z ∈ E∗ : F (x, y) ≥ 1

r
〈JEp y − JEp x, z〉, ∀ y ∈ C}; x ∈ C,

∅; x /∈ C, (4.8)

then, we know that EP (F ) = A−1
F 0 and AF is a maximal monotone operator with dom(AF )⊂ C (see

[56]). Further, for any x ∈ E and r > 0, the resolvent T Fr of F coincides with the resolvent of AF ,
that is

T Fr x = (JEp + rAF )−1JEp x.

Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are also uniformly smooth and
C and Q be nonempty closed convex subsets of E1 and E2 respectively. Let A : E1 → E3 and
B : E2 → E3 be bounded linear operators. Let F : C × C → R and G : Q×Q→ R be bifunctions.
The Split Equality Equilibrium Problem (SEEP) is defined as: Find x∗ ∈ C and y∗ ∈ Q such that{

F (x∗, x) ≥ 0 ∀ x ∈ C, G(y∗, y) ≥ 0 ∀ y ∈ Q
and Ax∗ = By∗.

(4.9)

Setting RλT1 = T Fr and RλT2 = TGr in Theorem 3.1, then the algorithm (3.1) becomes
un = T FrnJ

E∗
1

q (JE1
p (xn)− tnA∗JE3

p (Axn −Byn)),

xn+1 = J
E∗

1
q (αnJ

E1
p (u) + (1− αn)JE1

p (un)),

vn = TGrnJ
E∗

2
q (JE2

p (yn) + tnB
∗JE3

p (Axn −Byn)),

yn+1 = J
E∗

2
p (αnJ

E2
p (v) + (1− αn)JE2

p (vn)),

(4.10)

for rn > 0, and we obtain a strong convergence result for approximation of solution of the SEEP in
Banach spaces.
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4.1.4. Saddle Points Problem

Let X and Y be two Hilbert spaces and E = X × Y . Let L : E → R∪ {−∞,+∞} be a function
such that L(x, y) is convex in x ∈ X and concave in y ∈ Y, (convex-concave function). To such a
function, Rockafellar [48] associated the operator TL defined by

TL = ∂1L× ∂2(−L),

where ∂1 (resp. ∂2) stands for the subdifferential of L with respect to the first (resp. the second)
variable. TL is a maximal monotone operator if and only if L is closed and convex in Rockafellar
sense (see [48]).
Moreover, it is well known that (x∗, y∗) is a saddle point of L, namely:

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀ (x, y) ∈ E,

if and only if the following inclusion holds

(0, 0) ∈ TL(x∗, y∗).

The proximal operator associated with TL is define by

proxλL(x, y) = arg minmax
(u,v)

{L(u, v) +
1

2λ
||x− u||2 − 1

2λ
||y − v||2},

for all (x, y) ∈ E. Now, if in problem (1.6), we set E1 = X1 × Y1, E2 = X2 × Y2, E3 = X3 × Y3 and
T1 = TL1 , T2 = TL2 , where Li (i = 1, 2) are convex-concave functions on Ei for i = 1, 2, respectively.
Then, we have the following split equality saddle point problem: find (x∗1, y

∗
1) ∈ E1 and (x∗2, y

∗
2) ∈ E2

such that
(x∗1, y

∗
1) = arg minmax

(x1,y1)

L1(x1, y1)

(x∗2, y
∗
2) = arg minmax

(x2,y2)

L2(x2, y2)

and A(x∗1, y
∗
1) = B(x∗2, y

∗
2),

(4.11)

where A : E1 → E3 and B : E2 → E3 are bounded linear operators. Then we can obtain the following
strong convergence result from Theorem 3.1.

Theorem 4.1. Let Xi and Yi be real Hilbert spaces for i = 1, 2, 3. Let E1 = X1 × Y1, E2 = X2 × Y2,
E3 = X3×Y3. Let C and Q be nonempty closed convex subset of E1 and E2 respectively, A : E1 → E3

and B : E2 → E3 be bounded linear operators. Let Li : Ei → R ∪ {−∞,+∞} be convex-concave
functions, for i = 1, 2, 3. and Γ := {x̄ = (x1, x2) ∈ T−1

L1
(0, 0), ȳ = (y1, y2) ∈ T−1

L2
(0, 0) ;Ax̄ = Bȳ}

is nonempty. For fixed ū = (u1, u2) ∈ E1 and v̄ = (v1, v2) ∈ E2, choose an initial guess x̄1 ∈ E1

and ȳ1 ∈ E2 arbitrarily. Let {αn} ⊂ [0, 1]. Assume that the nth iterate x̄n = (xn,1, xn,2) ∈ E1 and
ȳn = (yn,1, yn,2) ∈ E2 have been constructed; then we calculate the (n + 1)th iterate (x̄n+1, ȳn+1) via
the formula

ūn = proxλL1(x̄n)− tnA∗(Ax̄n −Bȳn),
x̄n+1 = αn(ū) + (1− αn)ūn,
v̄n = proxλL2(ȳn) + tnB

∗(Ax̄n −Bȳn),
ȳn+1 = αn(v̄) + (1− αn)v̄n,

(4.12)
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where λ > 0, A∗ and B∗ are the adjoints of A and B respectively and the stepsize tn is choosen in
such a way that

tn ∈
(
ε,

2||Ax̄n −Bȳn||2
||A∗(Ax̄n −Bȳn)||2 + ||B∗(Ax̄n −Bȳn)||2 − ε

)
, n ∈ Ω,

for small enough ε, otherwise tn = t (t being any nonegative value ), where the set of indices Ω =
{n : Ax̄n −Bȳn 6= 0}. Suppose the following conditions are satisfied:

(i) lim
n→∞

αn = 0,

(ii)
∑∞

n=0 αn =∞.
Then, the sequences {(x̄n, ȳn)} strongly converges to (x̄, ȳ) = (PΓ1ū, PΓ2 v̄), where Γi = {z̄ ∈ Ei : 0 ∈
TLi

(z̄)} for (i = 1, 2), PΓ1 and PΓ2 are the metric projections onto Γ1 and Γ2 respectively.

4.2. Numerical Example

For simplicity, we take E1 = E2 = E3 = R, with p = 2. Let A(x) = x, B(x) = 2x, T1(x) = 2x
and T2(x) = 3x. Choose λ = 2 and αn = 1√

n
, then algorithm (3.1) becomes{

xn+1 = 1√
n
u+ (

√
n−1

5
√
n

)(xn − tn(xn − 2yn))

yn+1 = 1√
n
v + (

√
n−1

7
√
n

)(yn + 2tn(xn − 2yn)),
(4.13)

where the step size tn is chosen in such a way that

tn ∈
(
ε,

2||Axn −Byn||2
||AT (Axn −Byn)||2 + ||BT (Axn −Byn)||2 − ε

)
, n ∈ Ω,

for small enough ε, otherwise tn = t (t being any nonegative value ), where the set of indices
Ω = {n : Axn −Byn 6= 0}.
We make different choice of u, v, x1, and y1 and use ε < 10−2, for the stopping criterion.
Case 1:
(i) Take x1 = 1, y1 = −1, u = 0.5 and v = 1.
(ii) Take x1 = 0.25, y1 = 0.005, u = −0.0675 and v = 0.001.
Case 2:
(i) Take x1 = −0.02, y1 = −0.005, u = 0.1 and v = 1.
(ii) Take x1 = −0.0005, y1 = −0.12, u = 1 and v = 0.001.
We note that the choice of tn, as long as it is in the range, does not have any significant effect on
both the number of iterations and cpu time. Mathlab version R2014a is used to obtain the graphs of
errors against number of iterations, execution time against accuracy and number of iterations against
accuracy.
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Figure 1: Case 1(i): errors vs number of iterations (top); execution time vs accuracy (bottom left); number of iterations
vs accuracy (bottom right).
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Figure 2: Case 1(ii): errors vs number of iterations (top); execution time vs accuracy (bottom left); number of
iterations vs accuracy (bottom right).
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Figure 3: Case 2(i): errors vs number of iterations (top); execution time vs accuracy (bottom left); number of iterations
vs accuracy (bottom right).
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Figure 4: Case 2(ii): errors vs number of iterations (top); execution time vs accuracy (bottom left); number of
iterations vs accuracy (bottom right).
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