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Abstract

In this article, we extended an efficient computational method based on Walsh operational matrix
to find an approximate solution of fractional diffusion equations, First, we present the fractional
Walsh operational matrix of integration and differentiation. Then by applying this method, the
Fractional diffusion equations are reduced into a system of an algebraic equation. The benefits of
this method are the low cost of setting up the equations without applying any projection method
such as collocation, Galerkin, etc. The results show that the method is very accurate and efficient.
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1. Introduction

Fractional diffusion equations naturally appear in history-dependent problems such as fluid flow,
damped vibrations, viscoelasticity, population dynamics, heat conduction and seismology [26, 23, 10,
31]. On the other hand, the multi-term time-fractional operator has been found useful in describing
complex physical and physiological systems [18, 20, 32, 28], Several numerical methods have been
proposed in the last few years for solving fractional order diffusion-wave equations. Fractional order
diffusion equations were shown to provide an adequate and accurate description of these transport
processes, which exhibit anomalous diffusion [21, 29]. However, fractional diffusion operator is a
non-local operator, which generates computational and numerical difficulties that have not been en-
countered in the context of second-order diffusion equations. Jiang et al. [19] used some analytical
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techniques to solve three types of multi-term time-space Caputo Riesz fractional advection diffusion
equations with nonhomogeneous Dirichlet boundary conditions. Li and Xu [15] improved their previ-
ous results and proposed a space–time spectral method for the equation. Reutskiy [25] have applied
a combined method of separating variables and Fourier expansion with backward substitution to
solve a wide class of fractional partial differential equations including diffusion-wave equations,

In recent years operational matrix have been extensively used in different context and emerged
as a potential alternative in the field of numerical solution of partial differential equations. The
operational matrix of integration has been determined for several types of orthogonal polynomials,
such as Chebyshev polynomials [11], Boubaker functions [17], Bernoulli wavelet [16]. Laguerre poly-
nomials [27], Jacobi operational matrix [4]. And Ebadian have applied fractional operational matrix
for solving nonlinear Volterra integro-differential equations [12], Imran Aziz have extended the Haar
wavelet for the numerical solution of two-dimensional nonlinear integral equations [1], Y. Yang in
[30] also developed the Jacobi collocation method to solve the time-fractional diffusion wave equation
and convergence analysis. Khajehnasiri in [14] have applied a triangular functions method for the
solution of 2D nonlinear Volterra-Fredholm integro differential equations, M. H. Heydari [13] utilized
the Hat function method for the time fractional diffusion-wave equation.

As we know, the Walsh Functions (WFs) are a powerful mathematical tool for solving various
kinds of integral equations. V. Balakumar, and K. Murugesan also developed the single term Walsh
series technique to solve the system of volterra integral equation [3], K. Murugesan have extended the
single term Walsh series (STWS) method for the nonlinear volterra integral equations and system
of linear volterra integro-differential equations [5, 6]. R. Chandra Guru Sekar in [7] and A. E.
K. Pushpam in [? ] have applied a STWS method for the solution of system of linear second
order volterra integro differential equations and linear system of stiff delay differential equation,
respectively. Chandra Guru Sekar et al. used STWS method for solving nonlinear delay volterra
integro differential equation [5],

The time fractional diffusion and wave-diffusion equations can be written in the following form:

∂αF (x, t)

∂tα
+

∂F (x, t)

∂t
=

∂2F (x, t)

∂x2
+ r(x, t) (x, t) ∈ [0, 1]× [0, 1], (1.1)

subject to the initial conditions:

f(x, 0) = u0(x),
∂f(x, 0)

∂t
= u1(x), x ∈ [0, 1], (1.2)

and boundary conditions:

F (0, t) = h0(t), F (1, t) = h1(t), t ∈ [0, 1], (1.3)

where x and t are the space and time variables, k is an arbitrary positive constant, which will be
described in the next section, R is a given function in Ω2([0, 1]× [0, 1]) and f0, f1, h0 and h1 are given
functions in Ω2[0, 1], u(x, t) is a sufficiently smooth function, 1 < α ⩽ 2 and is a Caputo fractional
derivative of order α defined as [22]. When 0 < α < 1, equation (3.7) is a fractional diffusion equation
and when 1 < α < 2, equation (3.7) is the time fractional diffusion-wave equation. When α = 1, it
represents a traditional diffusion equation; while if α = 2, it represents a traditional wave equation
[9], also discussed fractional differential equations with multi-orders. However, they only considered
the multi-orders lying in (0, 2) in these papers.

In this paper we intend to extend the application of the single-term Walsh series method to
solve the fractional order diffusion-wave equation. Our main aim is to generalize the Walsh function
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operational matrix to fractional calculus. It is worthy to mention here that, the method based on
using the operational matrix for solving fractional order diffusion-wave equation. The method is
based on reducing the equation to the system of algebraic equation by expanding the solution as
Walsh functions.

In the next section we will define some basic definitions and properties of the fractional integral
and derivative. In the section 3 we will define and some properties of the Walsh function, After which
in ”Applying the method” section we will solve fractional order diffusion-wave equation by using
Walsh functions. We apply this proposed method for some examples of fractional order diffusion-
wave equation. Finally, some concluding remarks are given in ”Conclusion” section.

2. Preliminaries and Basic Definitions

In this section, first we recall essential basic definitions and properties of the fractional integral
and derivative.

Definition 2.1. The Riemann-Liouville fractional integration, for a function z(t), of order α > 0
is given by

Iαx0
z(x) =

1

Γ(α)

∫ x

x0

(x− t)α−1z(t)dt, α > 0, x > 0. (2.1)

The following equations define Riemann-Liouville and Caputo fractional derivatives of order α, re-
spectively:

Dα
x0
z(x) =

dm

dxm
[Im−α

x0
z(x)], (2.2)

Dα
∗x0

z(x) = Im−α
x0

[
dm

dxm
z(x)], (2.3)

where m− 1 ≤ α < m and n ∈ N. From (2.1) and (2.2), we have

Dα
x0
z(x) =

1

Γ(m− α)

dm

dxm

∫ x

x0

(x− t)m−α−1z(t)dt, x > x0 (2.4)

Lemma 2.2. If m− 1 < α ≤ m, m ∈ N, then Dα
∗ I

αz(x) = z(x), and:

IαDα
∗ z(x) = z(x)−

m−1∑
k=0

z(k)(0+)
xk

k!
, x > 0.

3. Definition and properties of Walsh function

A function f(x) integrable in [0, 1), The expansion of f(x) with respect to Walsh series as

f(x) =
∞∑
i=0

fiΨi(x), (3.1)

where Ψi(x) is the ith Walsh function and fi is the corresponding coefficient [24]. In Walsh series
approach, we consider only finite number of terms. Then,

f(x) ≃ F TΨ(x), (3.2)
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where F = [f0, . . . , fm−1]
T and

Ψ(t) = [Ψ1(x),Ψ2(x), . . . ,Ψm−1(x)]
T . (3.3)

The coefficients fi are chosen to minimize the mean integral square error

ε =

∫ 1

0

[
f(x)− F TΨ(x)

]2
dx (3.4)

and are given by

fi =

∫ 1

0

f(x)Ψi(x)dx. (3.5)

It has been proved that ∫ 1

0

f(x)dx = F TΥΨ(x), (3.6)

where Υ is called the operational matrix for integration Walsh series. In Single Term Walsh Series,

Υ =
1

2
[3, 2].

Operational matrix of integration variable t is defined as∫ t

0

Φm(x)dx ∼= Pm×mΦm(t) (3.7)

where Pm×m is called the operational matrix of WFs. This matrix can be expressed as follows

P(m×m) =


O I
1
2

− 2
m
I(m

4
)

. . . − 1
2m

I(m
4
)

2
m
I(m

4
) O(m

4
)

1
2m

I(m
4
) O

(
m
4

)

 (3.8)

We define a set of Walsh functions (WFs) as following formula:

Φm(t) = Wm×mΨm(t), (3.9)

where the Ψi are called the BPFs with unity height and 1/m width. W(m×m) is called the Walsh
matrix. The block-pulse functions are a set of orthogonal functions with piecewise constant value
which are defined in the time interval [0, T1] as

Ψi =

{
1, (i− 1)T1

m
≤ t < iT1

m
,

0, otherwise,

where i = 0, 1, · · · ,m − 1 with m as a positive integer. The following properties of the W matrix
will be considered

W 2
(m×m) = mIm

or

W−1
(m×m) =

1

m
Wm×m. (3.10)

Substituting (3.9) into (3.7), yields∫ t

0

W(m×m)Ψm(t)dt = P(m×m)W(m×m)Ψ(m) (3.11)
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Therefore, ∫ t

0

Ψm(t)dt = W−1
(m×m)P(m×m)W(m×m)Ψ(m) (3.12)

We define the following:
W−1

(m×m)P(m×m)W(m×m) = Υm×m (3.13)

Combining it with (3.10) gives

Υ(m×m) =
1

m
WPW. (3.14)

Evaluation of the similarity transformation yields

Υ(m×m) =
1

m


1
2

1 1 . . . 1
0 1

2
1 . . . 1

...
...

...
. . .

...
0 0 0 . . . 1

2

 , (3.15)

where Υ is a operational matrix of integration for BPFs. Inspecting the Υ matrix, we make the
following decomposition:

Υ(m×m) =
1

m
(
1

2
Im +Q(m×m) +Q2

(m×m) + · · ·+Qm−1
(m×m))

=
1

m

(
1

2
Im +

∞∑
i=1

Qi
(m×m)

)
(3.16)

=
1

m

(
−1

2
Im + (Im −Q(m×m))

−1

)
=

1

2m
(Im +Q(m×m)(Im −Q(m×m)

−1,

where

Q(m×m) =
1

m


0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 0

 . (3.17)

And it is easy to see the following important property:

Qi
(m×m) =

(
O Im−i

O O

)
for i < m, (3.18)

and
Qi

(m×m) = Om for i ≥ m. (3.19)

3.1. Operational Matrix for Differentiation

In this section, we want to derive an exploit formula for walsh function of mth deger operational
matrix of differentiation. Let us denote the operational matrix for differentiation as Υm×m.

Υ−1
(m×m) = 2m(Im +Q(m×m)(Im −Q(m×m)

= 2m(Im − 2Q(m×m) + 2Q2
(m×m) + · · · (−1)m−1Qm−1

(m×m))

= 4m(
1

2
Im +

m−1∑
i=1

(−1)iQi
(m×m)). (3.20)
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Similarly transformating back to the Walsh domain yields the operational matrix for differentiation,
denoted by Dm×m

Dm×m = P−1
m×m =

1

m
Wm×mH

−1
m×mWm×m. (3.21)

In general, the formula is

D(m×m) = 2m


O(m

2
) I(m

2
)

m −4Im
8

. . . − 1
2m

I(m
4
)

−I(m
2
) 4I(m

8
) O(m

4
)

2I(m
4
) O

(
m
4

)

 . (3.22)

From (3.20) the eigenvalue, h−1, of matrix Υ−1
(m×m) can be expressed as the eigenvalue, q, of Q(m×m)

b = 4m(
1

2
+

m−1∑
i=1

(−1)iqi) (3.23)

b = 2m
1− q

1 + q
(3.24)

3.2. Operational Matrices for Fractional Differentiation

Now we try to find the operational matrix for fractional differentiation. The general form of
(3.24) could be written as follows:

bα =

(
2m

1− q

1 + q

)α

(3.25)

Equation (3.25) can be developed into polynomial of q and terminated at qm−1. As the result, Eq.
(3.25) becomes

bα = (2m)αΛl,m(q) (3.26)

where Λl,m is the polynomial of order m− 1 for α differentiation. Thus the operational matrix for α
differentiation from (3.20) is given by

Bα
(m×m) = (2m)αΛl,m(Q(m×m)) (3.27)

In the Walsh domain, the corresponding α differentiation operational matrix is

Dα
(m×m) = (2m)αW−1

(m×m)Λl,m(Q(m×m))W(m×m) (3.28)

3.3. Operational Matrices for Fractional Integration

We rewrite (3.16) by expressing Υ(m×m) as a polynomial of Q(m×m)

Υ(m×m) = hm(Qm×m) (3.29)

where

hm(x) =
1

m
(
1

2
+ x+ x2 + · · ·+ xm−1) (3.30)

If q is an eigenvalue of Qm×m, it is known (3.19) that corresponding eigenvalue for Υ(m×m) is

h = hm(q) =
1

2m

1 + q

1− q
. (3.31)
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Therefore, we state that the eigenvalues of Υm×m is 1/2m with multiplicity m. For finding the
operational matrix of fractional integration, we can use the reasoning similar to the fractional differ-
entiation case. Generalizing (3.31), yields

h =

[
1− q

2m(1 + q)

]α
= (

1

2m
ρl,m(q))

α (3.32)

where ρl,m is the polynomial of orderm−1 for α integration. The operational matrix for α-integration
in terms of the BPF is given by

Υα
(m×m) =

1

(2m)α
ρl,m(Qm×m) (3.33)

and the corresponding α-integration operational matrix in the Walsh domain is easily found as

Pα
(m×m) =

1

(2m)α
W−1

(m×m)ρl,m(Q(m×m))W(m×m)

=
1

m(2m)α
W(m×m)ρl,m(Q(m×m))W(m×m), (3.34)

Therefore, we have the following nonlinear system.

(IαΦ)(t) = Pα
m×mΦ(t) (3.35)

4. Applying the method

In this section we solve time fractional diffusion-wave equation with damping by using the frac-
tional Walsh operational matrix of intergration

∂αf(x, t)

∂tα
+

∂f(x, t)

∂t
=

∂2f(x, t)

∂x2
+ r(x, t), (4.1)

(x, t) ∈ [0, 1]× [0, 1], 1 < α ≤ 2,

with initial conditions

f(x, 0) = u0(x),
∂f(x, 0)

∂t
= u1(x), x ∈ [0, 1], (4.2)

and boundary conditions:

f(0, t) = h0(t), f(1, t) = h1(t), t ∈ [0, 1].

In order to use the WFs with the fractional operational matrix for solving this equation, by applying
the Riemann-Liouville fractional integration of order α with respect to t on both sides of (4.1), and
using the initial conditions (4.2), we obtain:

f(x, t)− w(x, t) + (Iα−1
t f)(x, t) =

(
Iαt

∂2f

∂x2

)
(x, t) + (Iαt r)(x, t), (4.3)

where w(x, t) = u0(x) + tu1(x)−
tα−1

Γ(α)
u0(x). Now we approximate ∂2f(x,t)

∂x2 by the WFs as follows:

∂2f(x, t)

∂x2
≃ Φ(x)TFΦ(t), (4.4)
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where F = [uij]m̂×m̂ is an unknown matrix which should be found and Φ(.) is the WFs vector that
was defined in (3.3). Moreover, by integrating (4.4) two times with respect to x, we have

f(x, t) ≃ f(0, t) + x

(
∂f(x, t)

∂x

∣∣∣∣
x=0

)
+ Φ(x)T (P T )2FΦ(t), (4.5)

and by putting x = 1 in (4.4) and considering the boundary conditions (4.2). we obtain:

∂f(x, t)

∂x

∣∣∣∣
x=0

≃ h1(t)− h0(t)− Φ(1)T (P T )2FΦ(t). (4.6)

We also expand h0(t) and h1(t) by the WFs as follows:

h0(t) ≃ HT
0 Φ(t), h1(t) ≃ HT

1 Φ(t), (4.7)

where H0 and H1 are the WFs coefficient vectors. by substituting (4.7) into (4.6), we obtain:

∂f(x, t)

∂x

∣∣∣∣
x=0

≃ (HT
1 −HT

0 − Φ(1)T (P T )2F )Φ(t),

≜ F̃ TΦ(t). (4.8)

Now by substituting (4.8) into (4.5), we have:

f(x, t) ≃ Φ(x)T [KHT
0 +XF̃ T + (P T )2F ]Φ(t),

≜ Φ(x)TΘΦ(t), (4.9)

where X and K are the WFs coefficient vectors for x and the unit step function, respectively.
Furthermore, we expand w(x, t) and r(x, t) by the WFs as follows:

w(x, t) ≃ Φ(x)TWΦ(t), r(x, t) ≃ Φ(x)TRΦ(t), (4.10)

where W and R are the known WFs coefficient matrices for w(x, t) and r(x, t), respectively. Then by
substituting (4.4), (4.9) and (4.10) into (4.3), and using fractional operational matrix of integration
of WFs, we have:

Φ(x)T [Θ + ΘP (α−1) − FPα]Φ(t) ≃ Φ(x)T [W +RPα]Φ(t),

so, by replacing ≃ by =, we have

Θ + ΘP (α−1) − FPα = W +QPα.

Finally, by solving this system for the unknown matrix U , we obtain an approximate solution for the
problem using (4.9). The algorithm of the proposed method is presented as follows:

5. Numerical examples

In order to reveal the effectiveness of proposed method, two fractional diffusion equations are
solved. Walsh function is utilized to approximate the unknown functions computations. As uptill now
there is a few alternative numerical method for these types of fractional diffusion equations, Also we
report the absolute errors of the proposed computational method in some points (xj, tj) ∈ [0, 1]×[0, 1]
as follows | e(xj, tj) |=| Φ(xj)

TΛΦ(ttj)− f(xj, tj) |.
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Table 1: Results for Example 1

m = 20 n = 20

x = t α = 1.2 α = 1.4 α = 1.6 α = 1.8
0.0 3.502E-7 2.258E-5 4.357E-4 4.458E-6
0.1 5.564E-7 5.213E-5 4.157E-4 5.115E-6
0.2 3.159E-7 2.369E-5 1.241E-4 7.254E-6
0.3 8.478E-7 7.258E-5 2.259E-5 4.418E-6
0.4 4.321E-7 6.534E-5 2.367E-5 2.548E-7
0.5 4.212E-7 3.312E-6 2.457E-5 6.040E-7
0.6 3.954E-7 4.125E-6 2.107E-5 2.008E-7
0.7 1.874E-8 9.219E-6 2.441E-6 7.428E-7
0.8 5.257E-8 4.985E-6 2.417E-6 8.782E-8
0.9 6.210E-8 3.457E-6 7.858E-6 6.217E-8

Example 5.1. Consider the following fractional diffusion-wave equation given in [8]

∂αf(x, t)

∂tα
+

∂f(x, t)

∂t
=

∂2f(x, t)

∂x2
+

6t3−α

Γ(4− α)
ex + 3t2ex − t3ex

(x, t) ∈ [0, 1]× [0, 1], 1 < α ≤ 2,

subject to the initial conditions

f(x, 0) = 0,
∂f(x, 0)

∂t
= 0,

and boundary conditions:
f(0, t) = t3, f(1, t) = et3.

The exact solution is known and given by f(x, t) = ext3. To solve this example, we implement the
WFs method for α = 1.2, α = 1.4, α = 1.6 and α = 1.8. Numerical results is presented in Table (1).

Example 5.2. The following fractional diffusion-wave equation with damping is considered [8]

∂αf(x, t)

∂tα
+

∂f(x, t)

∂t
=

∂2f(x, t)

∂x2
+

2x(1− x)

Γ(3− α)
tα + 2tx(1− x) + 2t2.,

(x, t) ∈ [0, 1]× [0, 1], 1 < α ≤ 2,

subject to the homogenous initial and boundary conditions, The exact solution of this problem is
f(x, t) = t2x(1 − x). To solve this example, we implement the WFs method for α = 1.2, α = 1.4,
α = 1.6 and α = 1.8. Numerical results is presented in Table (2).

6. Conclusion

The purpose of this article is to extend a Walsh Functions for obtaining the approximate solution
of Fractional diffusion equations. Frits, the Walsh Function fractional operational matrix of differ-
entiation and integration has been presented. Then by using this matrix, the Fractional diffusion
equations has been reduced to an algebraic system. The benefits of this method are the low cost
of setting up the equations without applying any projection method such as collocation, Galerkin,
etc. For more investigation, two example have been presented. As the numerical results showed the
proposed are an effective and accuracy.
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Table 2: Results for Example 2

m = 15 n = 15

x = t α = 1.2 α = 1.4 α = 1.6 α = 1.8
0.0 4.145E-6 4.251E-5 2.770E-6 5.029E-6
0.1 5.417E-6 5.741E-5 3.548E-6 4.589E-6
0.2 7.714E-6 7.021E-5 2.355E-6 2.650E-6
0.3 5.015E-6 6.741E-5 7.709E-6 9.148E-7
0.4 6.450E-6 3.213E-5 4.157E-6 2.254E-7
0.5 2.488E-6 9.025E-5 9.354E-6 4.956E-7
0.6 1.752E-6 1.852E-5 6.741E-6 9.451E-7
0.7 6.145E-7 4.254E-6 2.834E-7 6.659E-8
0.8 5.145E-7 6.025E-6 1.415E-7 3.041E-8
0.9 9.015E-7 3.268E-6 8.623E-7 3.240E-8
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Figure 2: Comparison the exact solution and the presented method for Example 2.
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