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Abstract

In this paper, we consider some nonlinear contraction for set-valued operators and prove some
fixed point results in the case of set-valued operators are ordered-close and not ordered-close, and
in the case of set-valued operators are UCAV (LCAV) in quasi-ordered PM -spaces. Moreover, we
present two examples and an application to show the validity of the main theorems.
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1. Introduction and preliminaries

The investigation of contractivity on PM -spaces was initiated in 1966 by Sehgal [14]. The fixed
point theorems in PM -spaces are important because they suggest a significant instrumentation to
solve random equations. Hence, some of probabilistic contractions have been defined in [6, 7, 8], and
references contained therein.

In 2009, Ćirić et al. [5] obtained several fixed point theorems in PM -spaces equipped with a
quasi-order. After that, several fixed point results in quasi-ordered PM -spaces were investigated in
[3, 4, 9, 10, 12, 13] and references contained therein. In 2014, Wu [16] proved the following theorem
for the single-valued operator in a PM -space.
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Theorem 1.1. [16] Let (X ,F , T ,⪯) be a complete PM-space provided with a partial order “ ⪯ ”
on X , G : X −→ X be a single-valued operator and Φ be all of the functions φ : [0,+∞) −→ [0,+∞)
such that φ(i) < i and limn→∞φn(i) = 0 for all i > 0. Assume that the following properties are held:

H1) There exists x ∈ X provided that x ⪯ Gx;

H2) For every x, y ∈ X with x ⪯ y, φ ∈ Φ: FGx,Gy(φ(t)) ≥ min{FGx,x(t),Fx,y(t),FGy,y(t)};

H3) If {xn} a non-decreasing monotone convergent sequence to x∗, then xn ⪯ x∗ for each n.

Then G have a fixed point x∗ in X .

In this paper, some nonlinear contractions for set-valued operators are considered and several fixed
point results in the case of are ordered-close and are not ordered-close in PM -spaces provided with a
quasi-order are proven. Moreover, we prepare several fixed point results for UCAV (LCAV) operators
satisfying some set-valued contractions in quasi-ordered PM -spaces. To motivate this study, two
illustrative examples and an application are considered.

In the following, we give some preliminary definitions which are needed. Throughout this paper,
we denote CB(X ) for the collection of every nonempty closed and bounded subsets of X and denote
N(X ) for the collection of every nonempty subsets of X .

Definition 1.2. [11] Consider a quasi-ordered set (X ,⪯) with two nonempty subsets A and B of
N(X ). The relation between A and B is considered as follow:

(r1) If for all a ∈ A, there is b ∈ B provided that a ⪯ b, then A ⊑1 B.

(r2) If for all b ∈ B, there is a ∈ A provided that a ⪯ b, then A ⊑2 B.

(r3) If A ⊑1 B and A ⊑2 B, then A ⊑ B.

Definition 1.3. [2] Consider a ordered set (X ,⪯) with {xn} ⊂ X provided that · · · ⪯ xn ⪯ · · · ⪯
x2 ⪯ x1 or x1 ⪯ x2 ⪯ · · · ⪯ xn ⪯ · · ·. Then {xn} is called a monotone sequence.

About definitions such as distribution function, triangular norm (abbreviated, t-norm), H-type
(Hadzić type)t-norm and etc, one can refer to [5, 8] and their references therein. Also, D+ is
considered for the set of every Menger distance distribution functions.

Definition 1.4. [8] Let X be a nonempty set, T be a continuous t-norm and F : X × X → D+ be
a mapping such that

(PM1) Fx,y(t) = 1 for all t > 0 iff x = y,

(PM2) Fx,y(t) = Fy,x(t) for every x, y ∈ X and t > 0,

(PM3) Fx,z(t+ s) ≥ T (Fx,y(t),Fy,z(s)) for every x, y, z ∈ X and t, s ≥ 0.

Then (X ,F , T ) is a Menger PM-space.

Definition 1.5. [8] Consider a PM-space (X ,F , T ). For every A ⊂ X and x ∈ X , Fx,A(t) =
supp∈AFp,x(t) is the distance between a point and a set in PM-space.

About the definitions of convergent, Cauchy sequence, and etc, one can refer to [8].
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Lemma 1.6. [16] Assume n ≥ 1, F ∈ D+, φ ∈ Φ, g1, g2, ..., gn : R −→ [0, 1] and

F(φ(t)) ≥ min{g1(t), g2(t), ..., gn(t),F(t)}.

Then F(φ(t)) ≥ min{g1(t), g2(t), ..., gn(t)} for every t ≥ 0.

Lemma 1.7. [16] Consider a PM-space (X ,F , T ). If Fp,q(φ(t)) = Fp,q(t) for every t > 0, where
φ ∈ Φ. Then p = q.

Definition 1.8. The set-valued operator G : X → CB(X ) is called ordered-close if for two mono-
tone sequences {xn} , {yn} ⊂ X and x0, y0 ∈ X ; xn → x0, yn → y0 and yn ∈ G(xn) imply y0 ∈ G(x0).

2. Results on ordered-close and non ordered-close set-valued operators in PM -spaces

Here, we first establish several fixed point results for ordered-close and non ordered-close set-
valued operators.

Theorem 2.1. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is an ordered-close
set-valued operator. Further, assume that

(H1) for every x ∈ X , there is y ∈ Gx provided that x ⪯ y;

(H2) for every x, y ∈ X with x ⪯ y, u ∈ Gx and v ∈ Gy:

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)}.

Then G have a fixed point x∗ in X .

Proof . Select x0 ∈ X . If x0 ∈ Gx0, then the proof is complete. Otherwise, there is x1 ∈ Gx0 with
x0 ̸= x1 and x0 ⪯ x1. Also, for x1 ∈ X , there exists x2 ∈ Gx1 with x1 ̸= x2 and x1 ⪯ x2. Continue
this process, we obtain a non-decreasing sequence {xn}, where xn ∈ Gxn−1 and xn−1 ⪯ xn. By the
condition (H2), we have

Fxn,xn+1(φ(t)) ≥ min{Fxn,xn−1(t),Fxn−1,xn(t),Fxn+1,xn(t)}.

Then Fxn,xn+1(φ(t)) ≥ Fxn−1,xn(t) for all t > 0. Hence, we obtain

Fxn,xn+1(φ
2(t)) ≥ Fxn−1,xn(φ(t)) ≥ Fxn−2,xn−1(t)

for every t > 0. Thus, Fxn,xn+1(φ
n(t)) ≥ Fx1,x0(t) for all t > 0. Since limt−→∞Fx1,x0(t) = 1, there is

a t0 so that Fx1,x0(t0) > 1− ε for δ > 0 and ε ∈ (0, 1). Also, by limn→∞φn(t) = 0, there is a N0 ∈ N
provided that φn(t0) < δ for n > N0. Thus, we obtain

Fxn,xn+1(δ) ≥ Fxn,xn+1(φ
n(t0)) ≥ Fx1,x0(t0) > 1− ε

for n > N0, that’s mean limn→∞Fxn+1,xn(t) = 1. Next, we should show that for every δ > 0 and
ε ∈ (0, 1), there exists N(ε, δ) provided that for all m > n > N(δ, ε), we have Fxn,xm(δ) > 1 − ε.
Firstly, we show the inequality

Fxn+k,xn(δ) ≥ T k(Fxn+1,xn(δ − φ(δ))) (2.1)
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for every k ≥ 1 is established by induction. For k = 1, we have

Fxn,xn+1(δ) ≥ (Fxn+1,xn(δ − φ(δ)))

= T (Fxn+1,xn(δ − φ(δ)), 1)

≥ T
(
Fxn+1,xn(δ − φ(δ)),Fxn+1,xn(δ − φ(δ))

)
= T 1(Fxn+1,xn(δ − φ(δ))).

Hence, (2.1) holds for k = 1. Assume that (2.1) is held for 1 ≤ k ≤ p. If k = p+ 1, then

Fxn+p+1,xn(δ) ≥ T
(
Fxn+1,xn(δ − φ(δ)),Fxn+1,xn+p+1(φ(δ))

)
. (2.2)

By (H2) and by contradiction we show that Fxn+1,xn+2(δ) ≥ Fxn,xn+1(δ). Thus, Fxn+p+1,xn+p(δ) ≥
Fxn,xn+1(δ). Therefore,

Fxn+1,xn+p+1

(
φ(δ)

)
≥ min{Fxn,xn+1(δ),Fxn,xn+p(δ),Fxn+p,xn+p+1(δ)} (2.3)

= min{Fxn,xn+1(δ),Fxn,xn+p(δ)}

≥ min
{
Fxn,xn+1(δ − φ(δ)), T p(Fxn,xn+1(δ − φ(δ)))

}
= T p

(
Fxn,xn+1(δ − ϕ(δ))

)
.

By (2.2) and (2.3), we obtain

Fxn+p+1,xn(δ) ≥ T
(
Fxn,xn+1(δ − φ(δ)), T p(Fxn,xn+1(δ − φ(δ)))

)
= T p+1

(
Fxn,xn+1(δ − φ(δ))

)
.

Thus, (2.1) is held. Also, since t-norm T is H-type, for a selective ε ∈ (0, 1), there is λ ∈ (0, 1) so
that for all n ≥ 1, T n(t) > 1 − ε when t > 1 − λ. By limn→∞Fxn,xn+1(δ − φ(δ)) = 1, there exists a
N1(ε, δ) so that Fxn,xn+1(δ − φ(δ)) > 1− λ for each n > N1(ε, δ). Therefore,

Fxn+k,xn(δ) ≥ T k(Fxn+1,xn(δ − φ(δ))) ≥ T k(1− λ) ≥ 1− ε

for all k ≥ 1. So the sequence {xn} is a Cauchy sequence in X . Due to the completeness of X ,
there is x∗ ∈ X provided that limn→∞xn = x∗. Since G is ordered-closed, {xn} is monotone and
xn+1 ∈ Gxn, we deduce x∗ ∈ Gx∗ and x∗ is a fixed point of G. □

Theorem 2.2. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is an ordered-close
set-valued operator. Further, assume that

(H1) for every x ∈ X , there is y ∈ G(x) provided that y ⪯ x;

(H2) for every x, y ∈ X with y ⪯ x, u ∈ G(x) and v ∈ G(y):

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)}.

Then G have a fixed point x∗ in X .
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Proof . Select x0 ∈ X . If x0 ∈ Gx0, then the proof is complete. Otherwise, there is x1 ∈ Gx0

with x0 ̸= x1 and x1 ⪯ x0. Also, for x1 ∈ X , there exists x2 ∈ Gx1 with x1 ̸= x2 and x2 ⪯ x1.
Continue this process, we have a non-increasing sequence {xn}, where xn ∈ Gxn−1 and xn ⪯ xn−1.
The continue of the proof as is the same similar to the proof of previous theorem. □

Theorem 2.3. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is a set-valued operator.
Further, assume that

(H1) for every x ∈ X , there is y ∈ G(x) provided that x ⪯ y;

(H2) for every x, y ∈ X with x ⪯ y, u ∈ G(x) and v ∈ G(y):

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)};

(H3) if {xn} is a non-decreasing monotone sequence convergent to x∗, then xn ⪯ x∗ for each n.

Then G have a fixed point x∗ in X .

Proof . Select x0 ∈ X . If x0 ∈ Gx0, then the proof is complete. Otherwise, there is x1 ∈ Gx0 with
x0 ̸= x1 and x0 ⪯ x1. Also, for x1 ∈ X , there exists x2 ∈ Gx1 with x1 ̸= x2 and x1 ⪯ x2. Continue
this process, we obtain a non-decreasing sequence {xn}, where xn ∈ Gxn−1 and xn−1 ⪯ xn. As in
the proof of Theorem 2.1 one can show {xn} is convergent to x∗. Then, by (H3), xn ⪯ x∗ for all n.
By (H2), for each y ∈ Gx∗, we have

Fxn+1,y(φ(t)) ≥ min{Fxn,xn+1(t),Fx∗,y(t),Fxn,x∗(t)}.

Letting n → ∞, we obtain Fx∗,y(φ(t)) ≥ Fx∗,y(t). From Lemma 1.7, we get y = x∗ and x∗ ∈ Gx∗.
Therefore, G have a fixed point in X . □

Corollary 2.4. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is a set-valued operator.
Further, assume that

(H1) for every x ∈ X and for each y ∈ G(x), we have x ⪯ y;

(H2) for every x, y ∈ X with x ⪯ y, u ∈ G(x) and v ∈ G(y):

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)};

(H3) if {xn} is a non-decreasing monotone sequence convergent to x∗, then xn ⪯ x∗ for all n.

Then there is x∗ ∈ X so that Gx∗ = {x∗}.

Theorem 2.5. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is a set-valued operator.
Further, assume that

(H1) for each x ∈ X , there is y ∈ G(x) provided that y ⪯ x;
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(H2) for every x, y ∈ X with y ⪯ x, u ∈ G(x) and v ∈ G(y):

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)};

(H3) If {xn} is a non-increasing monotone sequence convergent to x∗, then x∗ ⪯ xn for all n.

Then G have a fixed point x∗ in X .

Proof . Consider x0 ∈ X . If x0 ∈ Gx0, then the proof is complete. Otherwise, there is x1 ∈ Gx0

with x0 ̸= x1 and x0 ⪰ x1. Also, for x1 ∈ X , there exists x2 ∈ Gx1 with x1 ̸= x2 and x1 ⪰ x2.
Continue this process, we have a non-increasing sequence {xn}, where xn ∈ Gxn−1 and xn−1 ⪰ xn.
Similar to proof of Theorem 2.2 one can show {xn} is convergent to x∗. Then, by (H3), xn ⪰ x∗ for
all n. By (H2), for each y ∈ Gx∗, we have

Fxn+1,y(φ(t)) ≥ min{Fxn,xn+1(t),Fx∗,y(t),Fxn,x∗(t)}.

Letting n → ∞, we have Fx∗,y(φ(t)) ≥ Fx∗,y(t). From Lemma 1.7 we have y = x∗ and x∗ ∈ Gx∗.
Therefore, G has a fixed point in X . □

Corollary 2.6. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is a set-valued operator.
Further, assume that

(H1) for every x ∈ X and for each y ∈ G(x), we have y ⪯ x;

(H2) for every x, y ∈ X with y ⪯ x, u ∈ G(x) and v ∈ G(y):

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)};

(H3) If {xn} is a non-increasing monotone sequence in X and convergent to x∗, then x∗ ⪯ xn for
each n.

Then there is x∗ ∈ X so that Gx∗ = {x∗}.

Theorem 2.7. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is an ordered-close
set-valued operator. Further, assume that

(H1) for each x, y ∈ X with x ⪯ y, we have Gx ⊑1 Gy;

(H2) there is x0 ∈ X such that {x0} ⊑1 Gx0;

(H3) for every x, y ∈ X with x ⪯ y, u ∈ G(x) and v ∈ G(y):

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)}.

Then G have a fixed point x∗ in X .

Proof . From (H2), there exists x1 ∈ Gx0 such that x0 ⪯ x1. This implies that Gx0 ⊑1 Gx1 by
(H1). By definition 1.2, there is x2 ∈ Gx1 provided that x1 ⪯ x2. Continue this procedure, we have
a non-decreasing sequence {xn} so that xn ∈ Gxn−1. Similar to the proof of Theorem 2.1, x∗ is a
fixed point of G. □
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Theorem 2.8. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is an ordered-close
set-valued operator. Further, assume that

(H1) for every x, y ∈ X with x ⪯ y, we have Gx ⊑2 Gy;

(H2) there is x0 ∈ X so that Gx0 ⊑2 {x0};

(H3) for each x, y ∈ X with y ⪯ x, u ∈ G(x) and v ∈ G(y):

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)}.

Then G have a fixed point x∗ in X .

Proof . The proof is analogously the proof of Theorem 2.7. □

Theorem 2.9. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is a set-valued operator.
Further, assume that

(H1) for all x, y ∈ X with x ⪯ y, we have Gx ⊑1 Gy;

(H2) there is x0 ∈ X such that {x0} ⊑1 Gx0;

(H3) for every x, y ∈ X with x ⪯ y, u ∈ G(x) and v ∈ G(y):

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)};

(H4) if {xn} is a non-decreasing monotone sequence convergent to x∗, then xn ⪯ x∗ for each n.

Then G have a fixed point x∗ in X .

Proof . From (H2), there is x1 ∈ Gx0 such that x0 ⪯ x1. This implies that Gx0 ⊑1 Gx1 by (H1).
By Definition 1.2, there is x2 ∈ Gx1 such that x1 ⪯ x2. Continue this procedure, we have a non-
decreasing sequence {xn} such that xn ∈ Gxn−1. The rest of the proof is in the like manner given in
Theorem 2.3. □

Theorem 2.10. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is a set-valued operator.
Further, assume that

(H1) for every x, y ∈ X with x ⪯ y, we have Gx ⊑2 Gy;

(H2) there is x0 ∈ X such that Gx0 ⊑2 {x0};

(H3) for every x, y ∈ X with x ⪯ y, u ∈ G(x) and v ∈ G(y):

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)};

(H4) if {xn} is a non-increasing monotone sequence in X and convergent to x∗, then x∗ ⪯ xn for
each n.

Then G have a fixed point x∗ in X .
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Proof . The proof is like the proof of Theorem 2.9. □

Example 2.11. Suppose X = R+, “ ⪯ ” is a quasi-order on X , T (a, b) = min{a, b} for every
a, b ∈ [0, 1] and

Fx,y(t) =

{
1, x = y

1
exp(t)

, x ̸= y

Then (X ,F , T ) is a quasi-ordered complete PM-space provided with the quasi-order “ ⪯ ”. Also,
consider φ(t) = t

2
for t ≥ 0 and define G : X → CB(X ) by G(x) = [0, 3x]. Thus G is satisfied in

condition (H1) of Theorem 2.1. Now, for each x, y ∈ X with x ̸= y and for each u ∈ Gx and v ∈ Gy
with u ̸= v, we have

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)}.
Therefore, Theorem 2.1 implies that G have a fixed point in R+.

3. Results on set-valued operators in quasi-ordered PM -spaces

In this section, we give several fixed point results for set-valued contractive operators in quasi-
ordered PM -space, where quasi-order is a reflexive and transitive relation.

Definition 3.1. Consider a PM-space (X ,F , T ) provided with a quasi-order “ ⪯ ” on X .
(i) A subset D ⊂ X is approximative, when the set-valued operator Px,D(t) = {p ∈ D : Fx,D(t) =

Fp,x(t)} for every x ∈ X has nonempty value.
(ii) The operator G : X −→ CB(X ) is approximative valued (briefly, AV), if Gx is approximative

for every x ∈ X .
(iii) The operator G : X −→ CB(X ) is comparable approximative valued (briefly, CAV), if Gx

has approximative values for every x ∈ X , and there is y ∈ Px,Gz(t) provided that y is comparable to
z for every z ∈ X .

(iv) The operator G : X −→ CB(X ) is upper comparable approximative valued (briefly, UCAV)
[resp. lower comparable approximative values, (briefly, LCAV)] if Gx has approximative values, and
there is y ∈ Px,Gz(t) provided that y ⪰ z (resp. y ⪯ z) for every z ∈ X .

Theorem 3.2. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is a set-valued operator,
where has UCAV. Further, assume that

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)}

for every x, y ∈ X with x ⪯ y, u ∈ Gx and v ∈ Gy. Then G have a fixed point x∗ in X .

Proof . Consider x0 ∈ X . If x0 ∈ Gx0, then the proof is complete. Otherwise, since Gx0 has
UCAV, there is x1 ∈ Gx0 with x0 ̸= x1 and x0 ⪯ x1 so that Fx0,x1(t) = Fx0,Gx0(t) and there is
x2 ∈ Gx1 with x2 ̸= x1 and x1 ⪯ x2 so that Fx1,x2(t) = Fx1,Gx1(t). Continue this procedure, we
obtain a non-decreasing sequence {xn}, where xn ∈ Gxn−1 and xn−1 ⪯ xn. Analogous the proof of
the Theorem 2.1, one can show G have a fixed point x∗ in X . □

Theorem 3.3. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is a set-valued operator,
where has LCAV. Further, assume that

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)}

for every x, y ∈ X with x ⪯ y, u ∈ Gx and v ∈ Gy. Then G have a fixed point x∗ in X .
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Proof . Consider x0 ∈ X . If x0 ∈ Gx0, then the proof is complete. Otherwise, since Gx0 has LCAV,
there is x1 ∈ Gx0 with x0 ̸= x1 and x1 ⪯ x0 so that Fx0,x1(t) = Fx0,Gx0(t) and there is x2 ∈ Gx1

with x2 ̸= x1 and x2 ⪯ x1 so that Fx1,x2(t) = Fx1,Gx1(t). Continue this procedure, we obtain a non-
increasing sequence {xn}, where xn ∈ Gxn−1 and xn ⪯ xn−1. Analogous the proof of the Theorem
2.2, one can show G have a fixed point x∗ in X . □

Theorem 3.4. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is a set-valued operator,
where has AV. Further, assume that x0 ∈ X so that {x0} ⊑ Gx0 and

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)}

for every x, y ∈ X with x ⪯ y, u ∈ Gx and v ∈ Gy. Then G have a fixed point x∗ in X .

Proof . If x0 ∈ Gx0, then the proof ends. Otherwise, for any x ∈ Gx0 one has that x ⪰ x0.
Since G has approximative values, there exists x1 ∈ Gx0 with x0 ⪯ x1 and Fx0,x1(t) = Fx0,Gx0(t).
Continue the procedure of constructing xn inductively. Then there is xn ∈ Gxn−1 with xn ̸= xn−1

and xn−1 ⪯ xn. The rest of the proof is like manner given in Theorem 3.2. □

Theorem 3.5. Suppose that (X ,F , T ) is a complete PM-space provided with a quasi-order “ ⪯ ”.
Also, suppose that T is a Hadzić-type t-norm, φ ∈ Φ and G : X −→ CB(X ) is a set-valued operator,
where has AV. Further, assume that x0 ∈ X so that Gx0 ⊑ {x0} and

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)}

for every x, y ∈ X with x ⪯ y, u ∈ Gx and v ∈ Gy. Then G have a fixed point x∗ in X .

Proof . If x0 ∈ Gx0, then the proof ends. Otherwise, for any x ∈ Gx0 one has that x0 ⪰ x. Since
G has approximative values, there is x1 ∈ Gx0 with x1 ⪯ x0 and Fx0,x1(t) = Fx0,Gx0(t). Continue
the procedure of constructing xn inductively. Then there exists xn ∈ Gxn−1 with xn ̸= xn−1 and
xn ⪯ xn−1. The rest of the proof is like manner given in Theorem 3.3. □

Example 3.6. Suppose X = R+, “ ⪯ ” is a quasi-order on X , T (a, b) = min{a, b} for all a, b ∈ [0, 1]
and

Fx,y(t) =

{
1, if d(x, y) < t and t > 0
0, if d(x, y) ≥ t or t ≤ 0

Then (X ,F , T ) is a complete PM-space provided with the quasi-order “ ⪯ ”. Also, consider φ(t) = t
2

for t ≥ 0 and define G : X → CB(X ) by G(x) = [0, 3x]. Thus G is satisfied in condition (H1) of
Theorem 2.1. Now, for each x, y ∈ X with x ̸= y and for each u ∈ Gx and v ∈ Gy with u ̸= v, we
have

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)}.

Therefore, Theorem 2.1 implies that G have a fixed point in R+.
Also, φ(t) = t

2
for t ≥ 0 and G : X → CB(X ) be defined by G(x) = [0, 3x]. Since for each x0 ∈ X

there exist x1 ∈ [0, 3x0] provided that Fx0,x1(t) = Fx0,Gx0(t) and x0 ⪯ x1, then G is UCAV. Now, for
each x, y ∈ X with x ̸= y and for each u ∈ Gx and v ∈ Gy with u ̸= v, we have

Fu,v(φ(t)) ≥ min{Fu,x(t),Fx,y(t),Fv,y(t)}.

Therefore, Theorem 3.2 implies that G have a fixed point in R+.
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4. Application

Here, by Theorem 2.1, we establish the existence of a solution for the following Volterra type
integral equation.

y(u) =

∫ u

0

M(u, v, y(v))dv + g(u) (u ∈ I) (4.1)

for all u ∈ I = [0, a], where a > 0 and [0, a] is a real interval.
First, we introduce the mathematical background (see also [1, 13]). Suppose C(I,R) is the Banach

space of whole real continuous functions considered on I with two norms
(i) maximum norm ||y||∞ for y ∈ C(I,R)
(ii) Bielecki norm ||y||B = maxu∈I(|y(u)|e−Lu) for all y ∈ C(I,R) and L > 0 which induces a metric
dB(x, y) = ||x− y||B for all x, y ∈ C(I,R) (see [1]).

Also, assume C(I × I × C(I,R),R) is the space of whole continuous functions considered on
I×I×C(I,R). Now, consider the mapping F : C(I,R)×C(I,R) → D+ with Fx,y(t) = χ(t−dB(x, y))
for every x, y ∈ C(I,R) and t > 0, where

χ(t) =

{
0 if t ≤ 0,
1 if t > 0.

The space (C(I,R),F , T ) with T (a, b) = min{a, b} is a complete PM -space ([15, Theorem 3]).
Note that the convergence in both norms ||.||∞ and ||.||B are equivalent in this spaces. Also, we define
quasi-order “ ⪯ ” on C(I,R) by x ⪯ y iff ||x||∞ ≤ ||y||∞ for all x, y ∈ C(I,R). Now, (C(I,R),F , T , )
is a complete PM -space provided with the quasi-order “ ⪯ ”.

Define f : C(I,R) → C(I,R) by

fy(u) =

∫ u

0

M(u, v, y(v))dv + g(u) g ∈ C(I,R).

Theorem 4.1. Let (C(I,R),F , T ,⪯) be the quasi-ordered complete PM-space, G : C(I,R) →
CB(C(I,R)) be a set-valued operator such that G(y) = {fy(u)} and M ∈ C(I × I × R,R) be
an operator. Suppose that

(i) ||M ||∞ = supu,v∈I, y∈C(I,R) |M(u, v, y(v))| < ∞;

(ii) for every x, y ∈ C(I,R) and every u, v ∈ I, there is L > 0 provided that

||M(u, v, fx(v))−M(u, v, fy(v))|| ≤ Lmax{|x(v)− y(v)|, |x(v)− fx(v)|, |y(v)− fy(v)|}.

Then 4.1 have a solution in C(I,R).

Proof . consider dB(x, y) = maxu∈I(|x(u)−y(u)|e−Lu) for x, y ∈ C(I,R), where L satisfies condition
(ii). Also, by definition of G, we get t = fx and s = fy for all t ∈ Gx and s ∈ Gy. Thus, we conclude

dB(fx, fy) ≤ max
u∈I

∫ u

0

|M(u, v, x(u))−M(u, v, y(v))|eL(v−u)e−Lvdv

≤ Lmax{dB(x, y), dB(x, fx), dB(y, fy)}max
u∈I

∫ u

0

eL(v−u)dv

≤ (1− e−aL)max{dB(x, y), dB(x, fx), dB(y, fy)}.
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for every x, y ∈ C(I,R). Now, set k = (1 − e−La) and φ(r) = kr that φ ∈ Φ. Now, for each r > 0,
we obtain

Ft,sφ(r) = Ffx,fyφ(r) = χ(kr − dB(fx, fy)) = χ(r − 1

k
dB(fx, fy))

≥ χ(r −max{dB(x, y), dB(x, fx), dB(y, fy)})
= min{χ(r − dB(x, y)), χ(r − dB(x, fx)), χ(r − dB(y, fy))}
= min{Fx,y(r),Fx,fx(r),Fy,fy(r)}
= min{Fx,y(r),Fx,t(r),Fy,s(r)}.

So the condition (H2) of Theorem 2.1 is established. Also, by definition of G and “ ⪯ ”, the condition
(H1) of Theorem 2.1 is established. Therefore, Theorem 2.1 assures that G has a fixed point. □

Remark 4.2. Note that the existence of a solution of integral equation 4.1 was proved by Sadeghi
and Vaezpour (see [13, Theorem 4.4]). In particular, they considered very conditions in Theorem
3.2 and Theorem 4.4 of their work to obtain this solution. But, in Theorem 4.1, we obtain the same
result by only two conditions.
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