

Int. J. Nonlinear Anal. Appl. 12 (2021) No. 2, 2417-2427 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2021.22375.2354

Set-valued nonlinear contractive operators in PM-spaces

Ehsan Lotfali Ghasab^a, Hamid Majani^{a,*}, Erdal Karapinar^{b,c}, Ghasem Soleimani Rad^d

^aDepartment of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran

^bFaculty of Fundamental Science, Industrial University of Ho Chi Minh City, Ho Chi Minh, Vietnam

^cDepartment of Mathematics, Çankaya University, 06790, Etimesgut, Ankara, Turkey

^dYoung Researchers and Elite club, West Tehran Branch, Islamic Azad University, Tehran, Iran

(Communicated by Mohammadbagher Ghaemi)

Abstract

In this paper, we consider some nonlinear contraction for set-valued operators and prove some fixed point results in the case of set-valued operators are ordered-close and not ordered-close, and in the case of set-valued operators are UCAV (LCAV) in quasi-ordered PM-spaces. Moreover, we present two examples and an application to show the validity of the main theorems.

Keywords: Fixed point, *PM*-spaces, quasi-ordered *PM*-spaces, ordered-close operator. 2000 MSC: 54E70; 47S50; 47H10.

1. Introduction and preliminaries

The investigation of contractivity on PM-spaces was initiated in 1966 by Sehgal [14]. The fixed point theorems in PM-spaces are important because they suggest a significant instrumentation to solve random equations. Hence, some of probabilistic contractions have been defined in [6, 7, 8], and references contained therein.

In 2009, Ćirić et al. [5] obtained several fixed point theorems in PM-spaces equipped with a quasi-order. After that, several fixed point results in quasi-ordered PM-spaces were investigated in [3, 4, 9, 10, 12, 13] and references contained therein. In 2014, Wu [16] proved the following theorem for the single-valued operator in a PM-space.

^{*}Corresponding author

Email addresses: e-lotfali@stu.scu.ac.ir (Ehsan Lotfali Ghasab), h.majani@scu.ac.ir; majani.hamid@gmail.com (Hamid Majani), erdalkarapinar@yahoo.com; erdalkarapinar@gmail.com (Erdal Karapinar), gha.soleimani.sci@iauctb.ac.ir; gh.soleimani2008@gmail.com (Ghasem Soleimani Rad)

Theorem 1.1. [16] Let $(\mathcal{X}, \mathcal{F}, \mathcal{T}, \preceq)$ be a complete PM-space provided with a partial order " \preceq " on $\mathcal{X}, G : \mathcal{X} \longrightarrow \mathcal{X}$ be a single-valued operator and Φ be all of the functions $\varphi : [0, +\infty) \longrightarrow [0, +\infty)$ such that $\varphi(i) < i$ and $\lim_{n\to\infty} \varphi^n(i) = 0$ for all i > 0. Assume that the following properties are held:

 H_1) There exists $x \in \mathcal{X}$ provided that $x \preceq Gx$;

 $H_2) \text{ For every } x, y \in \mathcal{X} \text{ with } x \leq y, \varphi \in \Phi: \mathcal{F}_{Gx,Gy}(\varphi(t)) \geq \min\{\mathcal{F}_{Gx,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{Gy,y}(t)\};$

H₃) If $\{x_n\}$ a non-decreasing monotone convergent sequence to x^* , then $x_n \leq x^*$ for each n.

Then G have a fixed point x^* in \mathcal{X} .

In this paper, some nonlinear contractions for set-valued operators are considered and several fixed point results in the case of are ordered-close and are not ordered-close in PM-spaces provided with a quasi-order are proven. Moreover, we prepare several fixed point results for UCAV (LCAV) operators satisfying some set-valued contractions in quasi-ordered PM-spaces. To motivate this study, two illustrative examples and an application are considered.

In the following, we give some preliminary definitions which are needed. Throughout this paper, we denote $CB(\mathcal{X})$ for the collection of every nonempty closed and bounded subsets of \mathcal{X} and denote $N(\mathcal{X})$ for the collection of every nonempty subsets of \mathcal{X} .

Definition 1.2. [11] Consider a quasi-ordered set (\mathcal{X}, \preceq) with two nonempty subsets A and B of $N(\mathcal{X})$. The relation between A and B is considered as follow:

- (r₁) If for all $a \in A$, there is $b \in B$ provided that $a \preceq b$, then $A \sqsubseteq_1 B$.
- (r_2) If for all $b \in B$, there is $a \in A$ provided that $a \preceq b$, then $A \sqsubseteq_2 B$.
- (r_3) If $A \sqsubseteq_1 B$ and $A \sqsubseteq_2 B$, then $A \sqsubseteq B$.

Definition 1.3. [2] Consider a ordered set (\mathcal{X}, \preceq) with $\{x_n\} \subset \mathcal{X}$ provided that $\cdots \preceq x_n \preceq \cdots \preceq x_2 \preceq x_1$ or $x_1 \preceq x_2 \preceq \cdots \preceq x_n \preceq \cdots$. Then $\{x_n\}$ is called a monotone sequence.

About definitions such as distribution function, triangular norm (abbreviated, *t*-norm), H-type (Hadzić type)*t*-norm and etc, one can refer to [5, 8] and their references therein. Also, D^+ is considered for the set of every Menger distance distribution functions.

Definition 1.4. [8] Let \mathcal{X} be a nonempty set, \mathcal{T} be a continuous t-norm and $\mathcal{F} : \mathcal{X} \times \mathcal{X} \to D^+$ be a mapping such that

(PM1) $\mathcal{F}_{x,y}(t) = 1$ for all t > 0 iff x = y,

(PM2) $\mathcal{F}_{x,y}(t) = \mathcal{F}_{y,x}(t)$ for every $x, y \in \mathcal{X}$ and t > 0,

(PM3) $\mathcal{F}_{x,z}(t+s) \geq \mathcal{T}(\mathcal{F}_{x,y}(t), \mathcal{F}_{y,z}(s))$ for every $x, y, z \in \mathcal{X}$ and $t, s \geq 0$.

Then $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a Menger PM-space.

Definition 1.5. [8] Consider a PM-space $(\mathcal{X}, \mathcal{F}, \mathcal{T})$. For every $A \subset \mathcal{X}$ and $x \in \mathcal{X}$, $\mathcal{F}_{x,A}(t) = \sup_{p \in A} \mathcal{F}_{p,x}(t)$ is the distance between a point and a set in PM-space.

About the definitions of convergent, Cauchy sequence, and etc, one can refer to [8].

Lemma 1.6. [16] Assume $n \geq 1$, $\mathcal{F} \in D^+$, $\varphi \in \Phi$, $g_1, g_2, ..., g_n : \mathbb{R} \longrightarrow [0, 1]$ and

$$\mathcal{F}(\varphi(t)) \ge \min\{g_1(t), g_2(t), ..., g_n(t), \mathcal{F}(t)\}.$$

Then $\mathcal{F}(\varphi(t)) \geq \min\{g_1(t), g_2(t), ..., g_n(t)\}$ for every $t \geq 0$.

Lemma 1.7. [16] Consider a PM-space $(\mathcal{X}, \mathcal{F}, \mathcal{T})$. If $\mathcal{F}_{p,q}(\varphi(t)) = \mathcal{F}_{p,q}(t)$ for every t > 0, where $\varphi \in \Phi$. Then p = q.

Definition 1.8. The set-valued operator $G : \mathcal{X} \to CB(\mathcal{X})$ is called ordered-close if for two monotone sequences $\{x_n\}, \{y_n\} \subset \mathcal{X}$ and $x_0, y_0 \in \mathcal{X}; x_n \to x_0, y_n \to y_0$ and $y_n \in G(x_n)$ imply $y_0 \in G(x_0)$.

2. Results on ordered-close and non ordered-close set-valued operators in PM-spaces

Here, we first establish several fixed point results for ordered-close and non ordered-close setvalued operators.

Theorem 2.1. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is an ordered-close set-valued operator. Further, assume that

 (H_1) for every $x \in \mathcal{X}$, there is $y \in Gx$ provided that $x \preceq y$;

 (H_2) for every $x, y \in \mathcal{X}$ with $x \leq y, u \in Gx$ and $v \in Gy$:

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\}.$$

Then G have a fixed point x^* in \mathcal{X} .

Proof. Select $x_0 \in \mathcal{X}$. If $x_0 \in Gx_0$, then the proof is complete. Otherwise, there is $x_1 \in Gx_0$ with $x_0 \neq x_1$ and $x_0 \preceq x_1$. Also, for $x_1 \in \mathcal{X}$, there exists $x_2 \in Gx_1$ with $x_1 \neq x_2$ and $x_1 \preceq x_2$. Continue this process, we obtain a non-decreasing sequence $\{x_n\}$, where $x_n \in Gx_{n-1}$ and $x_{n-1} \preceq x_n$. By the condition (H_2) , we have

$$\mathcal{F}_{x_n, x_{n+1}}(\varphi(t)) \ge \min\{\mathcal{F}_{x_n, x_{n-1}}(t), \mathcal{F}_{x_{n-1}, x_n}(t), \mathcal{F}_{x_{n+1}, x_n}(t)\}.$$

Then $\mathcal{F}_{x_n,x_{n+1}}(\varphi(t)) \geq \mathcal{F}_{x_{n-1},x_n}(t)$ for all t > 0. Hence, we obtain

$$\mathcal{F}_{x_n,x_{n+1}}(\varphi^2(t)) \ge \mathcal{F}_{x_{n-1},x_n}(\varphi(t)) \ge \mathcal{F}_{x_{n-2},x_{n-1}}(t)$$

for every t > 0. Thus, $\mathcal{F}_{x_n,x_{n+1}}(\varphi^n(t)) \geq \mathcal{F}_{x_1,x_0}(t)$ for all t > 0. Since $\lim_{t \to \infty} \mathcal{F}_{x_1,x_0}(t) = 1$, there is a t_0 so that $\mathcal{F}_{x_1,x_0}(t_0) > 1 - \varepsilon$ for $\delta > 0$ and $\varepsilon \in (0,1)$. Also, by $\lim_{n\to\infty} \varphi^n(t) = 0$, there is a $N_0 \in \mathbb{N}$ provided that $\varphi^n(t_0) < \delta$ for $n > N_0$. Thus, we obtain

$$\mathcal{F}_{x_n,x_{n+1}}(\delta) \ge \mathcal{F}_{x_n,x_{n+1}}(\varphi^n(t_0)) \ge \mathcal{F}_{x_1,x_0}(t_0) > 1 - \varepsilon$$

for $n > N_0$, that's mean $\lim_{n\to\infty} \mathcal{F}_{x_{n+1},x_n}(t) = 1$. Next, we should show that for every $\delta > 0$ and $\varepsilon \in (0,1)$, there exists $N(\varepsilon,\delta)$ provided that for all $m > n > N(\delta,\varepsilon)$, we have $\mathcal{F}_{x_n,x_m}(\delta) > 1 - \varepsilon$. Firstly, we show the inequality

$$\mathcal{F}_{x_{n+k},x_n}(\delta) \ge \mathcal{T}^k(\mathcal{F}_{x_{n+1},x_n}(\delta - \varphi(\delta))) \tag{2.1}$$

for every $k \ge 1$ is established by induction. For k = 1, we have

$$\begin{aligned}
\mathcal{F}_{x_n,x_{n+1}}(\delta) &\geq \left(\mathcal{F}_{x_{n+1},x_n}(\delta - \varphi(\delta))\right) \\
&= \mathcal{T}(\mathcal{F}_{x_{n+1},x_n}(\delta - \varphi(\delta)), 1) \\
&\geq \mathcal{T}\left(\mathcal{F}_{x_{n+1},x_n}(\delta - \varphi(\delta)), \mathcal{F}_{x_{n+1},x_n}(\delta - \varphi(\delta))\right) \\
&= \mathcal{T}^1(\mathcal{F}_{x_{n+1},x_n}(\delta - \varphi(\delta))).
\end{aligned}$$

Hence, (2.1) holds for k = 1. Assume that (2.1) is held for $1 \le k \le p$. If k = p + 1, then

$$\mathcal{F}_{x_{n+p+1},x_n}(\delta) \ge \mathcal{T}\Big(\mathcal{F}_{x_{n+1},x_n}(\delta - \varphi(\delta)), \mathcal{F}_{x_{n+1},x_{n+p+1}}(\varphi(\delta))\Big).$$
(2.2)

By (H_2) and by contradiction we show that $\mathcal{F}_{x_{n+1},x_{n+2}}(\delta) \geq \mathcal{F}_{x_n,x_{n+1}}(\delta)$. Thus, $\mathcal{F}_{x_{n+p+1},x_{n+p}}(\delta) \geq \mathcal{F}_{x_n,x_{n+1}}(\delta)$. Therefore,

$$\begin{aligned}
\mathcal{F}_{x_{n+1},x_{n+p+1}}\Big(\varphi(\delta)\Big) &\geq \min\{\mathcal{F}_{x_n,x_{n+1}}(\delta),\mathcal{F}_{x_n,x_{n+p}}(\delta),\mathcal{F}_{x_{n+p},x_{n+p+1}}(\delta)\} \\
&= \min\{\mathcal{F}_{x_n,x_{n+1}}(\delta),\mathcal{F}_{x_n,x_{n+p}}(\delta)\} \\
&\geq \min\{\mathcal{F}_{x_n,x_{n+1}}(\delta-\varphi(\delta)),\mathcal{T}^p(\mathcal{F}_{x_n,x_{n+1}}(\delta-\varphi(\delta)))\} \\
&= \mathcal{T}^p\Big(\mathcal{F}_{x_n,x_{n+1}}(\delta-\phi(\delta))\Big).
\end{aligned}$$
(2.3)

By (2.2) and (2.3), we obtain

$$\mathcal{F}_{x_{n+p+1},x_n}(\delta) \geq \mathcal{T}\Big(\mathcal{F}_{x_n,x_{n+1}}(\delta-\varphi(\delta)), \mathcal{T}^p(\mathcal{F}_{x_n,x_{n+1}}(\delta-\varphi(\delta)))\Big)$$

= $\mathcal{T}^{p+1}\Big(\mathcal{F}_{x_n,x_{n+1}}(\delta-\varphi(\delta))\Big).$

Thus, (2.1) is held. Also, since t-norm \mathcal{T} is H-type, for a selective $\varepsilon \in (0, 1)$, there is $\lambda \in (0, 1)$ so that for all $n \geq 1$, $\mathcal{T}^n(t) > 1 - \varepsilon$ when $t > 1 - \lambda$. By $\lim_{n \to \infty} \mathcal{F}_{x_n, x_{n+1}}(\delta - \varphi(\delta)) = 1$, there exists a $N_1(\varepsilon, \delta)$ so that $\mathcal{F}_{x_n, x_{n+1}}(\delta - \varphi(\delta)) > 1 - \lambda$ for each $n > N_1(\varepsilon, \delta)$. Therefore,

$$\mathcal{F}_{x_{n+k},x_n}(\delta) \ge \mathcal{T}^k(\mathcal{F}_{x_{n+1},x_n}(\delta - \varphi(\delta))) \ge \mathcal{T}^k(1-\lambda) \ge 1-\varepsilon$$

for all $k \geq 1$. So the sequence $\{x_n\}$ is a Cauchy sequence in \mathcal{X} . Due to the completeness of \mathcal{X} , there is $x^* \in \mathcal{X}$ provided that $\lim_{n\to\infty} x_n = x^*$. Since G is ordered-closed, $\{x_n\}$ is monotone and $x_{n+1} \in Gx_n$, we deduce $x^* \in Gx^*$ and x^* is a fixed point of G. \Box

Theorem 2.2. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is an ordered-close set-valued operator. Further, assume that

(H₁) for every $x \in \mathcal{X}$, there is $y \in G(x)$ provided that $y \preceq x$;

(H₂) for every $x, y \in \mathcal{X}$ with $y \leq x, u \in G(x)$ and $v \in G(y)$:

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\}.$$

Then G have a fixed point x^* in \mathcal{X} .

Proof. Select $x_0 \in \mathcal{X}$. If $x_0 \in Gx_0$, then the proof is complete. Otherwise, there is $x_1 \in Gx_0$ with $x_0 \neq x_1$ and $x_1 \preceq x_0$. Also, for $x_1 \in \mathcal{X}$, there exists $x_2 \in Gx_1$ with $x_1 \neq x_2$ and $x_2 \preceq x_1$. Continue this process, we have a non-increasing sequence $\{x_n\}$, where $x_n \in Gx_{n-1}$ and $x_n \preceq x_{n-1}$. The continue of the proof as is the same similar to the proof of previous theorem. \Box

Theorem 2.3. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is a set-valued operator. Further, assume that

 (H_1) for every $x \in \mathcal{X}$, there is $y \in G(x)$ provided that $x \preceq y$;

 (H_2) for every $x, y \in \mathcal{X}$ with $x \preceq y, u \in G(x)$ and $v \in G(y)$:

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\};\$$

(H₃) if $\{x_n\}$ is a non-decreasing monotone sequence convergent to x^* , then $x_n \leq x^*$ for each n.

Then G have a fixed point x^* in \mathcal{X} .

Proof. Select $x_0 \in \mathcal{X}$. If $x_0 \in Gx_0$, then the proof is complete. Otherwise, there is $x_1 \in Gx_0$ with $x_0 \neq x_1$ and $x_0 \leq x_1$. Also, for $x_1 \in \mathcal{X}$, there exists $x_2 \in Gx_1$ with $x_1 \neq x_2$ and $x_1 \leq x_2$. Continue this process, we obtain a non-decreasing sequence $\{x_n\}$, where $x_n \in Gx_{n-1}$ and $x_{n-1} \leq x_n$. As in the proof of Theorem 2.1 one can show $\{x_n\}$ is convergent to x^* . Then, by (H_3) , $x_n \leq x^*$ for all n. By (H_2) , for each $y \in Gx^*$, we have

$$\mathcal{F}_{x_{n+1},y}(\varphi(t)) \ge \min\{\mathcal{F}_{x_n,x_{n+1}}(t),\mathcal{F}_{x^*,y}(t),\mathcal{F}_{x_n,x^*}(t)\}.$$

Letting $n \to \infty$, we obtain $\mathcal{F}_{x^*,y}(\varphi(t)) \geq \mathcal{F}_{x^*,y}(t)$. From Lemma 1.7, we get $y = x^*$ and $x^* \in Gx^*$. Therefore, G have a fixed point in \mathcal{X} . \Box

Corollary 2.4. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is a set-valued operator. Further, assume that

 (H_1) for every $x \in \mathcal{X}$ and for each $y \in G(x)$, we have $x \preceq y$;

(H₂) for every $x, y \in \mathcal{X}$ with $x \leq y, u \in G(x)$ and $v \in G(y)$:

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\};\$$

(H₃) if $\{x_n\}$ is a non-decreasing monotone sequence convergent to x^* , then $x_n \leq x^*$ for all n.

Then there is $x^* \in \mathcal{X}$ so that $Gx^* = \{x^*\}$.

Theorem 2.5. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is a set-valued operator. Further, assume that

 (H_1) for each $x \in \mathcal{X}$, there is $y \in G(x)$ provided that $y \preceq x$;

 (H_2) for every $x, y \in \mathcal{X}$ with $y \preceq x, u \in G(x)$ and $v \in G(y)$:

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\};\$$

(H₃) If $\{x_n\}$ is a non-increasing monotone sequence convergent to x^* , then $x^* \preceq x_n$ for all n.

Then G have a fixed point x^* in \mathcal{X} .

Proof. Consider $x_0 \in \mathcal{X}$. If $x_0 \in Gx_0$, then the proof is complete. Otherwise, there is $x_1 \in Gx_0$ with $x_0 \neq x_1$ and $x_0 \succeq x_1$. Also, for $x_1 \in \mathcal{X}$, there exists $x_2 \in Gx_1$ with $x_1 \neq x_2$ and $x_1 \succeq x_2$. Continue this process, we have a non-increasing sequence $\{x_n\}$, where $x_n \in Gx_{n-1}$ and $x_{n-1} \succeq x_n$. Similar to proof of Theorem 2.2 one can show $\{x_n\}$ is convergent to x^* . Then, by (H_3) , $x_n \succeq x^*$ for all n. By (H_2) , for each $y \in Gx^*$, we have

$$\mathcal{F}_{x_{n+1},y}(\varphi(t)) \ge \min\{\mathcal{F}_{x_n,x_{n+1}}(t),\mathcal{F}_{x^*,y}(t),\mathcal{F}_{x_n,x^*}(t)\}.$$

Letting $n \to \infty$, we have $\mathcal{F}_{x^*,y}(\varphi(t)) \geq \mathcal{F}_{x^*,y}(t)$. From Lemma 1.7 we have $y = x^*$ and $x^* \in Gx^*$. Therefore, G has a fixed point in \mathcal{X} . \Box

Corollary 2.6. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is a set-valued operator. Further, assume that

 (H_1) for every $x \in \mathcal{X}$ and for each $y \in G(x)$, we have $y \preceq x$;

 (H_2) for every $x, y \in \mathcal{X}$ with $y \preceq x, u \in G(x)$ and $v \in G(y)$:

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\};\$$

(H₃) If $\{x_n\}$ is a non-increasing monotone sequence in \mathcal{X} and convergent to x^* , then $x^* \leq x_n$ for each n.

Then there is $x^* \in \mathcal{X}$ so that $Gx^* = \{x^*\}$.

Theorem 2.7. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is an ordered-close set-valued operator. Further, assume that

 (H_1) for each $x, y \in \mathcal{X}$ with $x \leq y$, we have $Gx \sqsubseteq_1 Gy$;

(H₂) there is $x_0 \in \mathcal{X}$ such that $\{x_0\} \sqsubseteq_1 Gx_0$;

(H₃) for every $x, y \in \mathcal{X}$ with $x \leq y, u \in G(x)$ and $v \in G(y)$:

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\}.$$

Then G have a fixed point x^* in \mathcal{X} .

Proof. From (H_2) , there exists $x_1 \in Gx_0$ such that $x_0 \preceq x_1$. This implies that $Gx_0 \sqsubseteq_1 Gx_1$ by (H_1) . By definition 1.2, there is $x_2 \in Gx_1$ provided that $x_1 \preceq x_2$. Continue this procedure, we have a non-decreasing sequence $\{x_n\}$ so that $x_n \in Gx_{n-1}$. Similar to the proof of Theorem 2.1, x^* is a fixed point of G. \Box

Theorem 2.8. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is an ordered-close set-valued operator. Further, assume that

 (H_1) for every $x, y \in \mathcal{X}$ with $x \leq y$, we have $Gx \sqsubseteq_2 Gy$;

(H₂) there is $x_0 \in \mathcal{X}$ so that $Gx_0 \sqsubseteq_2 \{x_0\}$;

(H₃) for each $x, y \in \mathcal{X}$ with $y \preceq x, u \in G(x)$ and $v \in G(y)$:

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\}.$$

Then G have a fixed point x^* in \mathcal{X} .

Proof. The proof is analogously the proof of Theorem 2.7. \Box

Theorem 2.9. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is a set-valued operator. Further, assume that

(H₁) for all $x, y \in \mathcal{X}$ with $x \leq y$, we have $Gx \sqsubseteq_1 Gy$;

(H₂) there is $x_0 \in \mathcal{X}$ such that $\{x_0\} \sqsubseteq_1 Gx_0$;

(H₃) for every $x, y \in \mathcal{X}$ with $x \leq y, u \in G(x)$ and $v \in G(y)$:

 $\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\};\$

(H₄) if $\{x_n\}$ is a non-decreasing monotone sequence convergent to x^* , then $x_n \leq x^*$ for each n.

Then G have a fixed point x^* in \mathcal{X} .

Proof. From (H_2) , there is $x_1 \in Gx_0$ such that $x_0 \preceq x_1$. This implies that $Gx_0 \sqsubseteq_1 Gx_1$ by (H_1) . By Definition 1.2, there is $x_2 \in Gx_1$ such that $x_1 \preceq x_2$. Continue this procedure, we have a nondecreasing sequence $\{x_n\}$ such that $x_n \in Gx_{n-1}$. The rest of the proof is in the like manner given in Theorem 2.3. \Box

Theorem 2.10. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is a set-valued operator. Further, assume that

 (H_1) for every $x, y \in \mathcal{X}$ with $x \leq y$, we have $Gx \sqsubseteq_2 Gy$;

(H₂) there is $x_0 \in \mathcal{X}$ such that $Gx_0 \sqsubseteq_2 \{x_0\}$;

(H₃) for every $x, y \in \mathcal{X}$ with $x \leq y, u \in G(x)$ and $v \in G(y)$:

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\};$$

(H₄) if $\{x_n\}$ is a non-increasing monotone sequence in \mathcal{X} and convergent to x^* , then $x^* \leq x_n$ for each n.

Then G have a fixed point x^* in \mathcal{X} .

Proof. The proof is like the proof of Theorem 2.9. \Box

Example 2.11. Suppose $\mathcal{X} = \mathbb{R}^+$, " \leq " is a quasi-order on \mathcal{X} , $\mathcal{T}(a,b) = min\{a,b\}$ for every $a, b \in [0,1]$ and

$$\mathcal{F}_{x,y}(t) = \begin{cases} 1, & x = y\\ \frac{1}{\exp(t)}, & x \neq y \end{cases}$$

Then $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a quasi-ordered complete PM-space provided with the quasi-order " \leq ". Also, consider $\varphi(t) = \frac{t}{2}$ for $t \geq 0$ and define $G : \mathcal{X} \to CB(\mathcal{X})$ by G(x) = [0, 3x]. Thus G is satisfied in condition (H_1) of Theorem 2.1. Now, for each $x, y \in \mathcal{X}$ with $x \neq y$ and for each $u \in Gx$ and $v \in Gy$ with $u \neq v$, we have

 $\mathcal{F}_{u,v}(\varphi(t)) \geq \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\}.$

Therefore, Theorem 2.1 implies that G have a fixed point in \mathbb{R}^+ .

3. Results on set-valued operators in quasi-ordered PM-spaces

In this section, we give several fixed point results for set-valued contractive operators in quasiordered PM-space, where quasi-order is a reflexive and transitive relation.

Definition 3.1. Consider a PM-space $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ provided with a quasi-order " \preceq " on \mathcal{X} .

(i) A subset $D \subset \mathcal{X}$ is approximative, when the set-valued operator $P_{x,D}(t) = \{p \in D : \mathcal{F}_{x,D}(t) = \mathcal{F}_{p,x}(t)\}$ for every $x \in \mathcal{X}$ has nonempty value.

(ii) The operator $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is approximative valued (briefly, AV), if Gx is approximative for every $x \in \mathcal{X}$.

(iii) The operator $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is comparable approximative valued (briefly, CAV), if Gx has approximative values for every $x \in \mathcal{X}$, and there is $y \in P_{x,Gz}(t)$ provided that y is comparable to z for every $z \in \mathcal{X}$.

(iv) The operator $G: \mathcal{X} \longrightarrow CB(\mathcal{X})$ is upper comparable approximative valued (briefly, UCAV) [resp. lower comparable approximative values, (briefly, LCAV)] if Gx has approximative values, and there is $y \in P_{x,Gz}(t)$ provided that $y \succeq z$ (resp. $y \preceq z$) for every $z \in \mathcal{X}$.

Theorem 3.2. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is a set-valued operator, where has UCAV. Further, assume that

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\}$$

for every $x, y \in \mathcal{X}$ with $x \leq y, u \in Gx$ and $v \in Gy$. Then G have a fixed point x^* in \mathcal{X} .

Proof. Consider $x_0 \in \mathcal{X}$. If $x_0 \in Gx_0$, then the proof is complete. Otherwise, since Gx_0 has UCAV, there is $x_1 \in Gx_0$ with $x_0 \neq x_1$ and $x_0 \preceq x_1$ so that $\mathcal{F}_{x_0,x_1}(t) = \mathcal{F}_{x_0,Gx_0}(t)$ and there is $x_2 \in Gx_1$ with $x_2 \neq x_1$ and $x_1 \preceq x_2$ so that $\mathcal{F}_{x_1,x_2}(t) = \mathcal{F}_{x_1,Gx_1}(t)$. Continue this procedure, we obtain a non-decreasing sequence $\{x_n\}$, where $x_n \in Gx_{n-1}$ and $x_{n-1} \preceq x_n$. Analogous the proof of the Theorem 2.1, one can show G have a fixed point x^* in \mathcal{X} . \Box

Theorem 3.3. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is a set-valued operator, where has LCAV. Further, assume that

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\}$$

for every $x, y \in \mathcal{X}$ with $x \leq y, u \in Gx$ and $v \in Gy$. Then G have a fixed point x^* in \mathcal{X} .

Proof. Consider $x_0 \in \mathcal{X}$. If $x_0 \in Gx_0$, then the proof is complete. Otherwise, since Gx_0 has LCAV, there is $x_1 \in Gx_0$ with $x_0 \neq x_1$ and $x_1 \preceq x_0$ so that $\mathcal{F}_{x_0,x_1}(t) = \mathcal{F}_{x_0,Gx_0}(t)$ and there is $x_2 \in Gx_1$ with $x_2 \neq x_1$ and $x_2 \preceq x_1$ so that $\mathcal{F}_{x_1,x_2}(t) = \mathcal{F}_{x_1,Gx_1}(t)$. Continue this procedure, we obtain a non-increasing sequence $\{x_n\}$, where $x_n \in Gx_{n-1}$ and $x_n \preceq x_{n-1}$. Analogous the proof of the Theorem 2.2, one can show G have a fixed point x^* in \mathcal{X} . \Box

Theorem 3.4. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is a set-valued operator, where has AV. Further, assume that $x_0 \in \mathcal{X}$ so that $\{x_0\} \sqsubseteq Gx_0$ and

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\}$$

for every $x, y \in \mathcal{X}$ with $x \leq y, u \in Gx$ and $v \in Gy$. Then G have a fixed point x^* in \mathcal{X} .

Proof. If $x_0 \in Gx_0$, then the proof ends. Otherwise, for any $x \in Gx_0$ one has that $x \succeq x_0$. Since G has approximative values, there exists $x_1 \in Gx_0$ with $x_0 \preceq x_1$ and $\mathcal{F}_{x_0,x_1}(t) = \mathcal{F}_{x_0,Gx_0}(t)$. Continue the procedure of constructing x_n inductively. Then there is $x_n \in Gx_{n-1}$ with $x_n \neq x_{n-1}$ and $x_{n-1} \preceq x_n$. The rest of the proof is like manner given in Theorem 3.2. \Box

Theorem 3.5. Suppose that $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with a quasi-order " \leq ". Also, suppose that \mathcal{T} is a Hadzić-type t-norm, $\varphi \in \Phi$ and $G : \mathcal{X} \longrightarrow CB(\mathcal{X})$ is a set-valued operator, where has AV. Further, assume that $x_0 \in \mathcal{X}$ so that $Gx_0 \sqsubseteq \{x_0\}$ and

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\}$$

for every $x, y \in \mathcal{X}$ with $x \leq y, u \in Gx$ and $v \in Gy$. Then G have a fixed point x^* in \mathcal{X} .

Proof. If $x_0 \in Gx_0$, then the proof ends. Otherwise, for any $x \in Gx_0$ one has that $x_0 \succeq x$. Since G has approximative values, there is $x_1 \in Gx_0$ with $x_1 \preceq x_0$ and $\mathcal{F}_{x_0,x_1}(t) = \mathcal{F}_{x_0,Gx_0}(t)$. Continue the procedure of constructing x_n inductively. Then there exists $x_n \in Gx_{n-1}$ with $x_n \neq x_{n-1}$ and $x_n \preceq x_{n-1}$. The rest of the proof is like manner given in Theorem 3.3. \Box

Example 3.6. Suppose $\mathcal{X} = \mathbb{R}^+$, " \leq " is a quasi-order on \mathcal{X} , $\mathcal{T}(a, b) = min\{a, b\}$ for all $a, b \in [0, 1]$ and

$$\mathcal{F}_{x,y}(t) = \begin{cases} 1, & if \ d(x,y) < t \ and \ t > 0 \\ 0, & if \ d(x,y) \ge t \ or \ t \le 0 \end{cases}$$

Then $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete PM-space provided with the quasi-order " \leq ". Also, consider $\varphi(t) = \frac{t}{2}$ for $t \geq 0$ and define $G : \mathcal{X} \to CB(\mathcal{X})$ by G(x) = [0, 3x]. Thus G is satisfied in condition (H_1) of Theorem 2.1. Now, for each $x, y \in \mathcal{X}$ with $x \neq y$ and for each $u \in Gx$ and $v \in Gy$ with $u \neq v$, we have

$$\mathcal{F}_{u,v}(\varphi(t)) \ge \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\}.$$

Therefore, Theorem 2.1 implies that G have a fixed point in \mathbb{R}^+ .

Also, $\varphi(t) = \frac{t}{2}$ for $t \ge 0$ and $G : \mathcal{X} \to CB(\mathcal{X})$ be defined by G(x) = [0, 3x]. Since for each $x_0 \in \mathcal{X}$ there exist $x_1 \in [0, 3x_0]$ provided that $\mathcal{F}_{x_0, x_1}(t) = \mathcal{F}_{x_0, Gx_0}(t)$ and $x_0 \preceq x_1$, then G is UCAV. Now, for each $x, y \in \mathcal{X}$ with $x \neq y$ and for each $u \in Gx$ and $v \in Gy$ with $u \neq v$, we have

$$\mathcal{F}_{u,v}(\varphi(t)) \geq \min\{\mathcal{F}_{u,x}(t), \mathcal{F}_{x,y}(t), \mathcal{F}_{v,y}(t)\}.$$

Therefore, Theorem 3.2 implies that G have a fixed point in \mathbb{R}^+ .

4. Application

Here, by Theorem 2.1, we establish the existence of a solution for the following Volterra type integral equation.

$$y(u) = \int_0^u M(u, v, y(v)) dv + g(u) \quad (u \in I)$$
(4.1)

for all $u \in I = [0, a]$, where a > 0 and [0, a] is a real interval.

First, we introduce the mathematical background (see also [1, 13]). Suppose $C(I, \mathbb{R})$ is the Banach space of whole real continuous functions considered on I with two norms

(i) maximum norm $||y||_{\infty}$ for $y \in C(I, \mathbb{R})$

(*ii*) Bielecki norm $||y||_B = \max_{u \in I}(|y(u)|e^{-Lu})$ for all $y \in C(I, \mathbb{R})$ and L > 0 which induces a metric $d_B(x, y) = ||x - y||_B$ for all $x, y \in C(I, \mathbb{R})$ (see [1]).

Also, assume $C(I \times I \times C(I, \mathbb{R}), \mathbb{R})$ is the space of whole continuous functions considered on $I \times I \times C(I, \mathbb{R})$. Now, consider the mapping $\mathcal{F} : C(I, \mathbb{R}) \times C(I, \mathbb{R}) \to D^+$ with $\mathcal{F}_{x,y}(t) = \chi(t - d_B(x, y))$ for every $x, y \in C(I, \mathbb{R})$ and t > 0, where

$$\chi(t) = \begin{cases} 0 & if \quad t \le 0, \\ 1 & if \quad t > 0. \end{cases}$$

The space $(C(I, \mathbb{R}), \mathcal{F}, \mathcal{T})$ with $\mathcal{T}(a, b) = min\{a, b\}$ is a complete PM-space ([15, Theorem 3]). Note that the convergence in both norms $||.||_{\infty}$ and $||.||_B$ are equivalent in this spaces. Also, we define quasi-order " \leq " on $C(I, \mathbb{R})$ by $x \leq y$ iff $||x||_{\infty} \leq ||y||_{\infty}$ for all $x, y \in C(I, \mathbb{R})$. Now, $(C(I, \mathbb{R}), \mathcal{F}, \mathcal{T},)$ is a complete PM-space provided with the quasi-order " \leq ".

Define $f: C(I, \mathbb{R}) \to C(I, \mathbb{R})$ by

$$fy(u) = \int_0^u M(u, v, y(v))dv + g(u) \quad g \in C(I, \mathbb{R}).$$

Theorem 4.1. Let $(C(I, \mathbb{R}), \mathcal{F}, \mathcal{T}, \preceq)$ be the quasi-ordered complete PM-space, $G : C(I, \mathbb{R}) \rightarrow CB(C(I, \mathbb{R}))$ be a set-valued operator such that $G(y) = \{fy(u)\}$ and $M \in C(I \times I \times \mathbb{R}, \mathbb{R})$ be an operator. Suppose that

- (i) $||M||_{\infty} = \sup_{u,v \in I, y \in C(I,\mathbb{R})} |M(u,v,y(v))| < \infty;$
- (ii) for every $x, y \in C(I, \mathbb{R})$ and every $u, v \in I$, there is L > 0 provided that

$$||M(u, v, fx(v)) - M(u, v, fy(v))|| \le L \max\{|x(v) - y(v)|, |x(v) - fx(v)|, |y(v) - fy(v)|\}.$$

Then 4.1 have a solution in $C(I, \mathbb{R})$.

Proof. consider $d_B(x, y) = \max_{u \in I} (|x(u) - y(u)|e^{-Lu})$ for $x, y \in C(I, \mathbb{R})$, where L satisfies condition (*ii*). Also, by definition of G, we get t = fx and s = fy for all $t \in Gx$ and $s \in Gy$. Thus, we conclude

$$d_B(fx, fy) \leq \max_{u \in I} \int_0^u |M(u, v, x(u)) - M(u, v, y(v))| e^{L(v-u)} e^{-Lv} dv$$

$$\leq L \max\{d_B(x, y), d_B(x, fx), d_B(y, fy)\} \max_{u \in I} \int_0^u e^{L(v-u)} dv$$

$$\leq (1 - e^{-aL}) \max\{d_B(x, y), d_B(x, fx), d_B(y, fy)\}.$$

for every $x, y \in C(I, \mathbb{R})$. Now, set $k = (1 - e^{-La})$ and $\varphi(r) = kr$ that $\varphi \in \Phi$. Now, for each r > 0, we obtain

$$\begin{aligned} \mathcal{F}_{t,s}\varphi(r) &= \mathcal{F}_{fx,fy}\varphi(r) = \chi(kr - d_B(fx, fy)) = \chi(r - \frac{1}{k}d_B(fx, fy)) \\ &\geq \chi(r - max\{d_B(x, y), d_B(x, fx), d_B(y, fy)\}) \\ &= \min\{\chi(r - d_B(x, y)), \chi(r - d_B(x, fx)), \chi(r - d_B(y, fy))\} \\ &= \min\{\mathcal{F}_{x,y}(r), \mathcal{F}_{x,fx}(r), \mathcal{F}_{y,fy}(r)\} \\ &= \min\{\mathcal{F}_{x,y}(r), \mathcal{F}_{x,t}(r), \mathcal{F}_{y,s}(r)\}. \end{aligned}$$

So the condition (H_2) of Theorem 2.1 is established. Also, by definition of G and " \leq ", the condition (H_1) of Theorem 2.1 is established. Therefore, Theorem 2.1 assures that G has a fixed point. \Box

Remark 4.2. Note that the existence of a solution of integral equation 4.1 was proved by Sadeghi and Vaezpour (see [13, Theorem 4.4]). In particular, they considered very conditions in Theorem 3.2 and Theorem 4.4 of their work to obtain this solution. But, in Theorem 4.1, we obtain the same result by only two conditions.

5. Acknowledgements

The first and second authors are grateful to the Research Council of Shahid Chamran University of Ahvaz for financial support (Grant number: SCU.MM99.25894).

References

- A. Bielecki, Une remarque sur la methode de Banach-Cacciopoli-Tikhonov dans la theorie des equations differentielles ordinaires, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 4 (1956) 261–264.
- [2] S. Cho, J. Bae and K. Na, Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings in cone metric spaces, Fixed Point Theory Appl. 2012 (2012) 133.
- [3] Lj. Čirić, Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces, Nonlinear Anal. 72 (2010) 2009–2018.
- [4] Lj. Čirić, P. Agarwal and B. Samet, Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces, Fixed Point Theory Appl. 2011 (2011) 56.
- [5] Lj. Ćirić, D. Mihet, R. Saadati, Monotone generalized contractions in partially ordered probabilistic metric spaces, Topol. Appl. 156 (2009) 2838–2844.
- [6] O. Hadzic, A fixed point theorem in Menger spaces, Publ. Inst. Math. 26 (1979) 107–112.
- [7] O. Hadzic and Z. Ovcin, Fixed point theorems in fuzzy metric and probabilistic metric spaces, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat. 24 (1994) 197–209.
- [8] O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic, Dordrecht, 2001.
- [9] J. Jachymski, On probabilistic φ -contractions on Menger spaces, Nonlinear Anal. **73** (2010) 2199–2203.
- [10] H.P. Masiha and F. Sabetghadam, A coupled fixed point theorem for contraction type maps in quasi-ordered metric spaces, Int. J. Math. Anal. 5(41) (2011) 2041–2050
- H.P. Masiha and F. Sabetghadam, Fixed point results for multi-valued operators in quasi-ordered metric spaces, Appl. Math. Lett. 25 (2012) 1856–1861.
- [12] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Romania, 2001.
- [13] Z. Sadeghi and S.M. Vaezpour, Fixed point theorems for multivalued and single-valued contractive mappings on Menger PM spaces with applications, J. Fixed Point Theory Appl. 20 (2018) 114.
- [14] V.M. Sehgal, Some Fixed Point Theorems in Functional Analysis and Probability, Ph.D. dissertation, Wayne State Univ. 1966.
- [15] V.M. Sehgal and A.T. Bacharuca-Reid, Fixed points of contraction mappings on probabilistic metric spaces, Math. Syst. Theory 6 (1972) 97–102.
- [16] J. Wu, Some fixed-point theorems for mixed monotone operators in partially ordered probabilistic metric spaces, Fixed Point Theory Appl. 2014 (2014) 49.