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Abstract

In this article, first we introduce six types of power graphs related to a graph (or directed graph),
with the help of set theory. Then we show that these newly defined power graphs are pairwise distinct
by a few examples. Finally, we discuss the relation between Eulerian being the base graph and these
six power graph types. Moreover, we express the relation between pairwise Eulerian of these power
graphs.
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graph, directed power graph, Eulerian power graph.

1. Introduction and Definitions

Alexander Treier in 2019 has introduced the series of graphs which were obtained from the series
of B-graph with the help of the defined graph power set operation [5]. In a 2014 article, M. A.
Shalu and S. Devi Yammini, discussed a subclass GR

n (right power set graphs GR
n ) of chordal graphs

and its complement graph class GL
n , and they proved that the number of maximal in dependent sets

in a subclass GR
n of chordal graphs can be in polynomial time using Golomb’snonlinear recurrence

relation. Also they discussed a superclass Fn (power set graphs) of GL
n [4]. Melody and Renson

in 2019, introduced the concept of power set graph of a simple graph. This graph is taken from
the lattice diagram of a power set. Moreover, the characterization such has order, size, degree,
dominance number and independence number have been investigated. [3]. But what we are saying
here is very different. One of the most important modeling tools in social sciences is the analysis
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of interpersonal relationships and inter-community relationships. In fact, the basic question if the
members of a population are related is whether it is possible to establish any inter-group relationship
through interpersonal relationships or not.
A graph G is an ordered pair (V (G), E(G)) consisting of a set V (G) of vertices and a set E(G),
disjoint from V (G), of edges, together with an incidence function ψ(G) that associates with each
edge of G an unordered pair of (not necessarily distinct) vertices of G. If e is an edge and vi and vj
are vertices such that ψG(e) = {vi, vj}, then e is said to join vi and vj, and the vertices vi and vj are
called the ends of e. We denote the number of vertices and edges in G by v(G) = |n| and e(G) = |m|;
these two basic parameters are called the order and size of G, respectively [1] . The degree of a
vertex v in a graph G denoted by deg(v), is the number of edges of G incident with v ,each loop
counting as two edges. In particular if G is a simple graph, deg(v) is the number of neighbours of v
in G [1]. Given a graph G, a walk in G is a finite sequence of edges of the form v0v1, v1v2, ..., vm−1vm
also denoted by v0 → v1 → v2 → ... → vm, in which any two consecutive edges are adjacent. The
number of edges in a walk is called its length. for example in Figure 1, v → x→ y → z → y → w is
a walk of length 5 from v to w. A walk in which all the edges are distinct is a trail. If in addition the
vertices v0, v1, ..., vm are distinct (except possibly v0 = vm), then the trail is a path. A path or trail
is closed if v0 = vm, and a closed path containing at least one edge is a cycle [6]. Note that any loop
or pair of multiple edges is a cycle. (An edge with identical ends is called a loop [2]). We see that
v → w → x→ y → z → x is a trail, v → w → x→ y → z is a path, v → w → x→ y → z → x→ v
is a closed trail, and v → w → x→ y → v is a cycle. A graph that is in one piece, so that any two
vertices are connected by a path, is a connected graph [6].

x

z

y

wv

Figure 1: Connected graph G with v(G) = |5| and e(G) = |8|.

A trail that traverses every edge of a graph is called an Euler trail, because Euler (1736) was the
first to investigate the existence of such trails [1]. A tour of a connected graph G is a closed walk
that traverses each edge of G at least once, and an Euler tour one that traverses each edge exactly
once(in other word, a closed Euler trail) [1]. A connected graph G is Eulerian if there exists a closed
trail containing every edge of G [6]. A directed graph, or digraph D,is an ordered pair (V (D), E(D))
consisting of a set V (D) of vertices and a set E(D),disjoint from V (D), of arcs, together with
an incidence function ψ(D) that associates with each arc of D an ordered pair of (not necessarily
distinct) vertices of D. If a is an arc and ψD(a) = (vi, vj), then a is said to join vi to vj; in other
words vi dominates vj. The vertex vi is the tail of a, and the vertex vj its head; those are the two
ends of a [1]. A directed Euler trail is a directed trail which traverses each arc of the digraph exactly
once, and a directed Euler tour is a directed tour with this same property [1]. A digraph is Eulerian
if it admits a directed Euler tour [2]. A simple cycle is a cycle that does not repeat any vertices
or edges (except the first/last vertex) [2]. A vertex of degree zero is called an isolated vertex and
a vertex of degree 1 is an end-vertex [6]. For a vertex v in a digraph D, the outdegree od(v) of v
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Figure 2: A graph with an Eulerian trail .
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Figure 3: Eulerian graph.
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Figure 4: Non-Eulerian graph.

(or deg+(v)) is the number of vertices of D to which v is adjacent, while the indegree id(v) of v (or
deg−(v)) is the number of vertices of D from which v is adjacent[2]. For the digraph D of Figure 5,

v1

v2

v3

Figure 5: graph D.

od(v1) = id(v1) = 1; od(v2) = 2, id(v2) = 1; od(v3) = 0, id(v1) = 1

A digraph D is said to be connected (or weakly-connected) if it can not be expressed as the union
of two disjoint digraphs, defined in the obvious way; This is equivalent to saying that the underlying
graph of D is a connected graph suppose, in addition, that for any two vertices v and w of D there
is a path from v tow, then D is called strongly-connected. It is clear that every strongly-connected
digraph is connected ,but converse is not true[6].

Theorem 1.1 (Euler’s theorem). A connected digraph is eulerian if and only if it is even. In
other words, a nontrivial connected digraph D is Eulerian if and only if odv = idv ; (Σv∈V d

+(v) =
Σv∈V d

−(v)), for every vertex v of D [2].
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2. Introduce of power graphs

Throughout this article, we restrict our attention to directed graphs. In this section, first we have
introduced the concept of power graphs. Assume that D = (V,E) is a graph. In this case, with
the help of edges set E and given the definitions of Ei’s for 1 ≤ i ≤ 6, six power graphs Pi(D) for
1 ≤ i ≤ 6 are defined as Pi(D) = (Vi, Ei), in which Vi will be power set V except φ ( Vi = 2V \ φ
and |Vi| = 2n− 1). In this section, Ei’s for 1 ≤ i ≤ 6 are introduced with an example that shows the
differences between Ei’s, before Pi(D)’s and their construction methods are analyzed.

Definition 2.1. Assume that A and B are two subsets of V . Then, each Ei for 1 ≤ i ≤ 6 is defined
as follows:

AE1B if ∀a ∈ A, ∀b ∈ B ; aEb

AE2B if ∃a ∈ A, ∃b ∈ B ; aEb

AE3B if ∃b ∈ B, ∀a ∈ A ; aEb

AE4B if ∀a ∈ A, ∃b ∈ B ; aEb

AE5B if ∃a ∈ A, ∀b ∈ B ; aEb

AE6B if ∀b ∈ B, ∃a ∈ A ; aEb

The following relationships are established between the Ei’s members:

E1 ⊆ E3 ⊆ E4 ⊆ E2

E1 ⊆ E5 ⊆ E6 ⊆ E2

Pay attention to this example:

Example 2.2. In this example, graph D is as follows for V = {a, b, c}, E = {(a, b), (b, a)}. According

a

b

c

Figure 6: graph D.

to the definition of Ei’s, each of the set members Ei’s for 1 ≤ i ≤ 6 is observed as follows:

AE1B if ∀a ∈ A,∀b ∈ B ; aEb

E1 = {({a}, {b}), ({b}, {a})}.
AE2B if ∃a ∈ A,∃b ∈ B ; aEb

E2 ={({a}, {b}), ({a}, {a, b}), ({a}, {b, c}), ({a}, {a, b, c}), ({b}, {a}), ({b}, {a, b}), ({b}, {a, c})
({b}, {a, b, c}), ({a, b}, {a}), ({a, b}, {b}), ({a, b}, {a, b}), ({a, b}, {b, c}), ({a, b}, {a, c}), ({a
, b}, {a, b, c}), ({a, c}, {b}), ({a, c}, {a, b}), ({a, c}, {b, c}), ({a, c}, {a, b, c}), ({b, c}, {a}), ({b
, c}, {a, b}), ({b, c}, {a, c}), ({b, c}, {a, b, c}), ({a, b, c}, {a}), ({a, b, c}, {b}), ({a, b, c}, {a, b})
, ({a, b, c}, {a, c}), ({a, b, c}, {b, c}), ({a, b, c}, {a, b, c})}.
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AE3B if ∃b ∈ B, ∀a ∈ A ; aEb

E3 ={({a}, {b}), ({a}, {a, b}), ({a}, {b, c}), ({a}, {a, b, c}), ({b}, {a}), ({b}, {a, b}), ({b}, {a, c}),
({b}, {a, b, c})}.
AE4B if ∀a ∈ A,∃b ∈ B ; aEb

E4 ={({a}, {b}), ({a}, {a, b}), ({a}, {b, c}), ({a}, {a, b, c}), ({b}, {a}), ({b}, {a, b}), ({b}, {a, c}),
({b}, {a, b, c}), ({a, b}, {a, b}), ({a, b}, {a, b, c})}.
AE5B if ∃a ∈ A,∀b ∈ B ; aEb

E5 ={({a}, {b}), ({b}, {a}), ({a, b}, {a}), ({a, b}, {b}), ({a, c}, {b}), ({b, c}, {a}), ({a, b, c}, {a}),
({a, b, c}, {b})}.
AE6B if ∀b ∈ B, ∃a ∈ A ; aEb

E6 ={({a}, {b}), ({b}, {a}), ({a, b}, {a}), ({a, b}, {b}), ({a, b}, {a, b}), ({a, c}, {b}), ({b, c}, {a}),
({a, b, c}, {a}), ({a, b, c}, {b}), ({a, b, c}, {a, b})}.

In this example ,power graphs P1(D),...,P6(D) is shown in Figures 7 to 11.

{a}

{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 7: Power graph P1(D).

{a}

{b}

{c}

{a, b}
{a, c}

{b, c}

{a, b, c}

Figure 8: Power graph P2(D).
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{a}

{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 9: Power graph P3(D).

{a}

{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 10: Power graph P4(D).

{a}

{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 11: Power graph P5(D).

Now assume that D = (V,E) is a graph. As discussed earlier, it is possible to define Pi(D)’s for
1 ≤ i ≤ 6 based on graph D. In other words, each Pi(D) can be constructed with respect to the
adjacency matrix of graph D and its corresponding Ei. An example is given for constructing Pi(D)’s
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{a}

{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 12: Power graph P6(D).

for 1 ≤ i ≤ 6 .

Example 2.3. Consider graph D = (V,E) that is shown in Figure 13.

A =

a b c( )a 0 1 0
b 0 0 0
c 1 1 0

The goal is to create power graph P1(D) = (V1, E1) by graph D.

a

b

c

Figure 13: graph D with an adjacency matrix A.

V1 = {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
E1 : AE1B if ∀a ∈ A,∀b ∈ B ; aEb
⇒ E1 = {({a}, {b}), ({c}, {a}), ({c}, {b}), ({c}, {a, b}), ({a, c}, {b})}.
If we decide to use adjacency matrix A to determine the set E1, the rows and columns of A must be
considered set A and set B, respectively. Since both surveys are general, the positions of elements are
determined in the adjacency matrix of power graph P1(D) based on the positions of nonzero elements.
For instance, the first element of 1 exists on the first row of the second column; therefore, there will be
an edge from {a} to {b}. The second nonzero element exists on the third row of the first column and
results in edge ({c}, {a}). The next nonzero element exists on the third row of the second column and
creates edge ({c}, {b}). Since there are two nonzero elements on the third row, there will also be edge
({c}, {a, b}); (note that if there are more than one nonzero elements like the number of m nonzero
elements on each row, then 2, 3, . . . , or m-fold combinations are taken into account). Considering
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{a}

{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 14: Power graph P1(D).

the fact that there are two nonzero elements on the second column, edge ({a, c}, {b}) will exist in
graph P1(D), (P1(D) is shown in Figure 14). Similarly, it is possible to obtain Pi(D) for 2 ≤ i ≤ 6
from adjacency matrix A based on the quantifiers used in Ei for 2 ≤ i ≤ 6.

Assume that we have an industrial town and there is n people who work in this town and the number
of its products is 2n − 1. In the following example, we considering a base graph between the people
of the town and the relationship between people in an industrial town determines the edges of the
graph D, for example a person a has relationship with a person b if a person a can buy products
from the production where a person b works. Also each producer is considered as a set of people.
Then, we want analyze the relationship between productions with the help of power graphs Pi(D)
for 1 ≤ i ≤ 6. Note that, we have a relationship between humans, the existence of a loop in the base
graph is meaningless.

Example 2.4. Consider the set V = {a, b, c, d, e, f, g, h, k} is the member of people in the industrial
town and let

E ={(a, d), (a, f), (a, g), (b, e), (b, f), (b, g), (d, a), (d, c), (g, a), (g, b), (f, b), (e, f), (e, g), (k, h)

, (h, a)}

be the relationships between people in this town. We consider a number of factories in this town. For
example, we suppose that people a and b work in the Dairy production and as the same way, Sanitary
ware production {c, d, e}, Lamp production factory {f, g}, Garment production {h, k}. Now given
that the edges (Ei’s for 1 ≤ i ≤ 6), are defined between the two products, so we analyze relationships
between a number of these productions.
According to definition E1, the product A has a relation E1 with the product B, whenever each mem-
ber A buy from each member in the product B. Consider two factories Dairy and Lamp production.
Given that anyone in the Dairy production can buy from anyone in the Lamp production, so the Dairy
production has the relationship of E1 with the Lamp production. In other word ({a, b}, {f, g}) ∈ E1.
But for example, the dairy production has not the relationship of E1 with the Sanitary ware produc-
tion, since a person a in the dairy production can not buy from people c or e in the Sanitary ware
production. Therefore ({a, b}, {c, d, e}) /∈ E1.
But the product A has a relation E2 with the product B, whenever there is at least a member in A so
that can buy at least from a member in B. Pay attention that, the Garment production has the rela-
tionship of E2 with the Dairy production factory, since by E2 there is a person in the Garment produc-
tion that this person can buy from a person in the Dairy production factory, so ({h, k}, {a, b}) ∈ E2.
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Now consider two factories Garment and Lamp production. This is clearly that, ({h, k}, {g, f}) /∈ E2,
since there is no any person in the Garment Production so that can buy from a person in the Lamp
production.
Consider two factories Dairy and Garment. If we look at the definition of E3, we realize that
({a, b}, {h, k}) /∈ E3. To understand why the Dairy production can not the relationship of E3 with
the Garment factory, we pay attention to the these explanations that, by E3 there must be someone
in the Garment factory so that all of the people in the Dairy production can buy from the person in
the Garment factory. While there is not such a person in the Garment factory. But Lamp factorie
has the relation of E3 with Dairy factorie. Since, for example there is a person like b in the Dairy
factorie so that all of the people in the Lamp factorie can buy from b in the Dairy factorie. So
({g, f}, {a, b}) ∈ E3.
Via definition E4, the product A has a relation E4 with the product B, whenever all of the members in
A can buy from at least a member in B. Consider two factories Dairy and Garment. Since none of
the people in the Dairy production can buy from at least a person in Garment factory, then the Dairy
production has not the relationship of E4 with the Garment factory. So ({a, b}, {h, k}) /∈ E4. Now
consider two other factories like Dairy and Sanitary ware. the Dairy production has the relationship
of E4 with the Sanitary ware factory, whenever all of the people in the Dairy production can buy from
a person in the Sanitary ware factory. According to this description, clearly ({a, b}, {c, d, e}) ∈ E4.
Also we have see by the definition E5, the factorie A has a relation E5 with the factorie B, whenever
there is at least one person in the factorie A so that this person can buy from all of the people in
the factorie B. for instance, the Sanitary ware factorie has not the relation of E5 with the Dairy
production factorie, because there is no any one person in the Sanitary ware factorie so that this
person can buy from all of the people in the Dairy factorie. Therefore ({c, d, e}, {a, b}) /∈ E5. While
the Sanitary ware factorie has a relation E5 with the Lamp production factorie, that means we have
({c, d, e}, {f, g}) ∈ E5. Since there is at least one person in the Sanitary ware factorie so that can
buy from all of the people in the Lamp production factorie.
We say that the factorie A has a relation E6 with the factorie B, whenever for all of the person in the
B, there is at least a person in A, so that to buy from them. According to the description given clearly,
({c, d, e}, {a, b}) /∈ E6. Now suppose that we have two factories Lamp and Dairy production. Observe
that the Lamp factory has a relation E6 with the Dairy production factorie, So ({g, f}, {a, b}) ∈ E6.

Example 2.5. In this example, aims to theoretically show of being a donor and a receiver between
blood groups( O+ , O− , A+ , A− , B+, B−, AB+ and AB− ) in power graphs.

A =

O− O+ A− A+ B− B+ AB− AB+



O− 1 1 1 1 1 1 1 1
O+ 0 1 1 1 1 1 1 1
A− 0 1 1 1 1 1 1 1
A+ 0 0 0 1 1 1 1 1
B− 0 1 1 1 1 1 1 1
B+ 0 0 1 1 0 1 1 1
AB− 0 1 0 1 0 1 1 1
AB+ 0 0 0 0 0 0 0 1

Given the fact that group A has Antigen A and Antibody B and that group B has Antigen B and
Antibody A as well as group AB having Antigens A and B and group O having Antibodies A and
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B, it is obvious that group AB is a powerful receiver, whereas group O is a powerful donor. The
eight existing blood groups are the members of V , that we in this example consider part of the graph
D = (V,E). Where in V = {AB−, AB+, B−, B+} and
E = {(AB−, AB−), (AB−, AB+), (AB+, AB+), (B+, B+), (B+, AB+), (B−, B−), (B−, B+),
(B−, AB−), (B−, AB+)}.

AB− AB+

B+B−

Figure 15: A part of the graph D.

We now see how a donor and a receiver between blood groups in this people, can be employed to
analyze by definition of Ei’s for 1 ≤ i ≤ 6. We consider the set A as the family A and the set B as
the family B.
The family of A has an relationship of E1 with the family of B. This means that there are definitely
donor of blood from all of the people existing in the family A to all of the people existing in the family
B. For instance, the existence of an edge e1 = ({B−, B+}, {B+, AB+}) ∈ E1, that means all of the
people in the family A have blood groups B− and B+, can donor of blood to all of the people in the
family B that have blood groups B+ and AB+. Therefore, A = {B−, B+} has an relationship of
E1 with B = {B+, AB+}. But if A = {B+, AB−} and B = {B−, B+}, then the family of A has
not an relationship of E1 with the family of B. In other word, e2 = ({B+, AB−}, {B−, B+}) /∈ E1,
since everyone in the family A must be donor of blood to all of the people in the family B, while for
example a person with blood group B+ in A can not donor of blood to a person with blood group B−

in B. Let’s consider another edeg like e3 = ({B+, AB−}, {B+, AB+}). According to the similar to
description, e3 /∈ E1.
But by the definition of E2, clear that there is at least a donor blood from one of the people exist-
ing in the family A to at least one of the people existing in the family B. Consider the edge e2 =
({B+, AB−}, {B−, B+}). by E2, this edge that means a person with a blood group B+ in the family A,
it can donor of blood to a person with blood group B+ in the family B. So, A = {B+, AB−} has the re-
lationship of E2 with B = {B−, B+}. Or if we consider the edge e3, clearly A = ({B+, AB−}) has the
relationship of E2 with B = {B+, AB+}. Now suppose that A = {AB+, B+} and B = {B−, AB−}.
Since there is no one in the family A that can donor of blood to someone in the family B, then the fam-
ily A has not the relationship of E2 with B . In the other word e4 = ({AB+, B+}, {B−, AB−}) /∈ E2.
But the family A = {AB−, B+} can not have a relationship E3 with the family B = {AB−, B+},
in other word e5 = ({AB−, B+}, {AB−, B+}) /∈ E3. Since by the definition E3, there must be
at least one of the people with blood group AB− or B+ of the family B that all of the people ex-
isting in the family A with blood groups AB− and B+ blood donor to an the existing person in
the family B. While there is no such person in the family B. Or if consider the edge e4, with
similar explanations we see that, e4 = ({AB+, B+}, {B−, AB−}) /∈ E3. Now we consider edge
e6 = ({AB−, B+}, {AB+, B−}) ∈ E3. The definition of E3 shows obviously that there is at least one
people with blood group AB+ in the family B so that all of the people with blood groups AB− and
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B+ in the family A blood donor to an existing person in the family B with blood group AB+. Also
if consider edge e1, it’s clearly the family A = {B−, B+} has the relationship of E3 with the family
B = {B+, AB+}. So e1 = ({B−, B+}, {B+, AB+}) ∈ E3.
Now, the definition of E4 shows that all of the people existing in the family A can be blood donor
to at least one of the people existing in the family B. We choose one of the edge as desired. For
instance e3 = ({AB−, B+}, {AB+, B+}) ∈ E4, shows that each of people with blood groups AB− and
B+, has definitely blood donor to at least one of the people with blood groups AB+ and B+. Follows
by mentioned edge, a person has blood group AB− in the family A can blood donor to a person has
blood group AB+ in the family B and also a person has blood group B+ in the family A can blood
donor to a person has blood group B+ in the family B. But consider the edge e4. According to the
definition of E4, there is no one person in the family A = {AB+, B+} that can blood of donor to at
least one of the people in the family B = {B−, AB−} and then e4 = ({AB+, B+}, {B−, AB−}) /∈ E4.
Note that e5 = ({B+, AB−}, {B+, AB−}) /∈ E5. In other word, the family A has no relation
E5 with the family B. In fact by definition of E5 for all of the people existing in the family B
there is at least one person in the family A, so that blood donor to all of the people in the fam-
ily B. But, such a person does not exist in the family A. Suppose that A = {B−, AB+} and
B = {B−, B+, AB−} be two families. The family A can have a relationship E5 with the family B,
so e7 = ({B−, AB+}, {B−, B+, AB−}) ∈ E5. Via E5, there is a person with blood group B− in the
family A so that there are blood donor from this person to all of the people with blood groups B− and
B+ and AB− in the family B. Or if consider the edge e1 = ({B−, B+}, {B+, AB+}), it should be
noted that with similar explanations the family A = {B−, B+} has the relationship of E5 with the
family B = {B+, AB+}.
According to definition E6, for all of the persons in family B, there is at least one person in family A so
that blood donor to people existing in the family B. Consider the edge e5 = ({B+, AB−}, {B+, AB−}) ∈
E6. The existence of this edge in P6(D) meanse that there is one person in the family A with blood
group B+ that blood donor to one person in family B with blood group B+ and another person in the
family A with blood group AB− that blood donor to another person in the family B with blood group
AB−. Now for example, consider the edge e4 = ({AB+, B+}, {B−, AB−}). This is clearly that the
family A = {AB+, B+} has not the relationship of E6 with the family B = {B−, AB−}. Since for
none of the people in the family B, there is no one people in the family A so that this person in A
can blood donor to people existing in the family B.

Example 2.6. Assume that we have the availability of information on direct flights between the US,
Belgium, Sweden, and Denmark. The defined Ei’s can now be employed to analyze the relationships
of these four countries.
V = {u, b, s, d} = {US,Belgium, Sweden,Denmark};

u b

s d

Figure 16: graph D.
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E = {(u, s), (u, d), (b, u), (s, b), (d, u)}.

Vi = {v1, v2, ..., v15}
= {{u}, {b}, {s}, {d}, {u, b}, {u, s}, {u, d}, {b, s}, {b, d}, {s, d}, {u, b, s}, {u, b, d}, {b, s, d},
{u, s, d}, {u, b, s, d}}.

Ei ⊆ {({u}, {u}), ({u}, {b}), ..., ({u, b, s, d}, {u, b, s, d})}.
AE1Bif∀a ∈ A,∀b ∈ B ; aEb

E1 = {({u}, {s}), ({u}, {d}), ({u}, {s, d}), ({b}, {u}), ({s}, {b}), ({d}, {u}), ({b, d}, {u})}

According to the definition of E1, there are definitely direct flights from all of the countries existing in
the set A to all of the countries existing in the set B. For instance, the existence of edge ({u}, {s, d})
in power graph P1(D) means that there are direct flights from the US to Sweden and Denmark.
However, given the fact that ({s, d}, {u}) /∈ E1, it is possible to take indirect flights to travel from
Sweden and Denmark to the US by air.

{u}
{b}

{s}

{d}

{u, b}

{u, s}

{u, d}

{b, s}{b, d}{s, d}

{u, b, s}

{u, b, d}

{u, s, d}

{b, s, d}

{u, b, s, d}

Figure 17: Power graph P1(D).

AE2B if ∃a ∈ A, ∃b ∈ B ; aEb

E2 ={({u}, {s}), ({u}, {d}), ({u}, {u, s, d}), .., ({u, b}, {s}), ({u, b}, {d}), ({u, b}, {u, s, d}), ..
({b}, {u}), ({b}, {u, b}), .., ({u, b}, {u}), ({u, b}, {u, b}), .., ({b, s}, {u}), ({b, s}, {u, b}), ..
, ({s}, {b}), ({s}, {b, s}), ..., ({u, s}, {b}), ({u, s}, {b, s}), ..., ({d}, {u}), ({d}, {u, s}), ...
, ({u, d}, {u}), ({u, d}, {u, s}), ..., ({u, b, s, d}, {u, b, s, d})}.

The definition of E2, clearly shows that there is a direct flight from at least one of the countries of
the set A to at least one of the countries of the set B. For instance, if edge ({u}, {b, s, d}) of graph
P2(D) is considered, it is then fair to reason that there is at least a direct flight from the US to Bel-
gium, Sweden, or Denmark, that this in example, there are direct flights from the US to Sweden and
Denmark. However, if graph P2(D) is examined carefully, it will be revealed that there is no direct
flight from either Belgium or Denmark to Sweden (({b, d}, {s}) /∈ E2). Nevertheless, it is possible to
travel from either Belgium or Denmark to Sweden on an indirect flight. We see the adjacency matrix
of graph P2(D) in the following form.
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A =

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15



v1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1
v2 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
v3 0 1 0 0 1 0 1 1 1 0 1 1 0 1 1
v4 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
v5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
v6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
v7 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
v8 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1
v9 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
v10 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1
v11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
v12 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
v13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
v14 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1
v15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AE3B if ∃b ∈ B, ∀a ∈ A ; aEb
E3 = {({u}, {s}), ....., ({b}, {u}), ....., ({s}, {b}), ....., ({d}, {u}), ....., ({b, d}, {u}), ......}.
According to the definition E3, the set A has relation E3 with the set B, if there is at least one
country in the set B, so that we have direct flight from all of the existence in A to country in B. For
example, if A = {u, d} and B = {u, b, d}, then ({u, d}, {u, b, d}) /∈ E3. In other word, the set A has
not relation E3 with the set B, since there is no any countries in the set B so that from countries
US and Denmark in set A can be flight to the existence country in B.

{u} {b}

{s}

{d}

{u, b}

{u, s}

{u, d}

{b, s}

{b, d}

{s, d}

{u, b, s}

{u, b, d}

{u, s, d}

{b, s, d}

{u, b, s, d}

Figure 18: Power graph P3(D) with its adjacency matrix .
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A =

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15



v1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1
v2 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1
v3 0 1 0 0 1 0 1 1 1 0 1 1 0 1 1
v4 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
v5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v9 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
v10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AE4B if ∀a ∈ A,∃b ∈ B ; aEb

E4 ={({u}, {s}), ({u}, {d}), ({u}, {s, d}), ..., ({b}, {u}), ({b}, {u, b}), ..., ({s}, {b}), ..., ({s}
, {u, b}), ....., ({d}, {u}), ({d}, {u, b}), ....., ({b, d}, {u}), ....., ({u, d}, {u, d}), ({u, d},
{u, b, d}), ....}.

The definition of E4 shows obviously that all of the countries existing in the set A have direct flights
to at least one of the countries existing in the set B. But we have edge ({u, d}, {u, b, d}) ∈ E4. The
existence of this edge indicates that each of countries US and Denmark has definitely a direct flight
to at least one of the countries US and Belgium and Denmark. In this example, country US can has
direct flight to country Denmark and country Denmark can has direct flight to country US. Adjacency
matrix of power graph P4(D) is shown in following form.

A =

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15



v1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1
v2 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1
v3 0 1 0 0 1 0 1 1 1 0 1 1 0 1 1
v4 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
v5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v7 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1
v8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v9 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
v10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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AE5B if ∃a ∈ A, ∀b ∈ B ; aEb

E5 ={({u}, {s}), ({u}, {d}), ({u}, {s, d}), ....., ({b}, {u}), ({u, b}, {u}), ....., ({s}, {b}), ({s, b},
{b}), ....., ({d}, {u}), ({u, d}, {u}), .....}

Moreover, the definition of E5 can be stated as follows. For all of the countries existing in B, there
is at least one country in A, from which it is possible to have direct flights to all countries of B.
for instance, ({u, d}, {u, d}) /∈ E5, since if the existing country is considered US (in A), there is a
direct flight from the US only to country Denmark (according to E, (u, d) ∈ E), where as there is no
relationship between country US (in A) and country US (in B) ; (according to E, (u, u) /∈ E) .

{u} {b}

{s}

{d}

{u, b}

{u, s}

{u, d}

{b, s}{b, d}{s, d}

{u, b, s}

{u, b, d}

{u, s, d}

{b, s, d}

{u, b, s, d}

Figure 19: Power graph P5(D).

AE6B if ∀b ∈ B, ∃a ∈ A ; aEb

E6 ={({u}, {s}), ({u}, {d}), ({u}, {s, d}), ..., ({b}, {u}), ({u, b}, {u}), ..., ({s}, {b}), ({s, b},
{b}), ....., ({d}, {u}), ({u, d}, {u}), ....., ({u, d}, {u, d}), ({u, b, d}, {u, d}), .....}.

By the definition E6, this example is analyzed in a way that there is at least one country of A having
direct flights to all of the countries existing in B. Consider an edge like ({u, b}, {s, d}) in power graph
P6(D). The existence of this edge in power graph P6(D) means that at least one of US and Belgium
has direct flight to both countries Sweden and Denmark. Also with similar explanations it is clear
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that ({u, d}, {u, d}) ∈ E6. Adjacency matrix of power graph P6(D) is shown in following form.

A =

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15



v1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0
v2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
v4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v5 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0
v6 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0
v7 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0
v8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
v9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v10 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
v11 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0
v12 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0
v13 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0
v14 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
v15 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0

3. Eulerian Analysis of Pi(D)’s for 1 6 i 6 6

In this section, in order to answer the following questions, we must analyze various examples
and theorems, what Eulerian power graphs Pi(D) for 1 6 i 6 6, will result from either Eulerian or
non-Eulerian graph D and vice versa.

3.1. Analyzing whether power graph P1(D) is Eulerian if connected graph D is Eulerian or not:

According to the definition of Eulerian, power graph P1(D) is Eulerian if firstly P1(D) has exactly
one connected component. Note that by definition of E1, power graph P1(D) has a connected
component if at least one member of V like vi is connected to all members of V from both right and
left. In this case, an edge enters all vertices of P1(D) from vertex {vi} which an edge enters from all
vertices in to vertex {vi}. This makes power graph P1(D) consist of only one component; therefore,
the power graph is connected. Otherwise, if a member like vi ∈ V is not connected to only one
member of V like vj ∈ V (left or right), no edges enter V = {v1, ..., vn} from any vertices of power
graph P1(D). In this case, no edges enter other vertices from vertex V ; hence, vertex V remains
isolated, and power graph P1(D) becomes disconnected. Secondly, there is exactly one directed Euler
tour in power graph P1(D). In fact, there is such a Euler tour in power graph P1(D) if power graph
D is Eulerian.

Theorem 3.1. Euler’s theorem for power graph P1(D).
Connected power graph P1(D) is Eulerian, if connected graph D is Eulerian.
Proof . Assume that power graph P1(D) is a Eulerian graph. In this case, P1(D) has exactly one
connected component. According to the above description, there is at least one vertex like {vi} in
power graph P1(D) where it has two-way connections with all vertices. Consider the connection of
vertex {vi} with vertex V . Since vertex V includes all vertices of graph D, two-way edges exist in
this graph from all vertices to vi. This shows that D is connected and has one directed Euler tour;
therefore, D is Eulerian. 2
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However, this theorem is not conversely true necessarily. In other word, if D is Eulerian, then power
graph P1(D) may be non-Eulerian. (See examples 3.4 to 3.6)

Corollary 3.2. power graph P1(D) is Eulerian if both of the following states occurs:

1. power graph P1(D) is connected.

2. graph D is Eulerian.

Corollary 3.3. If graph D is not Eulerian, power graph P1(D) is obviously not Eulerian. (See
Examples 3.10 and 3.11)

Examples of Eulerian graphs in Figures 20,22,24 and their corresponding non-Eulerian power graphs
are displayed in Figures 21,23,25.

Example 3.4. In this example, graph D is as follows for V = {a, b, c}, E = {(a, c), (b, a), (c, b)}.

a

c

b

Figure 20: Connected graph D .

As observerd earlier, E1 = {({a}, {c}), ({b}, {a}), ({c}, {b})}. Power graph P1(D) is shown in Figure
21.

{a}

{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 21: Unconnected power graph P1(D).

Example 3.5. Consider vertex set V = {a, b, c} and E = {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)}.

E1 ={({a}, {b}), ({a}, {c}), ({a}, {b, c}), ({b}, {a}), ({b}, {c}), ({b}, {a, c}), ({c}, {a}), ({c},
{b}), ({c}, {a, b}), ({a, b}, {c}), ({a, c}, {b}), ({b, c}, {a})}.

Power graph P1(D) is shown in Figure 23
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a

c

b

Figure 22: Connected graph D.

{a}
{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 23: Unconnected power graph P1(D).

a

c

b

Figure 24: Connected graph D.

{a}

{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 25: Unconnected power graph P1(D).

Example 3.6. For the graph D in Figure 24 , we have V = {a, b, c}, E = {(a, a), (a, b), (b, b)
, (b, c), (c, a), (c, c)}. Also
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E1 ={({a}, {a}), ({a}, {b}), ({a}, {a, b}), ({b}, {b}), ({b}, {c}), ({b}, {b, c}), ({c}, {a}), ({c},
{c}), ({c}, {a, c}), ({a, b}, {b}), ({a, c}, {a}), ({b, c}, {c})}.

Power graph P1(D) is shown in Figure 25.

In the above examples, connected graph D is Eulerian because there is a directed Euler tour in every
graph D that passes every edge exactly once. However, power graph P1(D) is not Eulerian in any of
these examples. For instance, whereas we seek the Eulerian conditions in the connected graph, there
is one isolated vertex in Figures 23 and 25, and several isolated vertices in Figure 21.
In the following examples, connected graph D is Eulerian. In these examples, its corresponding
power graph is also Eulerian because there is one closed dirscted Euler trail in these . In other
words, according to Euler’s theorem, the summation of input degrees is equal to that of the output
degrees in every vertex of P1(D).

Example 3.7. Figure 26 it shown an example of a Eulerian graph, where in V = {a, b}, E =
{(a, a), (a, b), (b, a)}. Also Eulerian power graph P1(D) is shown in Figure 27.
E1 = {({a}, {a}), ({a}, {b}), ({b}, {a}), ({a}, {a, b}), ({a, b}, {a})}.

a b

Figure 26: Connected graph D.

{a} {b}

{a, b}

Figure 27: Connected power graph P1(D).

Example 3.8. Consider vertex set V = {a, b, c} and edge set E = {(a, a), (a, b), (a, c), (b, a),
(c, a)}. As is shown by Figure 28, graph D is Eulerian. whose the set E1 is

a b

c

Figure 28: Connected graph D.

E1 ={({a}, {a}), ({a}, {b}), ({a}, {c}), ({a}, {a, b}), ({a}, {a, c}), ({a}, {b, c}), ({a}, {a, b, c}),
({b}, {a}), ({c}, {a}), ({a, b}, {a}), ({a, c}, {a}), ({b, c}, {a}), ({a, b, c}, {a})}.

P1(D) shown in Figure 29, is Eulerian.
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{a}
{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 29: Connected power graph P1(D).

Example 3.9. Suppose that we have V = {a, b, c} and E = {(a, a), (a, b), (a, c), (b, a), (b, c), (c, a)
, (c, b)}, (Figure 30). Each of the set members E1 is observed as follows:

a b

c

Figure 30: Connected graph D .

E1 ={({a}, {a}), ({a}, {b}), ({a}, {c}), ({b}, {a}), ({b}, {c}), ({c}, {a}), ({c}, {b}), ({a}, {a, b}),
({a}, {a, c}), ({a}, {b, c}), ({a}, {a, b, c}), ({b}, {a, c}), ({c}, {a, b}), ({a, b}, {a}), ({a, b}, {c}),
({a, c}, {a}), ({a, c}, {b}), ({b, c}, {a}), ({a, b, c}, {a})}.

Eulerian power graph P1(D) is shown in Figure 31.

{a}
{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 31: Connected power graph P1(D).

Example 3.10. A connected graph D has order 2 and E = {(a, a), (a, b), (b, b)} .
E1 = {({a}, {a}), ({a}, {b}), ({a}, {a, b}), ({b}, {b})}, (Figure 32).
Also non-Eulerian power graph P1(D) is shown in Figure 33.
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a b

Figure 32: Connected graph D is not Eulerian.

{a} {b}

{a, b}

Figure 33: Connected power graph P1(D) is not Eulerian.

Example 3.11. For the non-Eulerian graph D of this example (Figure 34), we have V = {a, b, c}
and E = {(a, a), (a, b), (a, c), (b, a), (c, a), (c, b)}.

a b

c

Figure 34: Connected graph D is not Eulerian.

E1 ={({a}, {a}), ({a}, {b}), ({a}, {c}), ({a}, {a, b}), ({a}, {a, c}), ({a}, {b, c}), ({a}, {a, b, c}),
({b}, {a}), ({c}, {a}), ({c}, {b}), ({c}, {a, b}), ({a, b}, {a}), ({a, c}, {a}), ({a, c}, {b}), ({b,
c}, {a}), ({a, b, c}, {a})}.

Non-Eulerian power graph P1(D) is shown in Figure 35.

{a}
{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 35: Connected power graph P1(D) is not Eulerian.
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3.2. Analyzing whether power graph P2(D) is Eulerian if connected graph D is Eulerian or not:

In this section, first we determine the total number of edges that enter each vertex P2(D) and also
the number of edges that exist of each vertex before analyzed the Eulerian of P2(D). We attention
to that, in P2(D) with the number of 2n − 1 vertices, each member in the set V is in the number of
2n−1 vertices in the power graph P2(D). Figure 36, is presented a part of the Eulerian graph with n
vertices.

vi−1

vi

vi+1

Figure 36: A part of the Eulerian graph D .

Where in e1 = (vi, vi+1) , e2 = (vi+1, vi−1) , e3 = (vi−1, vi) , ... are in the set of edges E. Given that
graph D is Eulerian, then we have Σv1,...,vn∈V d

+(v1, ..., vn) = Σv1,...,vn∈V d
−(v1, ..., vn) ≥ 1. We assume

that Σv1,...,vn∈V d
+(v1, ..., vn) = Σv1,...,vn∈V d

−(v1, ...
, vn) = 1. Via definition of E2, one output edge from vertex vi like e1 in graph D, means that all
vertices having a member of vi are connected to all vertices that having a member of vi+1 in power
graph P2(D). As it was mentioned above, there are the number of 2n−1 output edge from vertex
A = {vi} to the number of 2n−1 vertices that having a member vi+1 (∗).
As the same way, one input edge to vertex vi like e3 in graph D, means that all vertices having a
member of vi−1 are connected to all vertices that having a member of vi, thus there are the number
of 2n−1 output edges from the number of 2n−1 vertices that having a member vi−1 to vertex A = {vi}
(∗′). Therfore via (∗) and (∗′) we have, Σvi∈V d

+({vi}) = Σvi∈V d
−({vi}) = 2n−1. In the same way,

Eulerian condition is established for all of the single-member vertices.
Now consider the vertex of two members like A′ = {vi, vi+1}. According to the above description,
for an edge e1 in D there are the number of 2n−1 output edges from vertex A′ to the number of
2n−1 vertices that having a member vi+1 and also for an edge e2 in D, there are the number of 2n−1

output edges from vertex A′ to the number of 2n−1 vertices that having a member vi−1. Therefore
the number of 2(2n−1) edges exist from vertex A′. In the same way, the number of 2(2n−1) edges
enter to vertex A′. So Σvi,vi+1∈V d

+(A′) = Σvi,vi+1∈V d
−(A′) = 2(2n−1). Thus Eulerian condition is

established for all of the vertices with two members. In the same way, we have for vertex V with the
number of n members Σv1,...,vn∈V d

+(V ) = Σv1,...,vn∈V d
−(V ) = n(2n−1).

Note that, may there are multiple edges in one directions between some pairs of vertices two-member,
three-member,. . . , n-member in P2(D), in obtaining, the number of input(output) edges for each
vertex is calculated.
We now two examples are given to illustrate Euler’s theorem for power graph P2(D). In the following
examples graphs D are Eulerian. We determine whether their corresponding the power graphs are
Eulerian? (see in Figures 38 and 41)
In these examples, considering to the lots of edges, we for a better understanding of Eulerian power
graphs, the Eulerian condition is given for one of the vertices of P2(D); the results will be similar for
other vertices.

Example 3.12. Assumed that V = {a, b, c} and E = {(a, b), (b, c), (c, a)}. As definition earlier,
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a b

c

Figure 37: Connected graph D is simple cycle and no loop.

E2 ={({a}, {b}), ({a}, {a, b}), ({a}, {b, c}), ({a}, {a, b, c}), ({b}, {c}), ({b}, {a, c}), ({b}, {b
, c}), ({b}, {a, b, c}), ({c}, {a}), ({c}, {a, b}), {c}, {a, c}), ({c}, {a, b, c}), ({a, b}, {b}),
({a, b}, {c}), ..., ({a, b}, {a, b, c}), ({a, c}, {a}), ({a, c}, {b}), ..., ({a, c}, {a, b, c}), ({b, c}
, {a}), ({b, c}, {c}), ..., ({b, c}, {a, b, c}), ({a, b, c}, {a}), ..., ({a, b, c}, {a, b, c})}.

Consider vertex {a, c} of P2(D). By (∗) the number of 2(2n−1) = 8 edges exit from vertax {a, c}.

{a}

{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 38: Connected power graph P2(D) is Eulerian.

Via (∗′) the number of 2(2n−1) = 8 edges enter to vertax {a, c}. Therefore, Σa,c∈V d
+({a, c}) =

Σa,c∈V d
−({a, c}) = 8. in the same way, is clearly the summation of input degrees is equal to that of

the output degrees in every vertex of P2(D) and therefore P2(D) is Eulerian. As a reminder, there
are multiple edges in one directions between pairs of vertices two-members, three-members in P2(D),
so that the number of these input(output) edges is calculated for each vertex, but in the analysis of
Eulerian conditions and drawing edges in P2(D), we consider multiple edges in one directions between
two vertices only once. P2(D) is shown in Figure 38.

Example 3.13. For the graph D of Figure 40, V = {a, b, c, d} and E = {(a, b), (b, c), (c, d), (d, a)}.

E2 ={({a}, {b}), ({a}, {a, b}), ..., ({a}, {a, b, c, d}), ({b}, {c}), ({b}, {a, c}), ..., ({b}, {a, b, c, d})
({c}, {d}), ({c}, {a, d}), ..., ({c}, {a, b, c, d}), ({d}, {a}), {d}, {a, b}), ..., ({d}, {a, b, c, d}),
..., ({a, b, c, d}, {a, b, c, d})}.

Eulerian conditions for the power graph P2(D) is drawn in the vertex {a, d}. In Figure 41, we see that
Σa,d∈V d

+({a, d}) = Σa,d∈V d
−({a, d}) = 16, (Note that, the multiple edges in one directions between

two vertices are drawn only once.) In the same way, Eulerian condition is confirm for all of the
vertices. Therefore P2(D) is Eulerian.
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{a}

{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 39: Connected power graph P2(D) is non-Eulerian.

a b

cd

Figure 40: Connected graph D is simple cycle and no loop.

{a}

{b}
{c} {d}

{a, b}

{a, c}

{a, d}

{b, c}

{b, d}{c, d}{a, b, c}

{a, b, d}

{a, c, d}

{b, c, d}

{a, b, c, d}

Figure 41: Connected power graph P2(D) is Eulerian.

Theorem 3.14. Euler’s theorem for power graph P2(D)
Consider a Eulerian graph D with n ≥ 3 vertices.

1. Let D with n ≥ 3 vertices is a simple cycle graph and no loops or exactly n loops. Then P2(D)
is Eulerian.

2. Let the number of loops in simple cycle graph D is l, that 1 ≤ l ≤ n − 1. Then power graph
P2(D) is not Eulerian.

Proof .
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{a}

{b}
{c} {d}

{a, b}

{a, c}

{a, d}

{b, c}

{b, d}{c, d}{a, b, c}

{a, b, d}

{a, c, d}

{b, c, d}

{a, b, c, d}

Figure 42: Connected power graph P2(D) is non-Eulerian.

1. According to the theorem’s assumption, graph D is Eulerian. Therefore, there is a directed Euler
tour in the graph D and since D is a simple cycle graph we have, vi → vi+1 → ...→ vi−1 → vi.
first, we assumed D is with no loop. If a graph be Eulerian and simple cycle graph, all of
its vertices would have the same conditions. In other word, Σd+(vi) = Σd−(vi) = 1. This
reasoning is also true for all vertices of P2(D). Therefore, the summation of input degrees is
equal to that of the output degrees in every vertex of P2(D) and power graph P2(D) is Eulerian.
Now assumed that graph D has exactly n loops, so all of the connections one-way in P2(D)
become two-way and being Eulerian remains.

2. Now if graph D has 1 to n − 1 loops. Consider a vertex of the power graph with more than
one member and fewer than n members, so that every member of vertex is a trail; (Eulerian
conditions satisfy on the singleton vertices and the n-member vertex). Considering to the
lots of edges, we analyze the Eulerian conditions for one of the vertices of P2(D) like vertex
B = {vi, vi+1}. According to the definition of E2, an edge leaves vertex {vi} and enters vertex
{vi, vi+1}. Also, an edge leaves vertex {vi, vi+1} and enters vertex {vi+1}. (other connections
between vertices and vertex B are two-way). Therefore, equation condition Σvi,vi+1∈V d

+(B) =
Σvi,vi+1∈V d

−(B) satisfy before the loop is added. First we add the loop (vi, vi) to graph D.
Then, one new edge leaves vertex {vi, vi+1} and enters vertex {vi} and causes Σvi,vi+1∈V d

+(B) 6=
Σvi,vi+1∈V d

−(B) in power graph P2(D). It is necessary to mention that in every vertex of P2(D)
like B, it may be more than one new edge leaves vertex B or enters vertex B that causes
the conditions of Euler’s theorem are disturbed. Now if loop (vi+1, vi+1) is also added to the
graph, with similar explanations on more vertices of the power graph does not satisfy Eulerian
condition and as the same way, until we add the number of n−1 loops. Likewise, Euler’s theorem
conditions are disrupted when every loop (n−1 6 l 6 1) is added to graph D; thus power graph
P2(D) become non-Eulerian. But when we add exactly n loops, all of the connections in P2(D)
become two-way.

2

Remark 3.15. Note that in the simple cycle graph D with n = 2 vertices and with any number of
loops, power graph P2(D) is Eulerian.
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We attention two examples of these graphs:

Example 3.16. Let us suppose that D = (V,E), where V = {a, b}, E = {(a, b), (b, a)} and

E2 = {({a}, {b}), ({a}, {a, b}), ({b}, {a}), ({b}, {a, b}), ({a, b}, {a}), ({a, b}, {b})}.

In this example we have see P2(D) in Figure 44.

a b

Figure 43: Connected graph D is Eulerian.

{a} {b}

{a, b}

Figure 44: Connected power graph P2(D)
is Eulerian.

Example 3.17. Our second example D = (V,E) where V = {a, b}, E = {(a, a), (a, b), (b, a)} (see
Figure 45) and E2 = {({a}, {a}), ({a}, {b}), ({a}, {a, b}), ({b}, {a}), ({b}, {a, b}), ({a, b},
{a}), ({a, b}, {b})}. In this example, drawing of P2(D) is shown in Figure 46.

a b

Figure 45: Connected graph D is Eulerian .

{a} {b}

{a, b}

Figure 46: Connected power graph P2(D) is Eulerian.



Directed Power Graphs; 12 (2021) No. 2,2619-2657 2645

Example 3.18. In this example, the given graphs are Eulerian, but their corresponding power graphs
are non- Eulerian. Considering to the lots of edges, the Eulerian condition is given for one of the
vertices of P2(D) in the Figures 49 and 51; the results will be similar for other vertices.

1. Here is an example that graph D with n = 6 vertices is Eulerian, but its corresponding power
graph is non-Eulerian. (Graph D is shown in Figur47)

V = {a, b, c, d, e, f}
E = {(a, c), (a, d), (b, a), (c, b), (c, f), (d, c), (d, e), (e, f), (f, d), (f, a)}

Consider the vertex {c, d} in power graph P2(D). The following edges enter to vertex {c, d}
and exits from {c, d}:
(a) There are the number of 3(2n−1) = 3(25) = 96 input edges from vertices having a member

a and a member d and a member f to vertex {c, d} (∗′). So Σc,d∈V d
+{c, d} = 96.

(b) There are the number of 4(2n−1) = 4(25) = 128 output edges from vertex {c, d} to all of
the vertices having a member b and a member f and a member c and a member e (∗).
Then Σc,d∈V d

−{c, d} = 128.

Therefore, Σc,d∈V d
+{c, d} 6= Σc,d∈V d

−{c, d}, and P2(D) is non-Eulerian.

a

b

cd

e

f

Figure 47: Connected graph D is Eulerian and cyclic.

2. In this example consider V = {a, b, c, d} and E = {(a, b), (b, c), (b, d), (c, b), (d, a)}, (see Figure
48). In Power graph P2(D) of Figure 49,the summation of input degrees is not equal to that of

a b

cd

Figure 48: Connected graph D is Eulerian and cyclic.

the output degrees in some vertices. For example, Σa,c∈V d
+({a, c}) 6= Σa,c∈V d

−({a, c}).

3. In the example, observe that power graph P2(D) is not Eulerian. Assume that V = {a, b, c, d}
and E = {(a, b), (b, c), (b, d), (c, b), (c, a), (d, c)} (see Figure 50 ). It’s corresponding power graph
is shown in Figure 51.

Theorem 3.19. Let graph D with n ≥ 4 is Eulerian and cyclic (not simple cyclic), then P2(D) is
not Eulerian.
Proof . In Eulerian graph D, if n = 2, then D is simple cyclic and symmetric. If n = 3, then graph
D is simple cyclic or symmetric. We have already mentioned that in simple cyclic graphs D, P2(D)
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{a}

{b}

{c} {d}

{a, b}

{a, c}

{a, d}

{b, c}

{c, d}{b, d}{a, b, c}

{a, b, d}

{a, c, d}

{b, c, d}

{a, b, c, d}

Figure 49: Connected power graph P2(D) is non-Eulerian.

a b

cd

Figure 50: Connected graph D is Eulerian and cyclic.

{a}

{b}
{c} {d}

{a, b}

{a, c}

{a, d}

{b, c}

{b, d}{c, d}{a, b, c}

{a, b, d}

{a, c, d}

{b, c, d}

{a, b, c, d}

Figure 51: Connected power graph P2(D) is non-Eulerian.

is Eulerian. Also we will see in Theorem 3.22, that in symmetric graphs D, power graph P2(D) is
Eulerian. So we assume that n ≥ 4. We see part of the Eulerian graph with n vertices in Figure 52
.
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vi+3 vi+1

vivi+2

Figure 52: Part of the Eulerian graph D.

E = {e1 = (vi, vi+1), e2 = (vi+1, vi), e3 = (vi+1, vi+2), e4 = (vi+3, vi+1), e5 = (vi+2, vi+3), ...} Now
consider two members vertex like A′′ = {vi, vi+2} in P2(D). There are the number of 2n−1 input
edges from all of the vertices that having member vi+1 to vertex A′′, and there are the number of
2n−1 output edges from vertex A′′ to all of the vertices that having member vi+1, and all of the
vertices that having member vi+3. Thus, the number of 2(2n−1) edges exit from A′′. We deduce that
Σvi,vi+2∈V d

+(A′′) 6= Σvi,vi+2∈V d
−(A′′) and then P2(D) is non-Eulerian. 2

Let’s look at two examples here, in which the adjacency matrix is symmetric.

Example 3.20. The graph D of Figure 53 has order 3 and size 4, where in matrix A shows that the
symmetric matrix.

A =

a b c( )a 0 1 0
b 1 0 1
c 0 1 0

a b

c

Figure 53: Connected graph D is Eulerian.

We now turn our attention to the drowing of power graph P2(D) in Figure 54. We have drawn that
the Eulerian condition on vertex {b, c}.

Example 3.21. Given an another example of a Eulerian graph (see Figure 55)that its matrix is
symmetric. we have V = {a, b, c, d} and

A =

a b c d


a 0 1 0 0
b 1 0 1 0
c 0 1 1 1
d 0 0 1 0

Consider a drawing of Eulerian condition of a power graph P2(D) on vertex {b, d} in the Figure 56.
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{a}

{b}

{c}

{a, b}
{a, c}

{b, c}

{a, b, c}

Figure 54: Connected power graph P2(D) is Eulerian.

a

b c

d

Figure 55: Connected graph D is Eulerian.

{a}

{b}
{c} {d}

{a, b}

{a, c}

{a, d}

{b, c}

{b, d}

{c, d}

{a, b, c}

{a, b, d}

{a, c, d}

{b, c, d}

{a, b, c, d}

Figure 56: Connected power graph P2(D) is Eulerian.

Theorem 3.22. Consider Eulerian graph D in which the adjacency matrix is symmetric. In that
cace, P2(D) is Eulerian.
Proof . Since adjacency matrix in graph D is symmetric; In other word, there is edge (vi+1, vi) for
every edge (vi, vi+1) in D. Thus by the definition of E2, a two-way edge exists between two vertices in
P2(D). In this case, , the summation of input degrees is equal to that of the output degrees in every
vertex of P2(D) and power graph P2(D) is Eulerian. 2
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Example 3.23. The graph D in the following Figure is example of non-Eulerian graph that its
corresponding power graph is non-Eulerian and is shown in Figure 58.

a b

Figure 57: graph D is not Eulerian.

{a} {b}

{a, b}

Figure 58: Connected power graph P2(D) is non-Eulerian.

Proposition 3.24. Let D be a non-Eulerian graph. Then P2(D) is not Eulerian.

Of course a special case which was discussed in example 3.25 an exception. Assumed that graph D
is non-Eulerian, then its corresponding power graph is Eulerian.

Example 3.25. The graphs D in this example are both non-Eulerian (see Figures 59 and 61), but
their corresponding power graphs of P2(D), are Eulerian. (shown in Figures 60 and 62 ).

1. Give an example of a graph in which no two vertices are connected. we have V = {a, b} and
E = {(a, a), (b, b)}, (see Figure 59).

a b

Figure 59: Unconnected graph D is not Eulerian.

E2 ={({a}, {a}), ({a}, {a, b}), ({b}, {b}), ({b}, {a, b}), ({a, b}, {a}), ({a, b}, {b}), ({a, b}
, {a, b})}

Eulerian power graph P2(D) is shown in Figure 60.

2. In other example, V = {a, b, c} and E = {(a, a), (b, b), (c, c)}, (see Figure 61).
E2 = {({a}, {a}), ({a}, {a, b}), ({a}, {a, c}), ({a}, {a, b, c}), ({b}, {b}), ({a}, {a})}.

As we see in Figure 62, power graph P2(D) is Eulerian.

Theorem 3.26. Assume that E = Iv. Then power graph P2(D) is Eulerian.
Proof . first we must say that power graph P2(D) is connected and then prove that it contains one
Eulerian path. Given that E = Iv, so by the definition E2, we can conclude that from each vertex
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{a} {b}

{a, b}

Figure 60: Connected power graph P2(D) is Eulerian.

a b

c

Figure 61: Unconnected graph D is not Eulerian.

{a}

{b}

{c}

{a, b}{a, c}

{b, c}

{a, b, c}

Figure 62: Connected power graph P2(D)
is Eulerian.

in P2(D) an edge enters the vertex V and also there are an output edges from the vertex V to all
of the vertices in P2(D); hence, power graph D2 is evidently connected. At the same time, for each
(vi, vi) ∈ E, there is a two-way relationship between all vertices that have vi ∈ V members, and that
means, the summation of input degrees is equal to that of the output degrees in every vertex of P2(D).
Then power graph P2(D) is Eulerian. 2

3.3. Analyzing whether power graph Pi(D) is Eulerian (for 3 6 i 6 6) if connected graph D is
Eulerian or not:

We now illustrate theorem 3.28 with the following how many examples. The solution that we
gave for example 3.27, show that there is only one solution for be Eulerian each of power graphs
Pi(D) that 3 6 i 6 6. Let’s consider some examples of this.

Example 3.27. Which of the following graphs, its corresponding power graph is Eulerian? (for
3 6 i 6 6)
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1. D = (V,E) , V = {a, b} and E = {(a, a), (a, b), (b, a)}.
2. D′ = (V,E) , V = {a, b, c} and E = {(a, a), (a, b), (a, c), (b, a), (b, c), (c, a), (c, b), (c, c)}.
3. D′′ = (V,E) , V = {a, b} and E = {(a, a), (a, b), (b, a), (b, b)}.
4. D′′′ = (V,E) , V = {a, b, c} and E = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b),

(c, c)}.

Solution.

1. Graph D is Eulerian, (Figure 63). Let i = 4. Therefore, E4 = {({a}, {a}), ({a}, {b}),

a b

Figure 63: Eulerian graph D.

({a}, {a, b}), ({b}, {a}), ({b}, {a, b}), ({a, b}, {a}), ({a, b}, {a, b})}.
Let’s now turn our attention to the power graph P4(D) of Figure 64. According to the set of
edges E, one member of V as a ∈ V is connected to all members of V (including members
b ∈ V and itself from left). In this case, an edge enters all vertices {a} , {b} and {a, b} from
vertex {a}. But one member of V as b ∈ V is not connected itself. So, clearly by E4 that no
edges enter {b} from vertex {a, b} of power graph P4(D). While there is one edge from vertex
{b} to vertex {a, b}. Therefore,

Σb∈V d
+{b} 6= Σb∈V d

−{b}
Σa,b∈V d

+{a, b} 6= Σa,b∈V d
−{a, b}

Thus, P4(D) is not Eulerian. Or, pay attention to graph D′ in Figure 65.

{a} {b}

{a, b}

Figure 64: Power graph P4(D) is non-Eulerian.

2. Graph D′ is Eulerian. In this graph also, all members of V , are connected together, except one
member of V as b ∈ V that is not connected itself. So, by definition E4, all vertices in power
graph P4(D) have two-way connections except vertices having a member of b ∈ V . Therefore,
is clearly no edges enter vertex {b} from all of the vertices having member b. While there are
edges from vertex {b} to all of the vertices. Thus, the summation of input degrees is not equal
to that of the output degrees in these vertices of P4(D). So P4(D) is not Eulerian. In Figure
66, we have analyzed that the Eulerian condition on vertex {b}.
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a b

c

Figure 65: Eulerian graph D′ .

{a}

{b}

{c}

{a, b}
{a, c}

{b, c}

{a, b, c}

Figure 66: Power graph P4(D) is non-Eulerian.

3. But in graph D if member b ∈ V is also connected to itself, the graph D′′ is obtained, then by
E4 there will be an edge from {a, b} to {b} in P4(D). Therefore,

Σb∈V d
+{b} = Σb∈V d

−{b}
Σa,b∈V d

+{a, b} = Σa,b∈V d
−{a, b}

a b

Figure 67: Graph D′′.

This power graph is shown in Figure 68.

4. Also, assumed that we add (b, b) ∈ E to graph D′. The D′′′ is named for new graph (see in
Figure 69). Therefore all vertices having a member of b ∈ V are connected to vertex {b} and
the condition of Euler’s theorem is established in power graph P4(D). (is shown in Figure 70)

As we have seen, each member of V must be linked to all members of V in the set of edges E. Then
P4(D) is definitely Eulerian.
Now assumed that i = 3, 5, 6. For power graphs P3(D), P5(D) and P6(D) are solotion in the same
way as the power graph P4(D).
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{a} {b}

{a, b}

Figure 68: Power graph P4(D) is Eulerian.

a b

c

Figure 69: graph D′′′.

{a}

{b}

{c}

{a, b}
{a, c}

{b, c}

{a, b, c}

Figure 70: Power graph P4(D) is Eulerian.

Theorem 3.28. Euler’s theorem for power graph Pi(D) that 3 ≤ i ≤ 6.
Assume that Pi(D) = (Vi, Ei) is a power graph obtained from graph D = (V,E). In that case, Pi(D)
is Eulerian if and only if E = V × V .
(Note that if E = V × V , then power graphs P1(D) and P2(D) are Eulerian).

The proof is given for one of the Pi(D)’s for 3 6 i 6 6, the results will be similar for other power
graphs.
Proof . According to the assumption, graph D is Eulerian. Without missing out on the problem
generality, assume that E = V × V \ (vi, vi). In this case, D is also clearly Eulerian. All vertices in
power graph P4(D) have two-way connections except vertex {vi} and all vertices that have vi members;
however, there are edges from vertex {vi} to the vertices that have vi members, and no edges enter
vertex {vi} from those vertices. Hence, Euler’s theorem conditions are not true on vertex {vi} and
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all vertices that have vi members. In other word, power graph P4(D) shows:

Σvi∈V d
+({vi}) 6= Σvi∈V d

−({vi})
Σvi,vj∈V d

+({vi, vj}) 6= Σvi,vj∈V d
−({vi, vj})

.

.

.

Then P4(D) becomes non-Eulerian. however, as soon as (vi, vi) is added to E, edges enter vertex
{vi} from all vertices that have vi member. As a result, the summation of input and output degrees
of vertex {vi} and those of vertices having vi members will be equal, and power graph P4(D) becomes
Eulerian. Now suppose that power graph P4(D) is Eulerian. Consider an edege vi −→ vi+1 of graph
D. Clearly, there is an output edge from vertex {vi} to the number of 2n−1 vertices that having
member vi+1 in power graph P4(D). Since P4(D) is Eulerian, so it must an edge exits from the other
2n−1 vertices in P4(D), and enters to the vertex V = {v1, ..., vn}. Of course, shows obviously that
there is an input edge from vertex V to vertex {vi}. By E4, all the members in V are connected to vi
from left. This argument is for all of the vertices in power graph P4(D). Therefore all of the vertices
V are connected together and then E = V × V . 2

Corollary 3.29. If power graphs Pi(D) for 3 6 i 6 6 be Eulerian, then D is claerly Eulerian.

Corollary 3.30. If graph D is not Eulerian, is claerly none of the Pi(D)’s (for 3 6 i 6 6) will be
Eulerian.

Corollary 3.31. If any of the Pi(D)’s ( for 3 6 i 6 6) is not Eulerian, graph D may be Eulerian.
Notice the graphs D and D′ in example 3.27.

4. Eulerian Analysis of the power graphs Pi(D) and Pj(D) for 1 6 i, j 6 6 ; i 6= j

We see in this section that if power graph Di be Eulerian, then which of the power graphs Pj(D)
are Eulerian? (for 1 6 i, j 6 6 ; i 6= j). According to the theorems and results stated in the
section 3, we can clearly get to the following results.

Firstly, we have assumed that i = 1 and j = 2.

Theorem 4.1. If power graph P1(D) is Eulerian, then power graph P2(D) is Eulerian.
Proof . Let power graph P1(D) is Eulerian. Therefore, according to the conditions of being Eulerian
for P1(D), the matrix adjacent to the graph D will be symmetric. So by theorem 3.22, power graph
P2(D) is Eulerian. 2

Conversely this theorem is not true necessarily. For instance, we turn our attention to the examples
3.20 or 3.21. By the set of edges E, power graph P2(D) is Eulerian, but not P1(D). It must be
noted that if power graph P1(D) is not Eulerian, power graph P2(D) can be Eulerian. In simple
cycle graphs D with no loops (D is Eulerian), or symmetric graphs with no loops, P2(D) is definitely
Eulerian; however, P1(D) is not Eulerian.

Corollary 4.2. Assume that P2(D) is not Eulerian, so that P1(D) is definitely non-Eulerian.
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The following results for i = 1 and j = 3, ..., 6 is abserved:
Assumed that P1(D) is Eulerian. Then according to the theorem 3.28, Pj(D)’s may not be Eulerian.
But when Pj(D)’s are Eulerian, P1(D) is Eulerian. Now suppose that P1(D) is not Eulerian.It is
claerly none of the Pj(D)’s will be Eulerian. But if any of the Pj(D)’s is not Eulerian, P1(D) may
be Eulerian.
We have also i = 2 and j = 3, ..., 6. In this case, the results for P2(D) and Pj(D)’s, are exactly the
same way as P1(D) and Pj(D)’s for j = 3, ..., 6.
For all 3 6 i, j 6 6. As discussed earlier, power graphs Pi(D) is Eulerian if E = V ×V ; therefore, the
fact that any of these power graphs is Eulerian can guarantee that other power graphs are Eulerian.
Similarly, if they are not Eulerian, each of them states explicitly that others are not Eulerian, either.

5. Open problems

The abundance of unsolved power graph problems, a few of which are discussed in this section,
indicates that analysis of this newly-emerged area with patience, accuracy, and enthusiasm as well
as its many applications in medical, social, and economic sciences can lead to major breakthroughs
in mathematics.

1. Assume that D is a simple graph. Under what conditions can Pi(D)’s also be simple for
1 6 i 6 6.

2. Evidently, deg(v) = id(v)+od(v) = deg−(v)+deg
+
(v) in graph D is true for every vertex in Pi(D)’s

, (1 6 i 6 6).

(a) Determine the number of input/output edges of every vertex in Pi(D)’s for 1 6 i 6 6 with
respect to the corresponding graph D.

(b) How are the total input/output degrees of every Pi(D) related for 1 6 i 6 6
(c) If the input/output degrees of all members of V are a constant (k) in graph D, will there

be an i, (1 6 i 6 6) for which the input/output degrees of all members of Pi(D) become
a constant depending on k.

3. The maximum and minimum input/output degrees of D are shown as ∆−(D), δ−(D), ∆+(D)
and δ+(D), respectively. How are the maximum and minimum input/output degrees of every
Pi(D) related for 1 6 i 6 6.

4. A strongly directed graph is a directed graph with no loops in which there are no two edges in
the same direction between two of its vertices. Determine how Pi(D)’s for 1 6 i 6 6 can meet
the condition for being a strongly directed graph.

5. Consider the power graphs in which there are no directed cycles. Prove that δ−(Pi(D)) = 0.

6. Evidently, being strongly connected is an equivalence relation on the set of vertices in graph
D. Under what conditions is every Pi(D) strongly connected for 1 6 i 6 6.
(Two vertices are strongly connected in D if one vertex is accessible through the other vertex.
In other words, there should be a directed path between every two vertices.)

7. Shown as D←, the inverse version of graph D is a directed graph created by inverting the
direction every arc. Which of the following equations is true for power graphs (1 6 i 6 6).

(a) Pi(D) = Pi(D
⇔)

(b) δ−Pi(D)(v) = δ+Pi(D←)(v)

(c) Determine the relationship between two strongly connected vertices in Pi(D
←) related for

1 6 i 6 6.

8. Determine the length of a directed path and that of a directed cycle in Pi(D) for 1 6 i 6 6.

9. How is the distance between two vertices in Pi(D)’s for 1 6 i 6 6.
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10. Assume that D = (V,E) is a connected graph. Which Pi(D)’s is connected for 1 6 i 6 6, and
vice versa.

(a) If graph D is unconnected, can any of Pi(D)’s be connected for 1 6 i 6 6, and vice versa.
(b) What is the necessary and sufficient condition for connectedness of every Pi(D) for 1 6

i 6 6.

(The questions on the connectedness of power graphs were answered completely.)

11. If graph D is semi-Eulerian, which of Pi(D)’s will be semi-Eulerian for 1 6 i 6 6. Under what
conditions will every Pi(D) be semi-Eulerian for 1 6 i 6 6.

12. Assume that D is a Hamiltonian (semi-Hamiltonian) graph. Which of Pi(D)’s is Hamiltonian
(semi-Hamiltonian) for 1 6 i 6 6. On the contrary, which Hamiltonian Pi(D)’s can result in a
Hamiltonian D.

(a) If graph D is non-Hamiltonian, can any of Pi(D) be Hamiltonian for 1 6 i 6 6, and vice
versa.

(b) Analyze the necessary and sufficient condition for every Pi(D) to be Hamiltonian (non-
Hamiltonian) for 1 6 i 6 6.

(c) If power graph Pi(D) is Hamiltonian, which Pj(D) is Hamiltonian (1 6 i, j 6 6 ; i 6= j).

13. Analyze the homomorphism of power graphs for 1 6 i 6 6.

14. How can every Pj(D) be a complete power graph for 1 6 i 6 6.

15. A directedness of a complete graph is called a tournament. Determine whether every tourna-
ment of a power graph for 1 6 i 6 6 has a directed Hamiltonian path.

16. How can a tournament of power graphs for 1 6 i 6 6 become a strongly connected tournament.

17. Consider the one-way directed graph D. What is the necessary and sufficient condition for
every Pi(D) for 1 6 i 6 6. (The directed graph D is one-way if there is either a path from u
to v or from v to u in D.)

18. Camion proved for the first time ever that every strongly connected tournament included a
directed Hamiltonian cycle in D. Under what conditions can Pi(D)’s have such a directed
Hamiltonian cycle for 1 6 i 6 6.

19. Can the ancestral sets of power graphs be employed to analyze their relationships.

20. Can the ancestral graphs of power graphs be adopted to analyze their relationships.

21. What is the necessary and sufficient condition for every Pi(D) to be a tree for 1 6 i 6 6.

22. How the power graphs discussed in this article, are used in the social sciences.

23. If we consider the graph D as the personal preferences of the people in the set V , under what
conditions which of the Pi(D)’s can be some kind of new preference on the power set V .
This can have important applications in economics. For example in matching theory etc.

24. Is it possible to investigate subjects from microeconomics to macroeconomics with the help of
the six definitions in this article?

25. Is it possible to analyze the properties of groups created in social networks with the help of the
models presented in this article?

Dear researchers, it is reiterated that all questions about the connectedness of power graphs
mentioned in Item 10 were answered.

Conclusion

In this paper, we define power graphs related to a graph. The power graphs are new type of
graphs based on six logical relationships, and the general conditions for Eulerian are presented as
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a few theorems. Given some applications of power graphs, efforts were made to introduce the area
in which these graphs can be used. In addition to presenting other features of power graphs, future
papers seek to discuss more accurate applications of these graphs in socioeconomic sciences.
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