Z-prime gamma submodule of gamma modules

Ali Abd Alhussein Zyarah ${ }^{\text {a,* }}$, Ahmed Hadi Hussain ${ }^{\text {b }}$, Hayder Kadhim Zghair ${ }^{\text {c }}$
${ }^{2}$ Iraqi Ministry of Education, General Directorate of Education for the Holy Karbala, Karbala, Iraq
${ }^{b}$ Department of Energy Engineering, College of Engineering Al-Musayab, University of Babylon, Babil, Iraq
${ }^{\text {c Department of Software, Information Technology College, University of Babylon, Iraq }}$
(Communicated by Madjid Eshaghi Gordji)

Abstract

Let R be a Γ-ring and ∂ be an $R \Gamma$-module. A proper $R \Gamma$-submodule. T of an $R \Gamma$-module ∂ is called Z-prime $R \Gamma$-submodule if for each $t \in \partial, \gamma \in \Gamma$ and $f \in \partial^{*}=\operatorname{Hom}_{R_{\Gamma}}(\partial, R), f(t) \gamma t \in T$ implies that either $t \in T$ or $f(t) \in\left[T:_{R_{\Gamma}} \partial\right]$. The purpose of this paper is to introduce interesting theorems and properties of Z- prime $R \Gamma$-submodule of $R \Gamma$-module and the relation of Z-prime $R \Gamma$-submodule, which represents of generalization Z-prime R-submodule of R-module.

Keywords: $\quad \Gamma$-ring, $R \Gamma$-module, $R \Gamma$-submodule, and prime $R \Gamma$-submodule.
2010 MSC: Please write mathematics subject classification of your paper here.

1. Introduction

The topic of a Γ-ring was introduced in 1964 by Nobusawa [4. He considered a set of homeomorphisms of a module to another module, which as closed under the addition and subtraction defined naturally but has no more a structure of a ring since he cannot have defined the product. After that, Barnes in [4, 6] weakened the generalization of Nobusawa. Then, many papers studied the Γ-ring in several algebraic structures. In [3], Ameri and Sadeghi presented the concept of a gamma modules in R investigate at some such modules. In this regard, we investigate submodules and homomorphism of a gamma modules and give the related basic results of a gamma modules. In 2005, Tekır and Sengul [7] presented the concept of prime ГМ-submodules of $Г$ M-modules and discussed some interesting and useful properties. Also, Zyarah and al-Mothafar provided the defining the semiprime $R \Gamma$-submodule of $R \Gamma$-module and the relation of semiprime $R \Gamma$-submodule. With multiplication $R \Gamma$-modules [11]. Also, in another work [10], they introduced some results and properties of primary

[^0]$R \Gamma$-submodule and the definition for primary radical of $R \Gamma$-submodule of $R \Gamma$-module besides some of its basic properties. In this paper, Z-prime $R \Gamma$-submodule of $R \Gamma$-module and are investigated the basic properties, some theorems, and propositions. In addition, the relation between Z- prime $R \Gamma$-submodule with other $R \Gamma$-modules is investigated.

2. Preliminaries

Definition 2.1. [6] Let R and Γ be an additive abelian groups, so we'll consider R is a Γ-ring R, shortly (ΓR) if there exists a mapping $\hbar: R \times \Gamma \times R \rightarrow R$ such that for every $d_{1}, d_{2}, d_{3} \in R$ and $\gamma, \delta \in \Gamma$, the following conditions are hold:
i. $\left(d_{1}+d_{2}\right) \gamma d_{3}=d_{1} \gamma d_{3}+d_{2} \gamma d_{3}$.
ii. $d_{1}(\gamma+\delta) d_{3}=d_{1} \gamma d_{3}+d_{1} \delta d_{3}$.
iii. $d_{1} \gamma\left(d_{2}+d_{3}\right)=d_{1} \gamma d_{2}+d_{1} \gamma d_{3}$.
iv. $\left(d_{1} \gamma d_{2}\right) \delta d_{3}=d_{1} \gamma\left(d_{2} \delta d_{3}\right)$.

Definition 2.2. [3] A left $R \Gamma$-module is an additive abelian group ∂ together with a mapping \hbar : $R \times \Gamma \times \partial \rightarrow \partial$ such that for all $h, h_{1}, h_{2} \in \partial$ and $\gamma, \gamma_{1}, \gamma_{2} \in \Gamma, r_{1}, r_{2}, r_{3} \in R$ the following hold:
i. $r_{3} \gamma\left(h_{1}+h_{2}\right)=r_{3} \gamma h_{1}+r_{3} \gamma h_{2}$.
ii. $\left(r_{1}+r_{2}\right) \gamma h=r_{1} \gamma h+r_{2} \gamma h$.
iii. $r_{3}\left(\gamma_{1}+\gamma_{2}\right) h=r_{3} \gamma_{1} h+r_{3} \gamma_{2} h$.
iv. $r_{1} \gamma_{1}\left(r_{2} \gamma_{2}\right) h=\left(r_{1} \gamma_{1} r_{2}\right) \gamma_{2} h$, aright $R \Gamma$-module is defined in analogous manner.

Definition 2.3. [7] A proper $R \Gamma-S . T$ of ∂ is called prime $R \Gamma$-submodule, shortly $(P . R \Gamma-S$.$) if$ for any an ideal J of ΓR and for any $R \Gamma-S$. H of ∂, $J \Gamma H \subseteq T$ implies $H \subseteq T$ or $J \subseteq\left[T:_{R_{\Gamma}} \partial\right]$.

Definition 2.4. [12] Let T be a proper $R \Gamma-S$. of a $R \Gamma$-module ∂. The $R \Gamma-S$. T of ∂ is called that S-prime $R \Gamma-S$., whenever $\varphi(K) \subseteq T$, for some K be a $R \Gamma-S$. of ∂ and $\varphi \in \operatorname{End}_{R_{\Gamma}}(\partial)$, implies that $K \subseteq T$ or $\varphi(\partial) \subseteq T$.

Definition 2.5. [1] An R R-module ∂ is called Jacobson radical, denoted by $J_{\Gamma}(\partial)$, by $J_{\Gamma}(\partial)=$ $\sum\left\{Y \mid Y\right.$ is $R_{\Gamma}-$ small R_{Γ} - submodule of $\left.\partial\right\}$.

Definition 2.6. [5] An $R \Gamma$-module ∂ is called $R \Gamma$-faithful if it's $R \Gamma$-annihilator is the zero ideal of $a \Gamma R$.

Definition 2.7. [8] An ideal A of $a \Gamma R$ is called prime if for any ideals I and J of $R, I \Gamma J \subseteq A$ implies, either $I \subseteq A$ or $J \subseteq A$.

Definition 2.8. [2] Let ∂ be an $R \Gamma$-module. We said that ∂ is a multiplication $R \Gamma$-module if any proper $R \Gamma-S . T$ of ∂, then there exist any ideal I of ΓR such that $T=I \Gamma \partial$.

3. Z-Prime $R \Gamma$-submodule of $R \Gamma$-modules

In this section, we introduced $Z-P . R \Gamma-S$. of $R \Gamma$-modules some propositions, and theorems.
Definition 3.1. A proper $R \Gamma-S$. T of an $R \Gamma$-module ∂ is called $Z-P . R \Gamma-S$. if for each $t \in \partial$, $\gamma \in \Gamma$ and $f \in \partial^{*}=\operatorname{Hom}_{R_{\Gamma}}(\partial, R), f(t) \gamma t \in T$ implies that either $t \in T$ or $f(t) \in\left[T:_{R_{\Gamma}} \partial\right]$.

Remark and Example 3.2. 1. Every Z-prime R-submodule is $Z-P . R \Gamma-S$. but the converse isn't true in general, as in the following example:
Let Z be a $Z_{2 Z}$-module, $\Gamma=2 Z$ and $6 Z$ be A proper $Z_{2 Z}-S$. of Z. Then $6 Z$ is $Z-P . Z_{2 Z}-S$. of Z, since $\varphi \in Z^{*}=\operatorname{Hom}_{Z_{2 Z}}(Z, Z)=Z$ and $\varphi: Z \rightarrow Z ; \varphi(a)=3 a, a \in Z$ and so $\varphi(a) \gamma(a) \in 6 Z$ also $\varphi(a) \in\left[6 Z: Z_{2 Z} \quad Z\right]=3 Z$. But $6 Z$ is not Z-prime of $Z-S$. of Z, since $\varphi \in Z^{*}=\operatorname{Hom}_{Z}(Z, Z)=Z$ and $\varphi: Z \rightarrow Z ; \varphi(a)=3 a, a \in Z$ and so $\varphi(a) \cdot a \in 6 Z$ also $\varphi(a) \notin 6 Z=\left[6 Z:_{Z} Z\right]$.
2. Every P.R $-S$. is $Z-P . R \Gamma-S$., but the converse is not true in general, as in the following example: Let $\partial=Z_{8}$ be a $Z_{2 Z}$-module, $\Gamma=2 Z$ and $T=<\overline{4}>$ be a proper $Z_{2 Z}$-submodule of Z_{8}. Then $<\overline{4}>$ is Z-prime $Z_{2 Z}$-submodule, since $f \in Z^{*}=\operatorname{Hom}_{Z_{2 Z}}\left(z_{8}, Z\right)=0$ and so $f(a) \alpha a=0 \in<\overline{4}>$ for all $a \in Z_{8}$ and $0 \in\left[<\overline{4}>:_{Z_{2 Z}} Z_{8}\right]$. But $<\overline{4}>$ is not prime $Z_{2 Z}$-submodule, since $2 \in 2 Z, 2 \in Z_{8}, 1 \in Z$ such that $(1)(2)(2) \in<\overline{4}>$ but $2 \notin<\overline{4}>$ and $2 \notin\left[<\overline{4}>:_{Z_{2 Z}} Z_{8}\right]$.
3. Let I be an ideal of $a \Gamma R$, then I be a Z-prime ideal if for every $r \in R, f \in R^{*}=H o m_{R_{R}}(R, R)$ such that $f(r) \gamma r \in I$ implies that either $r \in I$ or $f(r) \in I$.

Lemma 3.3. Let D and F be any two $R \Gamma$ - S.s of an $R \Gamma$-module ∂, if $\left[D:_{R_{\Gamma}} x\right]$ is a Z-prime ideal of $a \Gamma R$ for each $x \in F$, then $\left[D:_{R_{\Gamma}} F\right]$ is a Z-prime ideal of $a \Gamma R$.

Proof . Let $f \in R^{*}=\operatorname{Hom}_{R_{R}}(R, R), b \in R$ such that $f(b) \alpha b \in\left[D:_{R_{\Gamma}} F\right]$ and so, $f(b) \alpha b \alpha u \in E$ for all $\alpha \in \Gamma, u \in D$, then

$$
\begin{equation*}
f(b) \alpha b \in\left[D:_{R_{\Gamma}}<u>\right] \tag{3.1}
\end{equation*}
$$

But $\left[D:_{R_{\Gamma}}<u>\right]$ is Z-prime ideal, so either $f(b) \in\left[D:_{R_{\Gamma}}<u>\right]$ or $b \in\left[D:_{R_{\Gamma}}<u>\right]$. Thus for any $\alpha \in \Gamma, u \in D$, either $f(b) \alpha u \in D$ or $b \alpha u \in D$. Suppose that $f(b) \notin\left[D:_{R_{\Gamma}} F\right]$ and $b \notin\left[D:_{R_{\Gamma}} F\right]$, there exists $v, w \in F$ such that $f(b) \alpha v \notin D$ and $b \alpha v \notin D$. Hence $f(b) \notin\left[D:_{R_{\Gamma}}<v>\right]$ and $b \notin\left[D:_{R_{\Gamma}}<w>\right]$. But by (3.1), $f(b) \alpha b \in\left[D:_{R_{\Gamma}}<v>\right]$ which is a Z-prime ideal, hence $b \in\left[D:_{R_{\Gamma}}<v>\right]$. Thus bav $\in D$, similarly, $f(b) \alpha b \in\left[D:_{R_{\Gamma}}<w>\right]$ implies that $f(b) \alpha b \alpha w \in D$. On the other hand, by (3.1) $f(b) \alpha b \in\left[D:_{R_{\Gamma}}<v+w>\right]$, so either $f(b) \in\left[D:_{R_{\Gamma}}<v+w>\right]$ or $b \in\left[D:_{R_{\Gamma}}<v+w>\right]$. Hence either $f(b) \alpha<v+w>\in D$ or $b \alpha<v+w>\in D$, which means either $f(b) \alpha v+f(b) \alpha w=d_{1} \in D$ or $b \alpha v+b \alpha w=d_{2} \in D$. Then either $f(b) \alpha v-d_{1}=f(b) \alpha w \in D$ or $b \alpha w-d_{2}=b \alpha w \in D$, which is contradiction. Therefore either $f(b) \in\left[D:_{R_{\Gamma}} F\right]$ or $b \in\left[D:_{R_{\Gamma}} F\right]$.

Proposition 3.4. Let L be a $Z-P . R \Gamma-S$. of an $R \Gamma$-module ∂ and T be a summand of ∂, then either $T \subseteq L$ or $T \bigcap L$ is a $Z-P . R \Gamma-S$. of ∂.

Proof. Let $f \in T^{*}=\operatorname{Hom}_{R_{\Gamma}}(T, R)$ and $a \in T$ such that $f(a) \gamma a \in T \bigcap L$. Suppose that $T \not \subset L$, then $T \bigcap L$ be a proper $R \Gamma-S$. of T. Suppose that $a \notin T \bigcap L$, since T be a summand of ∂ then there exist a projection $\rho: \partial \rightarrow T$ and $f: T \rightarrow R$ such that $f(a) \gamma a=f \circ \rho(a) \gamma a \in L, \gamma \in \Gamma$ and $a \notin L$. Then $f \circ \rho(a) \in\left[L:_{R_{\Gamma}} \partial\right] \subseteq\left[L:_{R_{\Gamma}} T\right]$, since L be a $Z-P . R \Gamma-S$. of ∂. Thus $f(a) \Gamma T \subseteq L$ and $f(a) \Gamma T \subseteq T$, and therefore, $f(a) \in\left[L \bigcap T:_{R_{\Gamma}} T\right]$.

Remark 3.5. Let T be a $Z-P . R \Gamma-S$. of $R \Gamma$-module ∂, then T is called $P-Z$-prime $R \Gamma-S$., where $P=\operatorname{rad}_{\Gamma}\left(\left[T:_{R_{\Gamma}} \partial\right]\right)$ and hence if $<0>$ is a $Z-P . R \Gamma-S$. of ∂, then $<0>$ is $P=\operatorname{rad}_{\Gamma}\left(\left[0:_{R_{\Gamma}}\right.\right.$ $\partial])=\operatorname{rad}_{\Gamma}\left(a n n_{\Gamma}(\partial)\right)-Z-P . R \Gamma-S$. of ∂.

Proposition 3.6. Let P be a Z-prime ideal of $a \Gamma R$ and let n be a positive integer. T_{i} be a $P-Z-$ $P . R \Gamma-S$. of an $R \Gamma$-module ∂ such that $1 \leq i \leq n$. Then $\bigcap_{i=1}^{n} T_{i}$ is also $P-Z-P . R \Gamma-S$. of ∂.
Proof . Let $f \in \partial^{*}=\operatorname{Hom}_{R_{\Gamma}}(\partial, R)$ and $x \in \partial$ such that $f(x) \gamma x \in \bigcap_{i=1}^{n} T_{i}$. It's clear that $P=\operatorname{rad}_{\Gamma}\left(\left[\bigcap_{i=1}^{n} T_{i}:_{R_{\Gamma}} \partial\right]\right)$. Suppose that $x \notin \bigcap_{i=1}^{n} T_{i}$, then there exist $m \in \mathbb{Z}^{+}$with $1 \leq m \leq n$ such that $x \notin T_{m}$. But $f(x) \gamma x \in T_{m}$ and T_{m} is a $P-Z-P . R \Gamma-S$. of ∂. It follows that $f(x) \in P$ and hence $\bigcap_{i=1}^{n} T_{i}$ is a $P-Z-P . R \Gamma-S$. of ∂.
Proposition 3.7. Let T be a $R \Gamma-S$. of an $R \Gamma$-module ∂ and let P be a prime ideal of $a \Gamma R$. If $\left[T:_{R_{\Gamma}} K\right] \subseteq P$ for each $R \Gamma-S . K$ of ∂ containing T properly $P \subseteq\left[T:_{R_{\Gamma}} \partial\right]$, then T be a $Z-P . R \Gamma-S$. of ∂.
Proof . Let $\xi \in \partial^{*}=\operatorname{Hom}_{R_{\Gamma}}(\partial, R)$ and $t \in \partial$ such that $\xi(t) \gamma t \in T$. Suppose that $x \notin T$ and let $K=T+<t>$ and so $K R \Gamma-S$. properly containing T properly, but $\xi(t) \gamma K=\xi(t) \gamma T+\xi(t) \gamma<$ $t>\subseteq T$. And hence $\xi(t) \in\left[T:_{R_{\Gamma}} K\right] \subseteq P \subseteq\left[T:_{R_{\Gamma}} \partial\right]$. Thus T be a $Z-P . R \Gamma-S$. of ∂.
Proposition 3.8. Let ∂_{1} and ∂_{2} be two $R \Gamma$-modules and $\partial=\partial_{1} \bigoplus_{\Gamma} \partial_{2}$. If $T=T_{1} \bigoplus_{\Gamma} T_{2}$ is a $Z-P . R \Gamma-S$. of ∂, then T_{1} and T_{2} are a Z-prime $Z-P . R \Gamma-S . s$ of ∂_{1} and ∂_{2} respectively.

Proof . To show that ∂_{1} is a $Z-P . R \Gamma-S$. of ∂_{1}. Let $f \in \partial_{1}^{*}=\operatorname{Hom}_{R_{\Gamma}}\left(\partial_{1}^{*}, R\right), t \in \partial_{1}$ and $\gamma \in \Gamma$ such that $(t) \gamma t \in T_{1}$, then $(f \circ \rho)(t, 0) \gamma(t, 0) \in T_{1} \bigoplus_{\Gamma} T_{2}$, where $\rho: \partial_{1} \bigoplus_{\Gamma} \partial_{2} \rightarrow \partial_{1}$. Since T is a $Z-P . R \Gamma-S$. of ∂, then either $(t, 0) \in T_{1} \bigoplus_{\Gamma} T_{2}$ or $f(t) \in\left[T_{1} \bigoplus_{\Gamma} T_{2}:_{R_{\Gamma}} \partial_{1} \bigoplus_{\Gamma} \partial_{2}\right]$. Thus either $t \in T_{1}$ or $f(t) \in\left[T_{1}:_{R_{\Gamma}} \partial_{1}\right] \bigcap\left[T_{2}:_{R_{\Gamma}} \partial_{2}\right]$ and $f(t) \in\left[T_{1}:_{R_{\Gamma}} \partial_{1}\right]$. Therefore, T_{1} is a $Z-P . R \Gamma-S$. of ∂_{1} and similarly to prove T_{2} is a $Z-P . R \Gamma-S$. of ∂_{2}.
Proposition 3.9. Let $\partial, \partial^{\prime}$ be an $R \Gamma$-modules and $\varphi: \partial \rightarrow \partial^{\prime}$ be an $R \Gamma$-epimorphism. If T is a $Z-P . R \Gamma-S$. of ∂ and $\operatorname{Ker} \varphi \subseteq T$, then $\varphi(T)$ is a $Z-P . R \Gamma-S$. of ∂^{\prime}.
Proof . To show that $\varphi(T)$ is a proper $R \Gamma-S$. of ∂^{\prime}. Suppose that $\varphi(T)=\partial^{\prime}$, since φ is an $R \Gamma$-epimorphism, then $\varphi(T)=\varphi(\partial)$ and $\partial=T+\operatorname{Ker} \varphi$, but $\operatorname{Ker} \varphi \subseteq T$, hence $T=\partial$ which is contradiction, since T is $Z-P . R \Gamma-S$. of ∂. Now, we define $\psi \in\left(\partial^{\prime}\right)^{*}=H o m_{R_{\Gamma}}\left(\partial^{\prime}, R\right)$ and $w \in \partial^{\prime}$, let $\psi(w) \gamma w \in \varphi(T), \gamma \in \Gamma$ and, $w \notin \varphi(T)$. Since φ is an $R \Gamma$-epimorphism, then there exist $u \in \partial$ such that $\varphi(u)=w$ and $u \notin T$. Then $\psi(w) \gamma w=\psi(w) \gamma \varphi(u) \in \varphi(T)$ and $\varphi(\psi(w) \gamma(u)) \in \varphi(T)$, since $\operatorname{Ker} \varphi \subseteq T$, then $\psi(w) \gamma(u) \in T$. Since T is a $Z-P . R \Gamma-S$. of ∂ and $u \notin T$, then $\psi(w) \in\left[T:_{R_{\Gamma}} \partial\right]$. Thus $\varphi(\psi(w) \Gamma \partial) \subseteq \varphi(T)$ and $\psi(w) \Gamma \varphi(\partial) \subseteq \varphi(T)$, then $\psi(w) \in\left[\varphi(T):_{R_{\Gamma}} \partial^{\prime}\right]$. Therefore $\varphi(T)$ is a $Z-P . R \Gamma-S$. of ∂^{\prime}.
Proposition 3.10. Let $\partial, \partial^{\prime}$ be an $R \Gamma$-modules and $\varphi: \partial \rightarrow \partial^{\prime}$ be an $R \Gamma$-monomorphism. If T^{\prime} is a $Z-P . R \Gamma-S$. of ∂^{\prime} and $\varphi(\partial) \not \subset T^{\prime}$, then $\varphi^{-1}\left(T^{\prime}\right)$ is a $Z-P . R \Gamma-S$. of ∂.
Proof . To show that $\varphi^{-1}\left(T^{\prime}\right)$ is a proper $R \Gamma-S$. of ∂. Suppose that $\varphi^{-1}\left(T^{\prime}\right)=\partial$, let $x \in \partial$ and $x \in \partial^{-1} T^{\prime}$, then $\varphi(\partial) \subseteq T^{\prime}$ which is contradiction. Now, we define $f \in(\partial)^{*}=\operatorname{Hom}_{R_{\Gamma}}(\partial, R)$ and $w \in \partial$. Suppose that $w \notin \varphi^{-1}\left(T^{\prime}\right)$ and $\gamma \in \Gamma$, then $\varphi(w) \notin T^{\prime}$. Let $f(w) \gamma w \in \varphi^{-1}\left(T^{\prime}\right)$, then $\varphi(f(w) \gamma w) \in T^{\prime}$ and $f(w) \gamma \varphi(w) \in T^{\prime}$. Since φ is an $R \Gamma$-monomorphism, we put $\varphi^{-1} \varphi(w)=w$, then $f\left(\varphi^{-1}(\varphi(w))\right) \gamma \varphi(w) \in T^{\prime}$ and $f \varphi^{-1}(\varphi(w)) \gamma \varphi(w) \in T^{\prime}$ is a $Z-P . R \Gamma-S$. of ∂^{\prime} and $\varphi(w) \notin T^{\prime}$, then $f \varphi^{-1}(\varphi(w)) \in\left[T^{\prime}:_{R_{\Gamma}} \partial^{\prime}\right]$. Thus $f(w) \Gamma \varphi(\partial) \subseteq f(w) \Gamma \partial^{\prime} \subseteq T^{\prime}$ and $f(w) \Gamma \partial \subseteq \varphi^{-1}\left(T^{\prime}\right)$, hence $f(w) \in\left[\varphi^{-1}\left(T^{\prime}\right):_{R_{\Gamma}} \partial\right]$. Therefore $\varphi^{-1}\left(T^{\prime}\right)$ is a $Z-P . R \Gamma-S$. of ∂.
Corollary 3.11. Let T and L be a two $Z-P . R \Gamma-S . s$ of $R \Gamma$-module ∂ and $L \subseteq T$, then T is a $Z-P . R \Gamma-S$. of ∂ if and only if T / L is a $Z-P . R \Gamma-S$. of ∂ / L [9].

4. Z-Prime $R \Gamma-S$.s of a Faithful Multiplication $R \Gamma$-modules

We present in this section Z-prime $R \Gamma$ - S.s of multiplication $R \Gamma$-modules and also give some examples, propositions and theorems of this.

Proposition 4.1. Let T be a proper $R \Gamma-S$. of cyclic faithful $R \Gamma$-module ∂. If T is a $Z-P . R \Gamma-S$. of ∂, then T is a P.RГ -S. of ∂.
Proof . Let $t \in \partial, k \in R$ and $\beta \in \Gamma$ such that $k \beta t \in T$ and $t \notin T$. Suppose that $\partial=<x>, x \in \partial$, then $t=x \beta r, r \in R$. Define $\eta: \partial \rightarrow R$ by $\eta(t)=\eta(k \beta x)=k$. Since ∂ is a faithful $R \Gamma$-module, then η is well-define and which implies that $\eta(t) \beta(t) \in T$ and $x \notin T$, since T is a $Z-P . R \Gamma-S$. of ∂, then $\eta(t) \in\left[T:_{R_{\Gamma}} \partial\right]$. Thus $k \in\left[T:_{R_{\Gamma}} \partial\right]$ and therefore T is $P . R \Gamma-S$. of ∂.
Corollary 4.2. Let T be a proper $R \Gamma-S$. of a cyclic faithful $R \Gamma$-module ∂. If T is a $Z-P . R \Gamma-S$. of ∂, then $\left[T:_{R_{\Gamma}} \partial\right]$ is a Z-prime ideal of a ΓR.
Proposition 4.3. Let T be a proper $R \Gamma-S$. of a multiplication $R \Gamma$-module ∂. If $\left[T:_{R_{\Gamma}} \partial\right]$ is a Z-prime ideal of a ΓR, then T is a $Z-P . R \Gamma-S$. of ∂.
Proof . Let $f \in \partial^{*}=\operatorname{Hom}_{R_{\Gamma}}(\partial, R), t \in \partial$ and $\gamma \in \Gamma$ such that $f(t) \gamma t \in T$, then $f(t) \Gamma<t>\subseteq T$ and $<t>=I \Gamma \partial$ for some an ideal I in a ΓR. Since ∂ is a multiplication $R \Gamma$-module and so $f(t) \Gamma I \Gamma \partial \subseteq T$, then $f(t) \Gamma I \subseteq\left[T:_{R_{\Gamma}} \partial\right]$ and $<f(t)>\Gamma I \subseteq\left[T:_{R_{\Gamma}} \partial\right]$. Now, we define $g: R \rightarrow R$, it's clear that $g \in R^{*}$. Now, $g(<f(t)>) \Gamma I \subseteq\left[T:_{R_{\Gamma}} \partial\right]$. Since $\left[T:_{R_{\Gamma}} \partial\right] \mathrm{s}$ a Z-prime ideal of a ΓR, then $<f(t)>\subseteq\left[T:_{R_{\Gamma}} \partial\right]$ or $I \subseteq\left[T:_{R_{\Gamma}} \partial\right]$. If $<f(t)>\subseteq\left[T:_{R_{\Gamma}} \partial\right]$, then $f(t) \in\left[T:_{R_{\Gamma}} \partial\right]$. If $I \subseteq\left[T:_{R_{\Gamma}} \partial\right]$, then $<t>\subseteq T$ i.e., $t \in T$. Thus T is a $Z-P . R \Gamma-S$. of ∂.
Corollary 4.4. Let T be a proper $R \Gamma-S$. of a cyclic faithful $R \Gamma$-module ∂. Then $\left[T:_{R_{\Gamma}} \partial\right]$ is a Z-prime ideal of $a \Gamma R$ if and only if T is a $Z-P . R \Gamma-S$. of ∂.
Proposition 4.5. Let ∂ be a finitely generated multiplication $R \Gamma$-module. If I is a Z-prime ideal of $a \Gamma r$ such that ann ${R_{\Gamma}}(\partial) \subseteq I$, then $I \Gamma \partial$ is a $Z-P . R \Gamma-S$. of ∂.
Proof . Let $f \in \partial^{*}=\operatorname{Hom}_{R_{\Gamma}}\left(\partial^{*}, R\right), t \in \partial$ and $\gamma \in \Gamma$ such that $f(t) \gamma t \in I \Gamma \partial$, then $f(t) \Gamma<t>\subseteq$ $I \Gamma \partial$. Since ∂ is a multiplication $R \Gamma$-module, then $\langle t\rangle=A \Gamma \partial$ for some A be an ideal in a ΓR, and $f(t) \Gamma А Г \partial \subseteq I \Gamma \partial$. Then $f(t) \Gamma A \subseteq I+\operatorname{ann}_{R_{\Gamma}}(\partial)=I$ by [?]. Now, we define $g: R \rightarrow R$, it's clear that $g \in R^{*}$. Now, $g(f(t)) \Gamma A \subseteq I$. Since I is a Z-prime ideal of a ΓR, then $f(t) \in I$ and $f(t) \in\left[I \Gamma \partial:_{R_{\Gamma}} \partial\right]$ or $A \subseteq I$ and $A \Gamma \partial \subseteq I \Gamma \partial$ also $<t>\subseteq I \Gamma \partial$. Thus $f(t) \in\left[I \Gamma \partial:_{R_{\Gamma}} \partial\right]$ or $t \in I \Gamma \partial$ and therefore, $I \Gamma \partial$ is a $Z-P . R \Gamma-S$. of ∂.
Proposition 4.6. Let ∂ be a cyclic $R \Gamma$-projective $R \Gamma$-module. If T is a $Z-P . R \Gamma-S$. of ∂, then T is a $S-P . R \Gamma-S$. of ∂.
Proof . Let $f \in \operatorname{End}_{R_{\Gamma}}(\partial), w \in \partial$ and $\partial=R \Gamma w, \gamma \in \Gamma$ such that $f(w) \in T$ and $w \notin T$. Since ∂ is a cyclic $R \Gamma$-module, then there exist $h: R \rightarrow \partial$ define by $h(r)=r \gamma w$, for each $r \in R$. Since ∂ is projective $R \Gamma$-modules, then there an exist $R \Gamma$-homomorphism $\theta: \partial \rightarrow R$, such that $h \circ \theta=f$. Clearly $h \circ \theta \in \operatorname{End}_{R_{\Gamma}}(\partial), f(w)=h(\theta(w))=\theta(w) \gamma w \in T$ since $\theta \in \partial^{*}=H_{o m}^{R_{\Gamma}}\left(\partial^{*}, R\right)$ and T is a $Z-P . R \Gamma-S$. of $\partial, w \notin T$, then $\theta(w) \Gamma \partial \subseteq T$. Now, $f(\partial)=(h \circ \theta)(\partial)=h(\theta(\partial))=\theta(\partial) \Gamma \partial \subseteq T$ and therefore, T is a $S-P . R \Gamma-S$. of ∂.

Proposition 4.7. Let ∂ be a cyclic Rw3b b_{Γ}-projective $R \Gamma$-module and T be a proper $R \Gamma-S$. of ∂, then the following are equivalent:

1. T is a $Z-P . R \Gamma-S$. of ∂.
2. T is a $S-P . R \Gamma-S$. of ∂.
3. T is a P.RГ -S. of ∂.

5. Conclusions

In this paper, Z-prime $R \Gamma$-submodule of $R \Gamma$-module and are investigated the basic properties, some theorems, and propositions. In addition, the relation between Z- prime $R \Gamma$-submodule with other $R \Gamma$-modules is investigated.

References

[1] M.S. Abbas, H.R. Hassan and H.A. Abbas, On Γ R-projective gamma modules, Int. J. Algebra, 12(2) (2018) 53-60.
[2] M.S. Abbas, H.R. Hassan and H.A. Abbas, Γ R-multiplication and ΓR-projective gamma Modules, Int. J. Contemporary Math. Sci. 13(2) (2018) 87-94.
[3] R. Ameri and R. Sadeghi, Gamma modules, Ratio Math. 20(1) (2010) 127-147.
[4] W. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18(3) (1966) 411-422.
[5] A. ezaei and B. Davvaz, Tensor product of gamma modules, Afrika Mat. 26(7) (2015) 1601-1608.
[6] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1(1) (1964) 81-89.
[7] U. Tekır, U. Sengül and G. Ziverbey, On prime Γ (2005) 123-128.
[8] S. Uddin and S. Islam, Semi-prime ideals of gamma rings, Ann. Pure Appl. Math. 1(2) (2012) 186-191.
[9] A.A.A. Zyarah and A.K.H. Alghafil, General formula for particular solution to the ordinary differential equation by variation of parameters of $k^{\text {th }}$ order, J. Interdis. Math.24(4) (2021) 1-6.
[10] A.A.A. Zyarah and N.S. Al-Mothafar, On primary radical R Γ-submodules of $R \Gamma$-modules, J. Discrete Math. Sci. Crypt. 23(5) (2020) 1001-1007.
[11] A.A.A. Zyarah and N.S. Al-Mothafar, Semiprime $R \Gamma$-submodules of multiplication R Γ-modules, Iraqi J. Sci. 61(5) (2020) 1104-1114.
[12] A.A.A. Zyarah and N.S. Al-Mothafar, On S-prime and S-semiprime $R \Gamma$-submodules of $R \Gamma$-module, J. Phys. Conf. Ser. IOP Pub. (2021).

[^0]: *Corresponding author
 Email addresses: aliziara107@gmail.com (Ali Abd Alhussein Zyarah), met.ahmed.hadi@uobabylon.edu.iq (Ahmed Hadi Hussain), hyderkadum8@gmail.com (Hayder Kadhim Zghair)

