Int. J. Nonlinear Anal. Appl. 13 (2022) No. 1, 97-102 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.5461



# Z-prime gamma submodule of gamma modules

Ali Abd Alhussein Zyarah<sup>a,\*</sup>, Ahmed Hadi Hussain<sup>b</sup>, Hayder Kadhim Zghair<sup>c</sup>

<sup>a</sup>Iraqi Ministry of Education, General Directorate of Education for the Holy Karbala, Karbala, Iraq <sup>b</sup>Department of Energy Engineering, College of Engineering Al-Musayab, University of Babylon, Babil, Iraq <sup>c</sup>Department of Software, Information Technology College, University of Babylon, Iraq

(Communicated by Madjid Eshaghi Gordji)

#### Abstract

Let R be a  $\Gamma$ -ring and  $\partial$  be an  $R\Gamma$ -module. A proper  $R\Gamma$ -submodule. T of an  $R\Gamma$ -module  $\partial$  is called Z-prime  $R\Gamma$ -submodule if for each  $t \in \partial, \gamma \in \Gamma$  and  $f \in \partial^* = Hom_{R_{\Gamma}}(\partial, R), f(t)\gamma t \in T$  implies that either  $t \in T$  or  $f(t) \in [T :_{R_{\Gamma}} \partial]$ . The purpose of this paper is to introduce interesting theorems and properties of Z- prime  $R\Gamma$ -submodule of  $R\Gamma$ -module and the relation of Z-prime  $R\Gamma$ -submodule, which represents of generalization Z-prime R-submodule of R-module.

Keywords:  $\Gamma$ -ring,  $R\Gamma$ -module,  $R\Gamma$ -submodule, and prime  $R\Gamma$ -submodule. 2010 MSC: Please write mathematics subject classification of your paper here.

## 1. Introduction

The topic of a  $\Gamma$ -ring was introduced in 1964 by Nobusawa [4]. He considered a set of homeomorphisms of a module to another module, which as closed under the addition and subtraction defined naturally but has no more a structure of a ring since he cannot have defined the product. After that, Barnes in [4, 6] weakened the generalization of Nobusawa. Then, many papers studied the  $\Gamma$ -ring in several algebraic structures. In [3], Ameri and Sadeghi presented the concept of a gamma modules in R investigate at some such modules. In this regard, we investigate submodules and homomorphism of a gamma modules and give the related basic results of a gamma modules. In 2005, Tekir and Sengul [7] presented the concept of prime  $\Gamma$ M-submodules of  $\Gamma$ M-modules and discussed some interesting and useful properties. Also, Zyarah and al-Mothafar provided the defining the semiprime  $R\Gamma$ -submodule of  $R\Gamma$ -module and the relation of semiprime  $R\Gamma$ -submodule. With multiplication  $R\Gamma$ -modules [11]. Also, in another work [10], they introduced some results and properties of primary

<sup>\*</sup>Corresponding author

*Email addresses:* aliziara107@gmail.com (Ali Abd Alhussein Zyarah), met.ahmed.hadi@uobabylon.edu.iq (Ahmed Hadi Hussain), hyderkadum8@gmail.com (Hayder Kadhim Zghair)

 $R\Gamma$ -submodule and the definition for primary radical of  $R\Gamma$ -submodule of  $R\Gamma$ -module besides some of its basic properties. In this paper, Z-prime  $R\Gamma$ -submodule of  $R\Gamma$ -module and are investigated the basic properties, some theorems, and propositions. In addition, the relation between Z- prime  $R\Gamma$ -submodule with other  $R\Gamma$ -modules is investigated.

# 2. Preliminaries

**Definition 2.1.** [6] Let R and  $\Gamma$  be an additive abelian groups, so we'll consider R is a  $\Gamma$ -ring R, shortly ( $\Gamma R$ ) if there exists a mapping  $\hbar : R \times \Gamma \times R \to R$  such that for every  $d_1, d_2, d_3 \in R$  and  $\gamma, \delta \in \Gamma$ , the following conditions are hold:

i.  $(d_1 + d_2)\gamma d_3 = d_1\gamma d_3 + d_2\gamma d_3$ .

ii.  $d_1(\gamma + \delta)d_3 = d_1\gamma d_3 + d_1\delta d_3$ .

iii.  $d_1\gamma(d_2+d_3) = d_1\gamma d_2 + d_1\gamma d_3.$ 

**iv.**  $(d_1\gamma d_2)\delta d_3 = d_1\gamma (d_2\delta d_3).$ 

**Definition 2.2.** [3] A left  $R\Gamma$ -module is an additive abelian group  $\partial$  together with a mapping  $\hbar$ :  $R \times \Gamma \times \partial \to \partial$  such that for all  $h, h_1, h_2 \in \partial$  and  $\gamma, \gamma_1, \gamma_2 \in \Gamma$ ,  $r_1, r_2, r_3 \in R$  the following hold:

i. 
$$r_3\gamma(h_1+h_2) = r_3\gamma h_1 + r_3\gamma h_2$$
.

**ii.** 
$$(r_1 + r_2)\gamma h = r_1\gamma h + r_2\gamma h$$
.

iii.  $r_3(\gamma_1 + \gamma_2)h = r_3\gamma_1h + r_3\gamma_2h$ .

iv.  $r_1\gamma_1(r_2\gamma_2)h = (r_1\gamma_1r_2)\gamma_2h$ , aright  $R\Gamma$ -module is defined in analogous manner.

**Definition 2.3.** [7] A proper  $R\Gamma - S$ . T of  $\partial$  is called prime  $R\Gamma$ -submodule, shortly  $(P.R\Gamma - S.)$  if for any an ideal J of  $\Gamma R$  and for any  $R\Gamma - S$ . H of  $\partial$ ,  $J\Gamma H \subseteq T$  implies  $H \subseteq T$  or  $J \subseteq [T :_{R_{\Gamma}} \partial]$ .

**Definition 2.4.** [12] Let T be a proper  $R\Gamma - S$ . of a  $R\Gamma$ -module  $\partial$ . The  $R\Gamma - S$ . T of  $\partial$  is called that S-prime  $R\Gamma - S$ ., whenever  $\varphi(K) \subseteq T$ , for some K be a  $R\Gamma - S$ . of  $\partial$  and  $\varphi \in End_{R_{\Gamma}}(\partial)$ , implies that  $K \subseteq T$  or  $\varphi(\partial) \subseteq T$ .

**Definition 2.5.** [1] An  $R\Gamma$ -module  $\partial$  is called Jacobson radical, denoted by  $J_{\Gamma}(\partial)$ , by  $J_{\Gamma}(\partial) = \sum \{Y | Y \text{ is } R_{\Gamma} - \text{small } R_{\Gamma} - \text{submodule of } \partial \}.$ 

**Definition 2.6.** [5] An  $R\Gamma$ -module  $\partial$  is called  $R\Gamma$ -faithful if it's  $R\Gamma$ -annihilator is the zero ideal of a  $\Gamma R$ .

**Definition 2.7.** [8] An ideal A of a  $\Gamma R$  is called prime if for any ideals I and J of R,  $I\Gamma J \subseteq A$  implies, either  $I \subseteq A$  or  $J \subseteq A$ .

**Definition 2.8.** [2] Let  $\partial$  be an  $R\Gamma$ -module. We said that  $\partial$  is a multiplication  $R\Gamma$ -module if any proper  $R\Gamma - S$ . T of  $\partial$ , then there exist any ideal I of  $\Gamma R$  such that  $T = I\Gamma\partial$ .

#### 3. Z-Prime $R\Gamma$ -submodule of $R\Gamma$ -modules

In this section, we introduced  $Z - P.R\Gamma - S$  of  $R\Gamma$ -modules some propositions, and theorems.

**Definition 3.1.** A proper  $R\Gamma - S$ . T of an  $R\Gamma$ -module  $\partial$  is called  $Z - P.R\Gamma - S$ . if for each  $t \in \partial$ ,  $\gamma \in \Gamma$  and  $f \in \partial^* = Hom_{R_{\Gamma}}(\partial, R)$ ,  $f(t)\gamma t \in T$  implies that either  $t \in T$  or  $f(t) \in [T :_{R_{\Gamma}} \partial]$ .

**Remark and Example 3.2.** 1. Every Z-prime R-submodule is  $Z - P.R\Gamma - S$ . but the converse isn't true in general, as in the following example:

Let Z be a  $Z_{2Z}$ -module,  $\Gamma = 2Z$  and 6Z be A proper  $Z_{2Z} - S$ . of Z. Then 6Z is  $Z - P.Z_{2Z} - S$ . of Z, since  $\varphi \in Z^* = Hom_{Z_{2Z}}(Z, Z) = Z$  and  $\varphi : Z \to Z$ ;  $\varphi(a) = 3a$ ,  $a \in Z$  and so  $\varphi(a)\gamma(a) \in 6Z$  also  $\varphi(a) \in [6Z:_{Z_{2Z}} Z] = 3Z$ . But 6Z is not Z-prime of Z - S. of Z, since  $\varphi \in Z^* = Hom_Z(Z, Z) = Z$  and  $\varphi : Z \to Z$ ;  $\varphi(a) = 3a, a \in Z$  and so  $\varphi(a).a \in 6Z$  also  $\varphi(a) \notin 6Z = [6Z:_Z Z]$ .

- 2. Every  $P.R\Gamma S$ . is  $Z P.R\Gamma S$ ., but the converse is not true in general, as in the following example: Let  $\partial = Z_8$  be a  $Z_{2Z}$ -module,  $\Gamma = 2Z$  and  $T = \langle \bar{4} \rangle$  be a proper  $Z_{2Z}$ -submodule of  $Z_8$ . Then  $\langle \bar{4} \rangle$  is Z-prime  $Z_{2Z}$ -submodule, since  $f \in Z^* = Hom_{Z_{2Z}}(z_8, Z) = 0$  and so  $f(a)\alpha a = 0 \in \langle \bar{4} \rangle$  for all  $a \in Z_8$  and  $0 \in [\langle \bar{4} \rangle :_{Z_{2Z}} Z_8]$ . But  $\langle \bar{4} \rangle$  is not prime  $Z_{2Z}$ -submodule, since  $2 \in 2Z, 2 \in Z_8, 1 \in Z$  such that  $(1)(2)(2) \in \langle \bar{4} \rangle$  but  $2 \notin \langle \bar{4} \rangle$  and  $2 \notin [\langle \bar{4} \rangle :_{Z_{2Z}} Z_8]$ .
- 3. Let I be an ideal of a  $\Gamma R$ , then I be a Z-prime ideal if for every  $r \in R$ ,  $f \in R^* = Hom_{R_R}(R, R)$  such that  $f(r)\gamma r \in I$  implies that either  $r \in I$  or  $f(r) \in I$ .

**Lemma 3.3.** Let D and F be any two  $R\Gamma - S.s$  of an  $R\Gamma$ -module  $\partial$ , if  $[D:_{R_{\Gamma}} x]$  is a Z-prime ideal of a  $\Gamma R$  for each  $x \in F$ , then  $[D:_{R_{\Gamma}} F]$  is a Z-prime ideal of a  $\Gamma R$ .

**Proof**. Let  $f \in R^* = Hom_{R_R}(R, R), b \in R$  such that  $f(b)\alpha b \in [D:_{R_{\Gamma}} F]$  and so,  $f(b)\alpha b\alpha u \in E$  for all  $\alpha \in \Gamma, u \in D$ , then

$$f(b)\alpha b \in [D:_{R_{\Gamma}} < u >] \tag{3.1}$$

But  $[D:_{R_{\Gamma}} < u >]$  is Z-prime ideal, so either  $f(b) \in [D:_{R_{\Gamma}} < u >]$  or  $b \in [D:_{R_{\Gamma}} < u >]$ . Thus for any  $\alpha \in \Gamma, u \in D$ , either  $f(b)\alpha u \in D$  or  $b\alpha u \in D$ . Suppose that  $f(b) \notin [D:_{R_{\Gamma}} F]$  and  $b \notin [D:_{R_{\Gamma}} F]$ , there exists  $v, w \in F$  such that  $f(b)\alpha v \notin D$  and  $b\alpha v \notin D$ . Hence  $f(b) \notin [D:_{R_{\Gamma}} < v >]$ and  $b \notin [D:_{R_{\Gamma}} < w >]$ . But by (3.1),  $f(b)\alpha b \in [D:_{R_{\Gamma}} < v >]$  which is a Z-prime ideal, hence  $b \in [D:_{R_{\Gamma}} < v >]$ . Thus  $b\alpha v \in D$ , similarly,  $f(b)\alpha b \in [D:_{R_{\Gamma}} < w >]$  implies that  $f(b)\alpha b\alpha w \in D$ . On the other hand, by (3.1)  $f(b)\alpha b \in [D:_{R_{\Gamma}} < v + w >]$ , so either  $f(b) \in [D:_{R_{\Gamma}} < v + w >]$  or  $b \in [D:_{R_{\Gamma}} < v + w >]$ . Hence either  $f(b)\alpha < v + w > \in D$  or  $b\alpha < v + w > \in D$ , which means either  $f(b)\alpha v + f(b)\alpha w = d_1 \in D$  or  $b\alpha v + b\alpha w = d_2 \in D$ . Then either  $f(b) \in [D:_{R_{\Gamma}} F]$  or  $b \in [D:_{R_{\Gamma}} F]$ .  $\Box$ 

**Proposition 3.4.** Let L be a  $Z - P.R\Gamma - S$ . of an  $R\Gamma$ -module  $\partial$  and T be a summand of  $\partial$ , then either  $T \subseteq L$  or  $T \bigcap L$  is a  $Z - P.R\Gamma - S$ . of  $\partial$ .

**Proof**. Let  $f \in T^* = Hom_{R_{\Gamma}}(T, R)$  and  $a \in T$  such that  $f(a)\gamma a \in T \cap L$ . Suppose that  $T \not\subset L$ , then  $T \cap L$  be a proper  $R\Gamma - S$ . of T. Suppose that  $a \notin T \cap L$ , since T be a summand of  $\partial$  then there exist a projection  $\rho : \partial \to T$  and  $f : T \to R$  such that  $f(a)\gamma a = f \circ \rho(a)\gamma a \in L, \gamma \in \Gamma$  and  $a \notin L$ . Then  $f \circ \rho(a) \in [L :_{R_{\Gamma}} \partial] \subseteq [L :_{R_{\Gamma}} T]$ , since L be a  $Z - P.R\Gamma - S$ . of  $\partial$ . Thus  $f(a)\Gamma T \subseteq L$ and  $f(a)\Gamma T \subseteq T$ , and therefore,  $f(a) \in [L \cap T :_{R_{\Gamma}} T]$ .  $\Box$  **Remark 3.5.** Let T be a  $Z - P.R\Gamma - S$ . of  $R\Gamma$ -module  $\partial$ , then T is called P-Z-prime  $R\Gamma - S$ ., where  $P = rad_{\Gamma}([T :_{R_{\Gamma}} \partial])$  and hence if < 0 > is a  $Z - P.R\Gamma - S$ . of  $\partial$ , then < 0 > is  $P = rad_{\Gamma}([0 :_{R_{\Gamma}} \partial]) = rad_{\Gamma}(ann_{\Gamma}(\partial)) - Z - P.R\Gamma - S$ . of  $\partial$ .

**Proposition 3.6.** Let P be a Z-prime ideal of a  $\Gamma R$  and let n be a positive integer.  $T_i$  be a  $P-Z-P.R\Gamma-S$ . of an  $R\Gamma$ -module  $\partial$  such that  $1 \leq i \leq n$ . Then  $\bigcap_{i=1}^{n} T_i$  is also  $P-Z-P.R\Gamma-S$ . of  $\partial$ .

**Proof**. Let  $f \in \partial^* = Hom_{R_{\Gamma}}(\partial, R)$  and  $x \in \partial$  such that  $f(x)\gamma x \in \bigcap_{i=1}^n T_i$ . It's clear that  $P = rad_{\Gamma}([\bigcap_{i=1}^n T_i : R_{\Gamma} \partial])$ . Suppose that  $x \notin \bigcap_{i=1}^n T_i$ , then there exist  $m \in \mathbb{Z}^+$  with  $1 \leq m \leq n$  such that  $x \notin T_m$ . But  $f(x)\gamma x \in T_m$  and  $T_m$  is a  $P - Z - P.R\Gamma - S$ . of  $\partial$ . It follows that  $f(x) \in P$  and hence  $\bigcap_{i=1}^n T_i$  is a  $P - Z - P.R\Gamma - S$ . of  $\partial$ .  $\Box$ 

**Proposition 3.7.** Let T be a  $R\Gamma - S$ . of an  $R\Gamma$ -module  $\partial$  and let P be a prime ideal of a  $\Gamma R$ . If  $[T:_{R_{\Gamma}} K] \subseteq P$  for each  $R\Gamma - S$ . K of  $\partial$  containing T properly  $P \subseteq [T:_{R_{\Gamma}} \partial]$ , then T be a  $Z - P.R\Gamma - S$ . of  $\partial$ .

**Proof**. Let  $\xi \in \partial^* = Hom_{R_{\Gamma}}(\partial, R)$  and  $t \in \partial$  such that  $\xi(t)\gamma t \in T$ . Suppose that  $x \notin T$  and let  $K = T + \langle t \rangle$  and so  $K R\Gamma - S$ . properly containing T properly, but  $\xi(t)\gamma K = \xi(t)\gamma T + \xi(t)\gamma \langle t \rangle \leq T$ . And hence  $\xi(t) \in [T:_{R_{\Gamma}} K] \subseteq P \subseteq [T:_{R_{\Gamma}} \partial]$ . Thus T be a  $Z - P.R\Gamma - S$ . of  $\partial$ .  $\Box$ 

**Proposition 3.8.** Let  $\partial_1$  and  $\partial_2$  be two  $R\Gamma$ -modules and  $\partial = \partial_1 \bigoplus_{\Gamma} \partial_2$ . If  $T = T_1 \bigoplus_{\Gamma} T_2$  is a  $Z - P.R\Gamma - S$ . of  $\partial$ , then  $T_1$  and  $T_2$  are a Z-prime  $Z - P.R\Gamma - S.$  of  $\partial_1$  and  $\partial_2$  respectively.

**Proof**. To show that  $\partial_1$  is a  $Z - P.R\Gamma - S$ . of  $\partial_1$ . Let  $f \in \partial_1^* = Hom_{R_{\Gamma}}(\partial_1^*, R)$ ,  $t \in \partial_1$  and  $\gamma \in \Gamma$  such that  $(t)\gamma t \in T_1$ , then  $(f \circ \rho)(t, 0)\gamma(t, 0) \in T_1 \bigoplus_{\Gamma} T_2$ , where  $\rho : \partial_1 \bigoplus_{\Gamma} \partial_2 \to \partial_1$ . Since T is a  $Z - P.R\Gamma - S$ . of  $\partial$ , then either  $(t, 0) \in T_1 \bigoplus_{\Gamma} T_2$  or  $f(t) \in [T_1 \bigoplus_{\Gamma} T_2 :_{R_{\Gamma}} \partial_1 \bigoplus_{\Gamma} \partial_2]$ . Thus either  $t \in T_1$  or  $f(t) \in [T_1 :_{R_{\Gamma}} \partial_1] \bigcap [T_2 :_{R_{\Gamma}} \partial_2]$  and  $f(t) \in [T_1 :_{R_{\Gamma}} \partial_1]$ . Therefore,  $T_1$  is a  $Z - P.R\Gamma - S$ . of  $\partial_1$  and similarly to prove  $T_2$  is a  $Z - P.R\Gamma - S$ . of  $\partial_2$ .  $\Box$ 

**Proposition 3.9.** Let  $\partial, \partial'$  be an  $R\Gamma$ -modules and  $\varphi : \partial \to \partial'$  be an  $R\Gamma$ -epimorphism. If T is a  $Z - P.R\Gamma - S$  of  $\partial$  and Ker  $\varphi \subseteq T$ , then  $\varphi(T)$  is a  $Z - P.R\Gamma - S$  of  $\partial'$ .

**Proof**. To show that  $\varphi(T)$  is a proper  $R\Gamma - S$ . of  $\partial'$ . Suppose that  $\varphi(T) = \partial'$ , since  $\varphi$  is an  $R\Gamma$ -epimorphism, then  $\varphi(T) = \varphi(\partial)$  and  $\partial = T + Ker\varphi$ , but  $Ker\varphi \subseteq T$ , hence  $T = \partial$  which is contradiction, since T is  $Z - P.R\Gamma - S$ . of  $\partial$ . Now, we define  $\psi \in (\partial')^* = Hom_{R_{\Gamma}}(\partial', R)$  and  $w \in \partial'$ , let  $\psi(w)\gamma w \in \varphi(T)$ ,  $\gamma \in \Gamma$  and,  $w \notin \varphi(T)$ . Since  $\varphi$  is an  $R\Gamma$ -epimorphism, then there exist  $u \in \partial$  such that  $\varphi(u) = w$  and  $u \notin T$ . Then  $\psi(w)\gamma w = \psi(w)\gamma\varphi(u) \in \varphi(T)$  and  $\varphi(\psi(w)\gamma(u)) \in \varphi(T)$ , since  $Ker\varphi \subseteq T$ , then  $\psi(w)\gamma(u) \in T$ . Since T is a  $Z - P.R\Gamma - S$ . of  $\partial$  and  $u \notin T$ , then  $\psi(w) \in [T :_{R_{\Gamma}} \partial]$ . Thus  $\varphi(\psi(w)\Gamma\partial) \subseteq \varphi(T)$  and  $\psi(w)\Gamma\varphi(\partial) \subseteq \varphi(T)$ , then  $\psi(w) \in [\varphi(T) :_{R_{\Gamma}} \partial']$ . Therefore  $\varphi(T)$  is a  $Z - P.R\Gamma - S$ . of  $\partial'$ .  $\Box$ 

**Proposition 3.10.** Let  $\partial, \partial'$  be an  $R\Gamma$ -modules and  $\varphi : \partial \to \partial'$  be an  $R\Gamma$ -monomorphism. If T' is a  $Z - P.R\Gamma - S$  of  $\partial'$  and  $\varphi(\partial) \not\subset T'$ , then  $\varphi^{-1}(T')$  is a  $Z - P.R\Gamma - S$  of  $\partial$ .

**Proof**. To show that  $\varphi^{-1}(T')$  is a proper  $R\Gamma - S$ . of  $\partial$ . Suppose that  $\varphi^{-1}(T') = \partial$ , let  $x \in \partial$ and  $x \in \partial^{-1}T'$ , then  $\varphi(\partial) \subseteq T'$  which is contradiction. Now, we define  $f \in (\partial)^* = Hom_{R_{\Gamma}}(\partial, R)$ and  $w \in \partial$ . Suppose that  $w \notin \varphi^{-1}(T')$  and  $\gamma \in \Gamma$ , then  $\varphi(w) \notin T'$ . Let  $f(w)\gamma w \in \varphi^{-1}(T')$ , then  $\varphi(f(w)\gamma w) \in T'$  and  $f(w)\gamma\varphi(w) \in T'$ . Since  $\varphi$  is an  $R\Gamma$ -monomorphism, we put  $\varphi^{-1}\varphi(w) = w$ , then  $f(\varphi^{-1}(\varphi(w)))\gamma\varphi(w) \in T'$  and  $f\varphi^{-1}(\varphi(w))\gamma\varphi(w) \in T'$  is a  $Z - P.R\Gamma - S$ . of  $\partial'$  and  $\varphi(w) \notin T'$ , then  $f\varphi^{-1}(\varphi(w)) \in [T':_{R_{\Gamma}} \partial']$ . Thus  $f(w)\Gamma\varphi(\partial) \subseteq f(w)\Gamma\partial' \subseteq T'$  and  $f(w)\Gamma\partial \subseteq \varphi^{-1}(T')$ , hence  $f(w) \in [\varphi^{-1}(T'):_{R_{\Gamma}} \partial]$ . Therefore  $\varphi^{-1}(T')$  is a  $Z - P.R\Gamma - S$ . of  $\partial$ .  $\Box$ 

**Corollary 3.11.** Let T and L be a two  $Z - P.R\Gamma - S.s$  of  $R\Gamma$ -module  $\partial$  and  $L \subseteq T$ , then T is a  $Z - P.R\Gamma - S.$  of  $\partial$  if and only if T/L is a  $Z - P.R\Gamma - S.$  of  $\partial/L$  [9].

# 4. Z-Prime $R\Gamma - S.s$ of a Faithful Multiplication $R\Gamma$ -modules

We present in this section Z-prime  $R\Gamma - S.s$  of multiplication  $R\Gamma$ -modules and also give some examples, propositions and theorems of this.

**Proposition 4.1.** Let T be a proper  $R\Gamma - S$ . of cyclic faithful  $R\Gamma$ -module  $\partial$ . If T is a  $Z - P.R\Gamma - S$ . of  $\partial$ , then T is a  $P.R\Gamma - S$ . of  $\partial$ .

**Proof**. Let  $t \in \partial, k \in R$  and  $\beta \in \Gamma$  such that  $k\beta t \in T$  and  $t \notin T$ . Suppose that  $\partial = \langle x \rangle, x \in \partial$ , then  $t = x\beta r, r \in R$ . Define  $\eta : \partial \to R$  by  $\eta(t) = \eta(k\beta x) = k$ . Since  $\partial$  is a faithful  $R\Gamma$ -module, then  $\eta$  is well-define and which implies that  $\eta(t)\beta(t) \in T$  and  $x \notin T$ , since T is a  $Z - P.R\Gamma - S$ . of  $\partial$ , then  $\eta(t) \in [T:_{R_{\Gamma}} \partial]$ . Thus  $k \in [T:_{R_{\Gamma}} \partial]$  and therefore T is  $P.R\Gamma - S$ . of  $\partial$ .  $\Box$ 

**Corollary 4.2.** Let T be a proper  $R\Gamma - S$ . of a cyclic faithful  $R\Gamma$ -module  $\partial$ . If T is a  $Z - P.R\Gamma - S$ . of  $\partial$ , then  $[T:_{R_{\Gamma}} \partial]$  is a Z-prime ideal of a  $\Gamma R$ .

**Proposition 4.3.** Let T be a proper  $R\Gamma - S$ . of a multiplication  $R\Gamma$ -module  $\partial$ . If  $[T :_{R_{\Gamma}} \partial]$  is a Z-prime ideal of a  $\Gamma R$ , then T is a  $Z - P.R\Gamma - S$ . of  $\partial$ .

**Proof**. Let  $f \in \partial^* = Hom_{R_{\Gamma}}(\partial, R), t \in \partial$  and  $\gamma \in \Gamma$  such that  $f(t)\gamma t \in T$ , then  $f(t)\Gamma < t \geq T$ and  $\langle t \rangle = I\Gamma\partial$  for some an ideal I in a  $\Gamma R$ . Since  $\partial$  is a multiplication  $R\Gamma$ -module and so  $f(t)\Gamma I\Gamma\partial \subseteq T$ , then  $f(t)\Gamma I \subseteq [T:_{R_{\Gamma}}\partial]$  and  $\langle f(t) \rangle \Gamma I \subseteq [T:_{R_{\Gamma}}\partial]$ . Now, we define  $g: R \to R$ , it's clear that  $g \in R^*$ . Now,  $g(\langle f(t) \rangle)\Gamma I \subseteq [T:_{R_{\Gamma}}\partial]$ . Since  $[T:_{R_{\Gamma}}\partial]$  s a Z-prime ideal of a  $\Gamma R$ , then  $\langle f(t) \rangle \subseteq [T:_{R_{\Gamma}}\partial]$  or  $I \subseteq [T:_{R_{\Gamma}}\partial]$ . If  $\langle f(t) \rangle \subseteq [T:_{R_{\Gamma}}\partial]$ , then  $f(t) \in [T:_{R_{\Gamma}}\partial]$ . If  $I \subseteq [T:_{R_{\Gamma}}\partial]$ , then  $\langle t \rangle \subseteq T$  i.e.,  $t \in T$ . Thus T is a  $Z - P.R\Gamma - S$ . of  $\partial$ .  $\Box$ 

**Corollary 4.4.** Let T be a proper  $R\Gamma - S$ . of a cyclic faithful  $R\Gamma$ -module  $\partial$ . Then  $[T :_{R_{\Gamma}} \partial]$  is a Z-prime ideal of a  $\Gamma R$  if and only if T is a  $Z - P.R\Gamma - S$ . of  $\partial$ .

**Proposition 4.5.** Let  $\partial$  be a finitely generated multiplication  $R\Gamma$ -module. If I is a Z-prime ideal of a  $\Gamma r$  such that  $ann_{R_{\Gamma}}(\partial) \subseteq I$ , then  $I\Gamma\partial$  is a  $Z - P.R\Gamma - S$ . of  $\partial$ .

**Proof**. Let  $f \in \partial^* = Hom_{R_{\Gamma}}(\partial^*, R), t \in \partial$  and  $\gamma \in \Gamma$  such that  $f(t)\gamma t \in I\Gamma\partial$ , then  $f(t)\Gamma < t > \subseteq I\Gamma\partial$ . Since  $\partial$  is a multiplication  $R\Gamma$ -module, then  $< t > = A\Gamma\partial$  for some A be an ideal in a  $\Gamma R$ , and  $f(t)\Gamma A\Gamma\partial \subseteq I\Gamma\partial$ . Then  $f(t)\Gamma A \subseteq I + ann_{R_{\Gamma}}(\partial) = I$  by [?]. Now, we define  $g: R \to R$ , it's clear that  $g \in R^*$ . Now,  $g(f(t))\Gamma A \subseteq I$ . Since I is a Z-prime ideal of a  $\Gamma R$ , then  $f(t) \in I$  and  $f(t) \in [I\Gamma\partial :_{R_{\Gamma}} \partial]$  or  $A \subseteq I$  and  $A\Gamma\partial \subseteq I\Gamma\partial$  also  $< t > \subseteq I\Gamma\partial$ . Thus  $f(t) \in [I\Gamma\partial :_{R_{\Gamma}} \partial]$  or  $t \in I\Gamma\partial$  and therefore,  $I\Gamma\partial$  is a  $Z - P.R\Gamma - S$  of  $\partial$ .  $\Box$ 

**Proposition 4.6.** Let  $\partial$  be a cyclic  $R\Gamma$ -projective  $R\Gamma$ -module. If T is a  $Z - P.R\Gamma - S$ . of  $\partial$ , then T is a  $S - P.R\Gamma - S$ . of  $\partial$ .

**Proof**. Let  $f \in End_{R_{\Gamma}}(\partial), w \in \partial$  and  $\partial = R\Gamma w, \gamma \in \Gamma$  such that  $f(w) \in T$  and  $w \notin T$ . Since  $\partial$  is a cyclic  $R\Gamma$ -module, then there exist  $h: R \to \partial$  define by  $h(r) = r\gamma w$ , for each  $r \in R$ . Since  $\partial$  is projective  $R\Gamma$ -modules, then there an exist  $R\Gamma$ -homomorphism  $\theta: \partial \to R$ , such that  $h \circ \theta = f$ . Clearly  $h \circ \theta \in End_{R_{\Gamma}}(\partial), f(w) = h(\theta(w)) = \theta(w)\gamma w \in T$  since  $\theta \in \partial^* = Hom_{R_{\Gamma}}(\partial^*, R)$  and T is a  $Z - P.R\Gamma - S$ . of  $\partial, w \notin T$ , then  $\theta(w)\Gamma \partial \subseteq T$ . Now,  $f(\partial) = (h \circ \theta)(\partial) = h(\theta(\partial)) = \theta(\partial)\Gamma \partial \subseteq T$  and therefore, T is a  $S - P.R\Gamma - S$ . of  $\partial$ .  $\Box$ 

**Proposition 4.7.** Let  $\partial$  be a cyclic  $Rw3b_{\Gamma}$ -projective  $R\Gamma$ -module and T be a proper  $R\Gamma - S$ . of  $\partial$ , then the following are equivalent:

- 1. T is a  $Z P.R\Gamma S$ . of  $\partial$ .
- 2. T is a  $S P.R\Gamma S$ . of  $\partial$ .
- 3. T is a  $P.R\Gamma S.$  of  $\partial$ .

## 5. Conclusions

In this paper, Z-prime  $R\Gamma$ -submodule of  $R\Gamma$ -module and are investigated the basic properties, some theorems, and propositions. In addition, the relation between Z- prime  $R\Gamma$ -submodule with other  $R\Gamma$ -modules is investigated.

## References

- [1] M.S. Abbas, H.R. Hassan and H.A. Abbas, On ΓR-projective gamma modules, Int. J. Algebra, 12(2) (2018) 53-60.
- [2] M.S. Abbas, H.R. Hassan and H.A. Abbas, Γ*R*-multiplication and Γ*R*-projective gamma Modules, Int. J. Contemporary Math. Sci. 13(2) (2018) 87–94.
- [3] R. Ameri and R. Sadeghi, Gamma modules, Ratio Math. 20(1) (2010) 127-147.
- [4] W. Barnes, On the  $\Gamma$ -rings of Nobusawa, Pacific J. Math. 18(3) (1966) 411–422.
- [5] A. ezaei and B. Davvaz, Tensor product of gamma modules, Afrika Mat. 26(7) (2015) 1601–1608.
- [6] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1(1) (1964) 81-89.
- [7] U. Tekır, U. Sengül and G. Ziverbey, On prime ΓM-submodules of ΓM-modules, Int. J. Pure Appl. Math. 19(1) (2005) 123–128.
- [8] S. Uddin and S. Islam, Semi-prime ideals of gamma rings, Ann. Pure Appl. Math. 1(2) (2012) 186–191.
- [9] A.A.A. Zyarah and A.K.H. Alghafil, General formula for particular solution to the ordinary differential equation by variation of parameters of k<sup>th</sup> order, J. Interdis. Math.24(4) (2021) 1–6.
- [10] A.A.A. Zyarah and N.S. Al-Mothafar, On primary radical RΓ-submodules of RΓ-modules, J. Discrete Math. Sci. Crypt. 23(5) (2020) 1001–1007.
- [11] A.A.A. Zyarah and N.S. Al-Mothafar, Semiprime RΓ-submodules of multiplication RΓ-modules, Iraqi J. Sci. 61(5) (2020) 1104–1114.
- [12] A.A.A. Zyarah and N.S. Al-Mothafar, On S-prime and S-semiprime RΓ-submodules of RΓ-module, J. Phys. Conf. Ser. IOP Pub. (2021).