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Abstract

In this paper, we introduce a new self-adaptive hybrid algorithm of inertial form for solving Split
Feasibility Problem (SFP) which also solve a Monotone Inclusion Problem (MIP) and a Fixed Point
Problem (FPP) in p-uniformly convex and uniformly smooth Banach spaces. Motivated by the
self-adaptive technique, we incorporate the inertial technique to accelerate the convergence of the
proposed method. Under standard and mild assumption of monotonicity of the SFP associated
mapping, we establish the strong convergence of the sequence generated by our algorithm which
does not require a prior knowledge of the norm of the bounded linear operator. Some numerical
examples are presented to illustrate the performance of our method as well as comparing it with
some related methods in the literature.
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1. Introduction

Let E1 and E2 be real Banach spaces, C and Q be non-empty, closed convex subsets of E1 and E2

respectively, E∗1 and E∗2 be the duals of E1 and E2 respectively, A : E1 → E2 be a bounded linear
operator and A∗ : E∗2 → E∗1 be the adjoint of A. We shall denote the value of the functional x∗ ∈ E∗
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at x ∈ E by 〈x∗, x〉. The Split Feasibility Problem (shortly SFP) introduced by Censor and Elfving
[10] in 1994 can be defined as follows:

Find x∗ ∈ C such that Ax∗ ∈ Q. (1.1)

We denote the set of solution of SFP (1.1) by Ω = C ∩ A−1(Q) = {x∗ ∈ C : Ax∗ ∈ Q}.
The SFP has recently attracted much attention from many researchers due to its application in
modelling real-world problems such as inverse problem in signal processing, radiotherapy, data com-
pression (see for example [7, 11, 12, 16, 29, 37, 48]). Furthermore, many algorithms have been
introduced by several authors for solving the SFP and related optimization problems (for example,
see [1, 2, 9, 17, 20, 21, 22, 24, 23, 25, 19, 28, 36, 41, 52, 54, 58, 59, 60]). A very popular algorithm
which is often called CQ algorithm defined below, was proposed by Byrne [8] to solve the SFP in
real Hilbert spaces:

xn+1 = PC (xn − µA∗(I − PQ)Axn) , ∀n ≥ 1, (1.2)

where

µ ∈
(

0,
2

‖A‖2

)
, (1.3)

PC and PQ denote the metric projections of E1 onto C and E2 onto Q, respectively. It was proved
that the sequence {xn} generated by (1.2) converges weakly to a solution of the SFP provided the
step size µ satisfies the condition (1.3). As a result of this CQ algorithm, several iterative algorithms
have been invented for solving SFP in Hilbert spaces and Banach spaces (see for example, [56, 18]).
Let H be a real Hilbert space, F be a strictly convex, reflexive smooth Banach space, JF denotes
the duality mapping on F , C and Q be non-empty closed convex subsets of H and F , respectively.
The following algorithm was proposed by Alsulami and Takahashi [6] in 2015: for any x1 ∈ H,

xn+1 = αnxn + (1− αn)PC(xn − rA∗JF (I − PQ)Axn), n ≥ 1. (1.4)

It was proved that for some a, b ∈ R if, 0 < a ≤ αn ≤ b < 1 and 0 < r‖A‖2 < 2, where
0 < r < ∞ and {αn} ⊂ [0, 1], then {xn} weakly converges to ω0 = lim

n→∞
PC∩A−1Qxn, where

w0 ∈ C ∩ A−1Q. Furthermore, they introduced the following Halpern’s type iteration in order to
obtain strong convergence result. Let {tn} be a sequence in H such that tn → t ∈ H and x1, t1 ∈ H,{

νn = λntn + (1− λn)PC(xn − rA∗JF (I − PQ)Axn),

xn+1 = αnxn + (1− αn)νn, n ≥ 1,
(1.5)

where 0 < r < ∞ and {αn} ⊂ (0, 1). It was proved that the sequence {xn} defined by (1.5)
converges strongly to a point ω0 ∈ C ∩ A−1Q, for some ω0 = PC∩A−1Qt1, ∀ a, b ∈ R if, 0 < r‖A‖2 <

2, lim
n→∞

λn = 0,
∞∑
n=1

λn =∞, and 0 < a ≤ αn ≤ b < 1.

Recently, Suantai et al. 2019 [49] considered the following modified SFP:

Find x ∈ F (T ) ∩ C such that Ax ∈ Q. (1.6)

Clearly, when F (T ) = C, then (1.6) reduces to (1.1). Suantai et al. [49] proved the following
weak and strong convergence theorems using Mann’s iteration and Halpern’s type iteration process,
respectively for solving SFP and fixed point problem for nonexpansive mappings.
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Theorem 1.1. Let H be a Hilbert space, F be a strictly convex, reflexive and smooth Banach space,
C and Q be non-empty, closed and convex subsets of H and F , JF be the duality mapping on F ,
PQ and PC denote the metric projections of F on Q and H on C, respectively. Let T : C → C be
nonexpansive mapping. Suppose Γ 6= ∅, where Γ = F (T ) ∩ C ∩ A−1Q, for x1 ∈ C, define {xn} by

xn+1 = αnxn + (1− αn)TPC

(
xn − γn

f(xn)

‖g(xn)‖2 + ‖xn − Txn‖2
g(xn)

)
, (1.7)

where g(xn) = A∗JF (I − PQ)Axn, f(xn) = 1
2
‖(I − PQ)Axn‖2, {γn} ⊂ (0, 4), ∀n ∈ N which satisfies

the following conditions:

1. lim infn→∞ γn(4− γn) > 0,

2. 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.

Then {xn} weakly converges to ω0 ∈ Γ, where ω0 = lim
n→∞

PΓxn.

Theorem 1.2. Let H be a Hilbert space, F be a strictly convex, reflexive and smooth Banach space,
C and Q be non-empty, closed and convex subsets of H and F , JF be the duality mapping on F , PQ
and PC denote the metric projections of F on Q and H onto C, respectively. Let T : C → C be
nonexpansive mapping. Suppose Γ 6= ∅, where Γ = F (T )∩C ∩A−1Q. Let x1 ∈ C, {tn} be a sequence
in C such that tn → t, and let {xn} be a sequence defined by

xn+1 = αnxn + (1− αn)

(
λntn + (1− λn)TPC

(
xn − γn

f(xn)

‖g(xn)‖2 + ‖xn − Txn‖2
g(xn)

))
, (1.8)

where g(xn) = A∗JF (I−PQ)Axn, f(xn) = 1
2
‖(I−PQ)Axn‖2, {γn} ⊂ (0, 4), λn ⊂ (0, 1), {αn} ⊂ (0, 1),

∀n ∈ N which satisfy the following conditions:

1. lim infn→∞ γn(4− γn) > 0,

2. 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,

3. limn→∞ λn = 0 and
∑∞

n=1 λn =∞.

Then {xn} strongly converges to w0 ∈ Γ.

Also, Polyak [40] proposed an inertial extrapolation to speed up convergence rate of smooth convex
minimization problem. The main idea of this method is to make use of two previous iterates in
order to update the next iterate. Due to the fact that the presence of inertial term in an algorithm
speed up the convergence rate, inertial type algorithms have been widely studied by authors (see
[1, 3, 5, 22, 30, 34, 35, 38] and the references therein).
Let A : E → 2E

∗
be a set-valued mapping, D(A) denotes the effective domain of A defined by D(A) =

{x ∈ E : Ax 6= ∅}, R(A) denotes the range of A which can be defined by R(A) = ∪x∈D(A)Ax, G(A)
denotes the graph of A where G(A) = {(x, x∗) ∈ E×E∗ : x∗ ∈ Ax}. A set-valued mapping A is said to
be monotone if for all x, y ∈ D(A), v∗ ∈ Ax and w∗ ∈ Ay,we have〈v∗−w∗, x−y〉 ≥ 0. Furthermore,
A is said to be maximal monotone if its graph is not contained in the graph of any other monotone
operator on E. It is known that if A is maximal monotone, then A−1(0) = {z ∈ E : 0∗ ∈ Az} is a
closed convex set (see [2, 15, 31, 32]).

Motivated by the above results, in this paper, we study the following modified SFP:

Find x ∈ F (T ) ∩ C such that Ax ∈ B−1(0), (1.9)
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where B : E2 → 2E
∗
2 is a maximal monotone operator. Obviously, the SFP (1.9) is more general

than (1.6) and (1.1). When B = ∂iQ, a maximal monotone operator and the subdifferential of the
indicator function on Q, then (1.9) reduces to (1.6). We introduced a self-adaptive hybrid iterative
algorithm for approximating solution of Problem (1.9) in p-uniformly convex and uniformly smooth
Banach spaces. Our algorithm is designed such that its implementation does not require a prior
knowledge of the norm of the bounded linear operator.

2. Preliminaries

In this section, we recall some basic definitions and preliminaries results which will be useful for our
results in this paper. We denote the strong and weak convergence of the sequence {xn} to a point x
by xn → x and xn ⇀ x respectively.
Let E be a real Banach space and 1 < q ≤ 2 ≤ p <∞ where 1

p
+ 1

q
= 1. The modulus of smoothness

of E denoted by ρE(τ) is the function ρE : [0,∞)→ [0,∞) defined by

ρE(τ) = sup

{
‖x− y‖+ ‖x+ y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
= sup

{
‖x− τy‖+ ‖x+ τy‖

2
− 1 : ‖x‖ = 1 = ‖y‖

}
.

E is uniformly smooth if and only if limτ→0+
ρE(τ)
τ

= 0 and E is said to be q-uniformly smooth if
there exists a constant Dq > 0 such that ρE(τ) ≤ Dqτ

q. The modulus of convexity of E denoted by
δE(ε) is the function δE : (0, 2]→ [0, 1] defined by

δE(ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ = ‖y‖ = 1; ε = ‖x− y‖

}
.

E is unifomly convex if and only if δE(ε) > 0, for all ε ∈ (0, 2] and E is p-uniformly convex if there
is a constant Cp > 0 such that δE(ε) ≥ Cpε

p for all ε ∈ (0, 2]. Every uniformly convex Banach space
is strictly convex and reflexive. It is known that if E is p-uniformly convex and uniformly smooth,
then its dual E∗ is q-uniformly smooth and uniformly convex.

Definition 2.1. [4] Let p > 1, the generalised duality mapping JpE : E → 2E
∗

is defined by

JpE =
{
x∗ ∈ E∗ : 〈x∗, x〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1

}
.

It is known that when E is uniformly smooth, then JEp is norm to norm uniformly continuous on
bounded subsets of E and E is smooth if and only if JEp is single valued. Also, when E is reflexive
and strictly convex then JpE = (JqE∗)

−1 is one-to-one and surjective, where JqE∗ is the duality mapping
of E∗(see [13]). Furthermore, JpE is said to be weak-to-weak continuous if

xn ⇀ x⇒ 〈JPExn, y〉 → 〈J
p
Ex, y〉, for any y ∈ E.

It is known that lp(p > 1) has such a property, but Lp(p > 2) does not share this property. The
following inequality was proved by Xu [57].

Lemma 2.2. [53, 57]
Let x, y ∈ E. If E is a q-uniformly smooth Banach space, then there exists a Dq > 0 such that

‖x− y‖q ≤ ‖x‖q − q〈JqE(x), y〉+Dq‖y‖q. (2.1)
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Definition 2.3. [51] A function f : E → R ∪ {+∞} is said to be

(i) proper if its effective domain domf = {x ∈ E : f(x) < +∞} is non-empty,

(ii) convex if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ (0, 1), x, y ∈ D(f),

(iii) lower semi-continuous at x0 ∈ D(f) if f(x0) ≤ limx→x0 inf f(x).

Let x ∈ int(domf), for any y ∈ E, the directional derivative of f at x denoted by f 0(x, y) is defined
by

f 0(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
. (2.2)

If the limit at t→ 0+ in (2.2) exists for each y, then the function f is said to be Gâteaux differentiable
at x. In this case f 0(x, y) = 〈∇f(x), y〉 (or f ′(x)), where ∇f(x) is the value of the gradient of f at
x.

Definition 2.4. Let f : E → R be a Gâteaux differentiable and convex function. The Bregman
distance denoted as ∆f : domf × domf → [0,+∞) is defined as

∆f (x, y) = f(y)− f(x)− 〈f ′(x), y − x〉, x, y ∈ E. (2.3)

Note that ∆f (x, y) ≥ 0 (see [26, 55]). It is worthy to note that the duality mapping JpE is actually
the derivative of the function fp(x) = 1

p
‖x‖p for 2 ≤ p <∞. Hence, if f = fp in (2.3), the Bregman

distance with respect to fp now becomes

∆p(x, y) =
1

q
‖x‖p − 〈JpEx, y〉+

1

p
‖y‖p

=
1

p
(‖y‖p − ‖x‖p) + 〈JpEx, x− y〉

=
1

q
(‖x‖p − ‖y‖p)− 〈JpEx− J

p
Ey, x〉.

It is generally known that the Bregman distance is not a metric as a result of absence of symmetry,
but it possesses some distance-like properties which are stated below:

∆p(x, y) = ∆p(x, z) + ∆p(z, y) + 〈JpEx− J
p
Ez, z − y〉, (2.4)

and
∆p(x, y) + ∆p(y, x) = 〈JpEx− J

p
Ey, x− y〉.

The relationship between the metric and Bregman distance in p-uniformly convex space is as follow:

τ‖x− y‖p ≤ ∆p(x, y) ≤ 〈JpEx− J
p
Ey, x− y〉, (2.5)

where τ > 0 is a fixed number.
Let C be a non-empty closed convex subset of E. The Bregman projection is defined as

ΠCx = arg min
y∈C

∆p(y, x), x ∈ E,

and the metric projection can be defined similarly as

PCx = arg min
y∈C
‖y − x‖, x ∈ E.
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The Bregman projection is the unique minimizer of the Bregman distance and can be characterized
by a variational inequality (see [44, 45]):

〈JpE(x)− JpE(ΠCx), z − ΠCx〉 ≤ 0, ∀z ∈ C, (2.6)

from which we have
∆p(ΠCx, z) ≤ ∆p(x, z)−∆p(x,ΠCx), ∀z ∈ C. (2.7)

The metric projection which is also the unique minimizer of the norm distance can be characterized
by the following variational inequality:

〈JpE(x− PCx), z − PCx〉 ≤ 0, ∀z ∈ C. (2.8)

We define the functional Vp : E × E → [0,∞] associated with fp(x) = 1
p
‖x‖p by

Vp(x, x̄) =
1

p
‖x‖p − 〈x̄, x〉+

1

q
‖x̄‖q, x ∈ E, x̄ ∈ E∗, (2.9)

where Vp(x, x̄) ≥ 0. It then follows that

Vp(x, x̄) = ∆p(x, J
q
E∗(x̄)), ∀x ∈ E, x̄ ∈ E∗.

Chuasuk et al [14] proved the following inequality

Vp(x, x̄) + 〈ȳ, JqE∗(x̄)− x〉 ≤ Vp(x, x̄+ ȳ), ∀x ∈ E, x̄, ȳ ∈ E∗.

Furthermore, Vp is convex in the second variable, and thus, for all z ∈ E, {xi}Ni=1, and {ti}Ni=1 ⊂ (0, 1),∑N
i=1 ti = 1 we have (see [47])

∆p

(
z, JqE∗

(
N∑
i=1

tiJ
p
E(xi)

))
= Vp

(
z,

(
N∑
i=1

tiJ
p
E(xi)

))
≤

N∑
i=1

ti∆p(z, xi). (2.10)

Let C be a non-empty, closed and convex subset of a smooth Banach space E and let T : C → C. A
point x∗ ∈ C is called an asymptotic fixed point of T if a sequence {xn}n∈N exists in C and converges
weakly to x∗ such that limn→∞ ‖xn − Txn‖ = 0. We denote the set of all asymptotic fixed points
of T by F̂ (T ). Moreover, a point x∗ ∈ C is said to be a strong asymptotic fixed point of T if there
exists a sequence {xn}n∈N in C which converges strongly to x∗ such that limn→∞ ‖xn − Txn‖ = 0.

We denote the set of all strong asymptotic fixed points of T by F̃ (T ). It follows from the definitions
that F (T ) ⊂ F̃ (T ) ⊂ F̂ (T ), see [39].

Definition 2.5. [42] Let T be a mapping such that T : C → E. T is said to be

(i) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for each x, y ∈ C,
(ii) quasi-nonexpansive if ‖Tx− y∗‖ ≤ ‖x− y∗‖ such that F (T ) 6= ∅ , ∀x ∈ C and y∗ ∈ F (T ).

Definition 2.6. [43] Let T : C → E be a mapping. T is said to be

1. Bregman nonexpansive if

∆p(Tx, Ty) ≤ ∆p(x, y), ∀x, y ∈ C,
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2. Bregman quasi-nonexpansive if F (T ) 6= ∅ and

∆p(y
∗, Tx) ≤ ∆p(y

∗, x), ∀x ∈ C, y∗ ∈ F (T ),

3. Bregman weak relatively nonexpansive if F̃ (T ) 6= ∅, F̃ (T ) = F (T ) and

∆p(y
∗, Tx) ≤ ∆p(y

∗, x) ∀x ∈ C, y∗ ∈ F (T ),

4. Bregman relatively nonexpansive if F (T ) 6= ∅, F̂ (T ) = F (T ) and

∆p(y
∗, Tx) ≤ ∆p(y

∗, x) ∀x ∈ C, y∗ ∈ F (T ).

From the definitions, it is evident that the class of Bregman quasi-nonexpansive maps contains
the class of Bregman weak relatively nonexpansive maps. The class of Bregman weak relatively
nonexpansive maps contains the class of Bregman relatively nonexpansive maps.
Let E be a smooth, strictly convex and reflexive Banach space, A : E → 2E

∗
be a maximal monotone

operator. We define a mapping QA
r : E → D(A) by (see [50])

QA
r (x) = (I + r(JpE)−1A)−1(x), for all x ∈ E and r > 0.

This mapping is known as metric resolvent of A. Obviously, for all r > 0, we have

0 ∈ JpE(QA
r (x)− x) + rAQA

r (x), (2.11)

and F (QA
r ) = A−1(0). Furthermore, for all x, y ∈ E and by the monotonicity of A, we can show that

〈JpE(x−QA
r (x))− JpE(y −QA

r (y)), QA
r (x)−QA

r (y)〉 ≥ 0. (2.12)

From (2.11), we have for all x, y ∈ E

JpE(x−QA
r (x))

r
∈ AQA

r (x), (2.13)

and
JpE(y −QA

r (y))

r
∈ AQA

r (y). (2.14)

Since A is monotone, we can obtain (2.12) from (2.13) and (2.14). This implies that for all x ∈ E,
t ∈ A−1(0), and whenever A−1(0) 6= ∅, we have

〈JPE (x−QA
r (x)), QA

r (x)− t〉 ≥ 0. (2.15)

Lemma 2.7. [27] Let C be a non-empty, closed and convex subset of a reflexive, strictly convex and
smooth Banach space E, x0 ∈ C and x ∈ E. Then the following assertions are equivalent:

1. x0 = ΠC(x);

2. 〈JpE(x0)− JpE(x), z − x0 ≥ 0〉, ∀z ∈ C.

Furthermore, ∀y ∈ C, we have,

∆p(ΠC(x), y) + ∆p(x,ΠC(x)) ≤ ∆p(x, y).
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Lemma 2.8. [53] Let E be a smooth and uniformly convex real Banach space. Let {xn} and {yn}
be two bounded sequences in E. Then limn→∞∆p(xn, yn) = 0 if and only if

lim
n→∞

‖xn − yn‖ = 0.

Lemma 2.9. [57] Let q ≥ 1 and r > 0 be two fixed real numbers, then a Banach space E is
uniformly convex if and only if there exists a continuous, strictly, increasing and convex function
g : R+ → R+, g(0) = 0 such that for all x, y ∈ Br and 0 ≤ α ≤ 1,

‖αx+ (1− α)y‖q ≤ α‖x‖q + (1− α)‖y‖q −Wq(α)g(‖x− y‖), (2.16)

where Wq := αq(1− α) + α(1− α)q and Br := {x ∈ E : ‖x‖ ≤ r}.

3. Main results

In this section, we present our inertial technique for solving the modified SFP (1.9) in Banach spaces.
We also prove a strong convergence result for the sequence generated by our algorithm.

Algorithm 3.1. Let E1, E2 be p-uniformly convex and uniformly smooth real Banach spaces, C and
Q be non-empty closed convex subsets of E1 and E2 respectively, and A : E1 → E2 be a bounded linear
operator with A∗ : E∗2 → E∗1 . Let T : C → C be a Bregman weak relatively nonexpansive mapping,
and B : E2 → 2E

∗
2 be a maximal monotone operator. Suppose Γ = F (T ) ∩ C ∩ A−1(B−1(0)) 6= ∅.

Let {αn} be a sequence in [0,1], with 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, x0, x1 ∈ C = C1 = H1,

{θn} ⊂ (0, 1) be a real sequence and rn > 0. Assuming the (n − 1)th and nth iterates have been
constructed, we calculate the next iterate (n+ 1)th via the formula

wn = JqE∗1

[
JpE1

(xn) + θn(JpE1
(xn)− JpE1

(xn−1))
]
,

vn = ΠCJ
q
E∗1

[
JpE1

(wn)− µnA∗JpE2
(I −QB

rn)Awn
]
,

un = JqE∗1

[
αnJ

p
E1

(vn) + (1− αn)JpE1
(Tvn)

]
,

Cn = {u ∈ E1 : ∆p(u, un) ≤ ∆p(u,wn)},
Hn = {u ∈ E1 : 〈xn − u, JpE1

(x1)− JpE1
(xn)〉 ≥ 0},

xn+1 = ΠCn∩Hnx1, ∀n ∈ N,

(3.1)

where µn is a positive number satisfying

µq−1
n =


q‖(I−QB

rn
)Awn‖p

Dq‖A∗Jp
E2

(I−QB
rn

)Awn‖q
, if Awn 6= QB

rnAwn,

ε, if Awn = QB
rnAwn,

(3.2)

for any ε > 0.

Note that the step size defined in (3.2) does not require a prior knowledge or estimate of the operator
norm ‖A‖. This is very important because in practice, it is very difficult to estimate the norm of
bounded linear operators (for simple estimate, see [46]).
Next, we prove some necessary results which will be used to establish our main theorem.
First, we show that the sequence {xn} generated by Algorithm (3.1) is well-defined.

Lemma 3.2. Let {xn} be generated by (3.1), then {xn} is well-defined.
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Proof . We need to show that Cn ∩Hn is a non-empty closed and convex set ∀n ≥ 1. It is obvious
that Hn is closed and convex while Cn is closed. So we show that Cn is also convex. Observe that

∆p(u, un) ≤ ∆p(u,wn)

is equivalent to

〈JpE1
(wn)− JpE1

(un), u〉 ≤ 1

q
(‖wn‖p − ‖un‖p) .

Hence Cn is a half space and so convex. This implies that Cn ∩Hn is closed and convex for n ∈ N.
Furthermore, we need to show that Cn ∩Hn is non-empty. It is sufficient to show that Γ ⊂ Cn ∩Hn.
Let x∗ ∈ Γ, then

∆p(x
∗, un) = ∆p

(
x∗, JqE∗1

[
αnJ

p
E1
vn + (1− αn)JpE1

Tvn
])

≤ αn∆p(x
∗, vn) + (1− αn)∆p(x

∗, T vn)

≤ αn∆p(x
∗, vn) + (1− αn)∆p(x

∗, vn)

= ∆p(x
∗, vn). (3.3)

Also from Lemma 2.2 and (2.9), we have

∆p(x
∗, vn) = ∆p

(
x∗,ΠCJ

q
E∗1

[
JpE1

(wn)− µnA∗JpE2
(I −QB

rn)Awn
])

≤ ∆p

(
x∗, JqE∗1

[
JpE1

(wn)− µnA∗JpE2
(I −QB

rn)Awn
])

= Vp(x
∗, [JpE1

(wn)− µnA∗JpE2
(I −QB

rn)Awn])

=
‖x∗‖p

p
− 〈JpE1

wn, x
∗〉+ 〈µnA∗JpE2

(I −QB
rn)Awn, x

∗〉

+
1

q
‖JpE1

wn − µnA∗JpE2
(I −QB

rn)Awn‖q

≤ ‖x
∗‖p

p
− 〈JpE1

wn, x
∗〉+ µn〈JpE2

(I −QB
rn)Awn, Ax

∗〉+
1

q
‖JpE1

wn‖q

− µn〈JpE2
(I −QB

rn)Awn, Awn〉+
Dqµ

q
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q

=
‖x∗‖p

p
− 〈JpE1

wn, x
∗〉+

1

q
‖JpE1

wn‖q + µn〈JpE2
(I −QB

rn)Awn, Ax
∗ − Awn〉

+
Dqµ

q
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q

= ∆p(x
∗, wn) + µn〈JpE2

(I −QB
rn)Awn, Ax

∗ −QB
rnAwn + QB

rnAwn − Awn〉

+
Dqµ

q
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q

= ∆p(x
∗, wn) + µn〈JpE2

(I −QB
rn)Awn, Ax

∗ −QB
rnAwn〉

− µn〈JpE2
(I −QB

rn)Awn, Awn −QB
rnAwn〉+

Dqµ
q
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q.
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From (2.15), we have

∆p(x
∗, vn) ≤ ∆p(x

∗, wn)− µn〈JpE2
(I −QB

rn)Awn, (I −QB
rn)Awn〉

+
Dqµ

q
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q

= ∆p(x
∗, wn)− µn

{
‖(I −QB

rn)Awn‖p −
Dqµ

q−1
n

q
‖JpE1

(I −QB
rn)Awn‖q

}
. (3.4)

Hence, from (3.2), we have
∆p(x

∗, vn) ≤ ∆p(x
∗, wn).

This implies that
∆p(x

∗, un) ≤ ∆p(x
∗, wn).

So Γ ⊂ Cn, for all n ∈ N. Since xn+1 = ΠCn∩Hnx1, then 〈JpE1
x1 − JpE1

xn+1, v − xn+1〉 ≤ 0, ∀v ∈
Cn ∩Hn ⊂ C. In particular, for x∗ ∈ Γ, we have 〈JpE1

x1 − JpE1
xn+1, x

∗ − xn+1〉 ≤ 0. This implies that
Γ ⊂ Hn for all n ∈ N. So we obtain that Γ ⊂ Cn∩Hn for all n ∈ N. Therefore, Cn∩Hn is non-empty
and thus xn+1 = ΠCn∩Hnx1 is well-defined. �

Lemma 3.3. Let {xn} be a sequence generated by Algorithm 3.1. Then

(i) limn→∞ ‖xn+1 − xn‖ = 0,

(ii) limn→∞ ‖xn − wn‖ = 0,

(iii) limn→∞ ‖Tvn − vn‖ = 0,

(iv) limn→∞ ‖xn − vn‖ = 0,

(v) limn→∞ ‖A∗JpE2
(I −QB

rn)Awn‖ = 0.

Proof . (i) Let w ∈ Γ. Since Γ ⊂ Cn ∩Hn, ∀n ≥ 1 and xn+1 = ΠCn∩Hnx1, it follows that

∆p(xn+1, x1) ≤ ∆p(w, x1),∀ n ≥ 1.

Thus {∆p(xn+1, x1)} is bounded.
We observe that xn+1 ∈ Hn and by (2.6) we have

〈JpE1
(xn)− JpE1

(x1), xn − xn+1〉 ≤ 0,

also by (2.7) we have

∆p(xn+1, xn) ≤ ∆p(xn+1, x1)−∆p(xn, x1), ∀n ≥ 1, (3.5)

which implies that
∆p(xn, x1) ≤ ∆p(xn+1, x1)−∆p(xn+1, xn).

Thus
∆p(xn, x1) ≤ ∆p(xn+1, x1),

therefore, {∆p(xn, x1)} is a bounded monotone nondecreasing sequence. Hence, limn→∞ {∆p(xn, x1)}
exists.
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From (3.5), we have limn→∞∆p(xn+1, xn) = 0. Thus, using Lemma 2.8

lim
n→∞

‖xn+1 − xn‖ = 0. (3.6)

(ii) Since JpE1
is uniformly continuous on bounded subsets of E1, we have from (3.6) that

lim
n→∞

‖JpE1
(xn+1)− JpE1

(xn)‖ = lim
n→∞

‖JpE1
(xn)− JpE1

(xn−1)‖ = 0.

From (3.1), we have
wn = JqE∗1

(
JpE1

(xn) + θn(JpE1
(xn)− JpE1

(xn−1))
)

then
JpE1

wn = JpE1
xn + θn(JpE1

(xn)− JpE1
(xn−1),

which gives
‖JpE1

(wn)− JpE1
(xn)‖ = |θn|‖JpE1

(xn)− JpE1
(xn−1)‖.

Therefore
lim
n→∞

‖JpE1
(wn)− JpE1

(xn)‖ = 0.

Since JqE∗1 is also uniformly continuous on bounded subsets of E∗1 , we have

lim
n→∞

‖xn − wn‖ = 0. (3.7)

(iii) From (3.6) and (3.7), we obtain

‖xn+1 − wn‖ = ‖xn+1 − xn + xn − wn‖
≤ ‖xn+1 − xn‖+ ‖xn − wn‖ → 0 as n→∞.

Note that from the construction of Cn, we have that

∆p(xn+1, un) ≤ ∆p(xn+1, wn)→ 0 as n→∞,

therefore by Lemma 2.8, we have
lim
n→∞

‖xn+1 − un‖ = 0.

Again, since ‖xn − un‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − un‖, it then follows that

lim
n→∞

‖xn − un‖ = 0. (3.8)

It follows from (3.7) and (3.8) that
lim
n→∞

||wn − un‖ = 0. (3.9)
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Using Lemma 2.9, we have

∆p(x
∗, un) = ∆p

(
x∗, JqE∗1

[
αnJ

p
E1
vn + (1− αn)JpE1

Tvn
])

= Vp
(
x∗, αnJ

p
E1
vn + (1− αn)JpE1

Tvn
)

=
1

p
‖x∗‖p − 〈αnJpE1

vn, x
∗〉 − 〈(1− αn)JpE1

Tvn, x
∗〉

+
1

q
‖αnJpE1

vn + (1− αn)JpE1
Tvn‖q

≤ 1

p
‖x∗‖p − αn〈JpE1

vn, x
∗〉 − (1− αn)〈JpE1

Tvn, x
∗〉

+
1

q
αn‖vn‖p +

(1− αn)

q
‖Tvn‖p −

Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
(3.10)

= αn
1

p
‖x∗‖p + (1− αn)

1

p
‖x∗‖p − αn〈JpE1

vn, x
∗〉 − (1− αn)〈JpE1

Tvn, x
∗〉

+
1

q
αn‖vn‖p +

(1− αn)

q
‖Tvn‖p −

Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
= αn

{
1

p
‖x∗‖p − 〈JpE1

vn, x
∗〉+

1

q
‖vn‖p

}
+(1− αn)

{
1

p
‖x∗‖p − 〈JpE1

Tvn, x
∗〉+

1

q
‖Tvn‖p

}
−Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
= αn∆p(x

∗, vn) + (1− αn)∆p(x
∗, T vn)− Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
≤ αn∆p(x

∗, vn) + (1− αn)∆p(x
∗, vn)− Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
= ∆p(x

∗, vn)− Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
≤ ∆p(x

∗, wn)− Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
. (3.11)

Hence, from (2.4) and (2.5), we get

Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
≤ ∆p(x

∗, wn)−∆p(x
∗, un)

= ∆p(un, wn) + 〈JpE1
x∗ − JpE1

un, un − wn〉
≤ 〈JpE1

un − JpE1
wn, un − wn〉+ 〈JpE1

x∗ − JpE1
un, un − wn〉

= 〈JpE1
x∗ − JpE1

wn, un − wn〉. (3.12)

From (3.9), we have

lim
n→∞

Wq(αn)

q
g
(
‖JpE1

vn − JpE1
Tvn‖

)
= 0,

which implies
lim
n→∞

g
(
‖JpE1

vn − JpE1
Tvn‖

)
= 0.
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By the property of mapping g, we obtain

lim
n→∞

‖JpE1
vn − JpE1

Tvn‖ = 0.

Since JqE∗1 is uniformly continuous on bounded subsets of E∗1 , we have

lim
n→∞

‖Tvn − vn‖ = 0. (3.13)

(iv) From Algorithm 3.1, we have that,

JPE1
un − JPE1

vn = (1− αn)(JPE1
Tvn − JPE1

vn).

Since 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1 and from (3.13), we have

lim
n→∞

‖JPE1
un − JPE1

vn‖ = 0,

Hence
lim
n→∞

‖un − vn‖ = 0.

Since ‖wn − vn‖ ≤ ‖wn − un‖+ ‖un − vn‖, then from (3.9) we have

lim
n→∞

‖wn − vn‖ = 0. (3.14)

Therefore, from (3.7), we have

lim
n→∞

‖vn − xn‖ = 0.

(v) From (3.4), we have

µn

{
‖(I −QB

rn)Awn‖p −
Dqµ

q−1
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q

}
≤ ∆p(x

∗, wn)−∆p(x
∗, vn)

= ∆p(vn, wn)

+〈JpE1
x∗ − JpE1

vn, vn − wn〉
≤ 〈JpE1

vn − JpE1
wn, vn − wn〉

+〈JpE1
x∗ − JpE1

vn, vn − wn〉
= 〈JpE1

x∗ − JpE1
wn, vn − wn〉.(3.15)

It follows from (3.14) that

lim
n→∞

(
‖(I −QB

rn)Awn‖p −
Dqµ

q−1
n

q
‖A∗JpE2

(I −QB
rn)Awn‖q

)
= 0. (3.16)

From the choice of µn in (3.2), we have

µq−1
n <

q‖(I −QB
rn)Awn‖p

Dq‖A∗JpE2
(I −QB

rn)Awn‖q
− ε, (3.17)

for small ε > 0. This implies that

Dqµ
q−1
n ‖A∗J

p
E2

(I −QB
rn)Awn‖q

q
< ‖(I −QB

rn)Awn‖p −
εDq‖A∗JpE2

(I −QB
rn)Awn‖q

q
.
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Then we have

εDq‖A∗JpE2
(I −QB

rn)Awn‖q

q
< ‖(I −QB

rn)Awn‖p −
Dqµ

q−1
n ‖A∗J

p
E2

(I −QB
rn)Awn‖q

q
.

Therefore from (3.16), we have

lim
n→∞

εDq

q
‖A∗JpE2

(I −QB
rn)Awn‖q = 0,

hence
lim
n→∞

‖A∗JpE2
(I −QB

rn)Awn‖ = 0. (3.18)

Also from (3.16), we have that
lim
n→∞

‖(I −QB
rn)Awn‖ = 0. (3.19)

�

Now, we present a strong convergence theorem for solving the SFP (1.9) using Algorithm 3.1.

Theorem 3.4. Let E1, E2 be p-uniformly convex and uniformly smooth Banach spaces, C and Q
be non-empty closed convex subsets of E1 and E2 respectively, and A : E1 → E2 be a bounded linear
operator with A∗ : E∗2 → E∗1 . Let T : C → C be a Bregman weak relatively nonexpansive mapping,
and B : E2 → 2E

∗
2 be a maximal monotone operator. Suppose Γ = F (T ) ∩ C ∩ A−1(B−1(0)) 6= ∅.

Then, the sequence {xn} generated by Algorithm 3.1 converges strongly to u ∈ Γ, where u = ΠΓx1.

Proof . We have already shown in Lemma 3.3(i) that lim
n→∞

∆p(xn, x1) exists. Next, we show that

xn → x̄ ∈ Γ. Let m,n ∈ N, then

∆p(xm, xn) = ∆p(xm,ΠCn−1∩Hn−1x1) ≤ ∆p(xm, x1)−∆p(xn, x1)→ 0.

Therefore by Lemma 2.9, we get that ‖xm−xn‖ → 0 as m,n→∞. Thus {xn} is a Cauchy sequence
in C. Since C is closed and convex, it implies that there exists x̄ ∈ C such that xn → x̄ as n → ∞.
Since ‖xn − vn‖ → 0, ‖Tvn − vn‖ → 0 and T is a Bregman weak relatively nonexpansive mapping,
then x̄ ∈ F (T ). More so, since ‖xn − wn‖ → 0, then wn → x̄ and by the linearity of A, we have
Awn → Ax̄. Also from (3.19), QB

rnAwn → Ax̄. Since QB
rn is a resolvent metric of B for rn > 0, then

for all n ∈ N, we have
JPE2

(Awn −QB
rnAwn)

rn
∈ BQB

rnAwn.

So for all (s, s∗) ∈ B, we have

0 ≤ 〈s−QB
rnAwn, s

∗ −
JP
E2

(Awn−QB
rn
Awn)

rn
〉.

It follows from (3.19) that for all (s, s∗) ∈ B, we have

0 ≤ 〈s∗ − 0, s− Ax̄〉.

Since B is maximal monotone, then it implies that Ax̄ ∈ B−1(0), hence x̄ ∈ A−1(B−10). Therefore,
x̄ ∈ Γ.
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Finally, we show that x̄ = ΠΓx1. Suppose there exists ȳ ∈ Γ such that ȳ = ΠΓx1. Then

∆p(ȳ, x1) ≤ ∆p(x̄, x1). (3.20)

We have shown in Lemma 3.2 that Γ ⊂ Cn ∀n ≥ 1, then ∆p(xn, x1) ≤ ∆p(x̄, x1). By the lower
semi-continuity of the norm, we have

∆p(x̄, x1) =
‖x̄‖p

q
− 〈JpE1

x̄, x1〉+
‖x1‖p

p

≤ lim inf
n→∞

{
‖x̄‖p

q
− 〈JpE1

xn, x1〉+
‖x1‖p

p

}
= lim inf

n→∞
∆p(x̄, x1).

≤ lim sup
n→∞

∆p(x̄, x1) ≤ ∆p(ȳ, x1). (3.21)

Combining (3.20) and (3.21) we have ∆p(ȳ, x1) ≤ ∆p(x̄, x1) ≤ ∆p(ȳ, x1). This implies x̄ = ȳ and
x̄ = ΠΓx1. Hence xn → x̄ = ΠΓx1 ∈ Γ. This completes the proof. �

The following are consequences of our results.
(i) Taking B = ∂iQ which is a maximal monotone operator, then QB

rn = PQ (the metric projection on
Q). Thus, we obtain the following result from Theorem 3.4 which improve the corresponding results
of Suantai et al. [49].

Corollary 3.5. Let E1, E2 be p-uniformly convex and uniformly smooth real Banach spaces, C and
Q be non-empty closed convex subsets of E1 and E2 respectively, and A : E1 → E2 be a bounded
linear operator with A∗ : E∗2 → E∗1 and let T : C → C be a Bregman weak relatively nonexpansive
mapping. Suppose Γ = SFP ∩ F (T ) 6= ∅. Then, the sequence {xn} generated by the following
algorithm converges strongly to u ∈ Γ, where u = ΠΓx1.

Algorithm 3.6. Let {αn} be a sequence in (0,1), x1 ∈ C = C1 = Q1 and {θn} ⊂ (0, 1) be a real
sequence. Assuming the (n−1)th and nth iterates have been constructed, we calculate the next iterate
(n+ 1)th via the formula

wn = JqE∗1

[
JpE1

(xn) + θn(JpE1
(xn)− JpE1

(xn−1))
]
,

vn = ΠCJ
q
E∗1

[
JpE1

(wn)− µnA∗JpE2
(I − PQ)Awn

]
,

un = JqE∗1

[
αnJ

p
E1

(vn) + (1− αn)JpE1
(Tvn)

]
,

Cn = {u ∈ E1 : ∆p(u, un) ≤ ∆p(u,wn)},
Hn = {u ∈ E1 : 〈xn − u, JpE1

(x1)− JpE1
(xn)〉 ≥ 0},

xn+1 = ΠCn∩Hnx1, ∀n ∈ N,

(3.22)

where µn is a positive number satisfying

µq−1
n =

{
q‖(I−PQ)Awn‖p

Dq‖A∗Jp
E2

(I−PQ)Awn‖q , if Awn 6= PQAwn,

ε, if Awn = PQAwn,
(3.23)

for any ε > 0.
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(ii) Taking E1 = H1 and E2 = H2, where H1 and H2 are real Hilbert spaces, we obtain the following
result which improve the results of Byrne [8].

Corollary 3.7. Let H1, H2 be real Hilbert spaces, C and Q be non-empty closed convex subsets of
H1 and H2 respectively, and A : H1 → H2 be a bounded linear operator. Let T : C → C be a Bregman
weak relatively nonexpansive mapping, and B : H2 → 2H2 be a maximal monotone operator. Suppose
Γ = F (T ) ∩ C ∩ A−1(B−1(0)) 6= ∅. Then, the sequence {xn} generated by the following algorithm
converges strongly to u ∈ Γ, where u = PΓx1.

Algorithm 3.8. Let {αn} be a sequence in (0,1), x1 ∈ C = C1 = Q1, {θn} ⊂ (0, 1) be a real
sequence and rn > 0. Assuming the (n − 1)th and nth iterates have been constructed, we calculate
the next iterate (n+ 1)th via the formula

wn = xn + θn(xn − xn−1),

vn = PC(wn − µnA∗(I −QB
rn)Awn),

un = αnvn + (1− αn)Tvn,

Cn = {u ∈ H1 : ‖un − u‖2 ≤ ‖wn − u‖2,

Hn = {u ∈ H1 : 〈xn − u, x1 − xn〉 ≥ 0},
xn+1 = PCn∩Hnx1, ∀n ∈ N,

(3.24)

where µn is a positive number satisfying

µn =

{
2‖(I−QB

rn
)Awn‖2

‖A∗(I−QB
rn

)Awn‖2
, if Awn 6= QB

rnAwn,

ε, if Awn = QB
rnAwn,

(3.25)

for any ε > 0.

4. Numerical Examples

In this section, we present two numerical examples to compare the performance of our algorithm
with some other algorithms in the literature.

Example 4.1. Let E1 = E2 = Rm and A be a m ×m randomly generated matrix. Let C = {x ∈
Rm : 〈a, x〉 ≥ b}, where a = (1,−5, 4, 0, . . . , 0) ∈ Rm and b = 1. Then

ΠC(x) = PC(x) =
b− 〈a, x〉
‖a‖2

2

a+ x.

Let B : Rm → 2Rm
be defined by B(x) = {2x}, and T = PC . We take θn = 3

7n
, rn = 1

2n
, and

αn = n
5n+1

. Then our Algorithm (3.1) becomes

wn = xn + 3
7n

(xn − xn−1),

vn = PC(wn − µnA∗(I −QB
rn)Awn),

un = n
5n+1

vn + 4n+1
5n+1

PC(vn),

Cn = {u ∈ E1 : ‖un − u‖2 ≤ ‖wn − u‖2},
Hn = {u ∈ E1 : 〈xn − u, x1 − xn ≥ 0},
xn+1 = PCn∩Hnx1, ∀n ∈ N,
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where µn is chosen as defined by (3.2) and QB
rn(Awn) =

(
n
n+1

)
Awn for all n ≥ 1. We choose various

values of m as follows:

Case I: m = 10, Case II: m = 20, Case III: m = 50, Case IV: m = 40,

and use
‖xn+1−xn‖22
‖x2−x1‖22

< 10−6 as the stopping criterion. We thus, plot the graph of ‖xn+1−xn‖2
2 against

number of iteration in each case and compare the computation results of our algorithm with Algorithm
(1.4) and (1.5) of Alsulami and Takahashi [6]. We found that Algorithm 3.1 performs better in terms
of number of iterations and CPU time-taken for computation than both Algorithms (1.4) and (1.5).
The computation result can be seen in Figure 1 and Table 1.

Table 1: Computation result for Example 4.1.

Algorithm
3.1

Algorithm
(1.4)

Algorithm
(1.5)

Case I CPU time (sec) 7.7660e− 4 0.0024 0.0027
m = 10 No. of Iter. 10 144 88
Case II CPU time (sec) 7.8468e− 4 0.0013 0.0011
m = 20 No. of Iter. 10 150 91
Case III CPU time (sec) 7.2380e− 4 0.0063 0.0064
m = 50 No. of Iter. 10 155 94
Case IV CPU time (sec) 7.2747e− 4 0.0057 0.0061
m = 100 No. of Iter. 10 159 97

Example 4.2. In this second example, we consider the infinite-dimensional space and compare our
Algorithm (3.1) with Algorithms (1.7) and (1.8) of Suantai et al. [49]. Let E1 = E2 = E3 =

L2([0, 2π]) with norm ||x||2 =
∫ 2π

0
|x(t)|2dt and inner product 〈x, y〉 =

∫ 2π

0
x(t)y(t)dt, x, y ∈ E.

Suppose C := {x ∈ L2([0, 2π]) :
∫ 2π

0
(t2 + 1)x(t)dt ≤ 1} and Q := {x ∈ L2([0, 2π]) :

∫ 2π

0
|x(t) −

sin(t)|2 ≤ 16} are subsets of E1 and E2 respectively. Define A : L2([0, 2π])→ L2([0, 2π]) by A(x)(t) =∫ 2π

0
exp−st x(t)dt for all x ∈ L2([0, 2π]) and let A = ∂iQ, subdifferential of the indicator function on

Q, then QrnB = PQ. Let T (x)(t) =
∫ 2π

0
x(t)dt and choose θn = 1

2(n+1)
and αn = 5n

8n+7
. Then our

Algorithm (3.1) becomes: 

wn = xn + 1
2(n+1)

(xn − xn−1),

vn = ΠC(wn − µnA∗(I − PQ)Awn),

un = 5n
8n+7

vn + 3n+7
8n+7

T (vn),

Cn = {u ∈ E1 : ∆p(u, un) ≤ ∆p(u,wn)},
Hn = {u ∈ E1 : 〈xn − u, x1 − xn ≥ 0},
xn+1 = PCn∩Hnx1, ∀n ∈ N,

where µn is chosen as defined by (3.2) for all n ≥ 1. We choose various values of the initial point as
follows:
Case (i): x1 = 2t exp(5t), x0 = t2

2
,

Case (ii): x1 = t2 cos(2πt), x0 = exp(2t),
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Figure 1: Example 4.1: Top Left Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV.

Case (iii): x1 = 3
7

sin(4t), x0 = 2t sin(3t),
Case (iv): x1 = 5t cos(2πt), x0 = 2 cos(3πt).

Using ‖xn+1−xn‖2
‖x2−x1‖2 < 10−4 as stopping criterion, we plot the graph of ‖xn+1 − xn‖2 against number

of iteration and compare the computation results of our algorithm with Algorithm (1.7) and (1.8) of
Suantai et al. [49]. The computational results can be seen in Table 2 and Figure 2.

Remark 4.3. From the computation results, it can be inferred that our Algorithm (3.1) performs
better than Algorithm (1.7) and (1.8) in terms of number of iterations and cpu-time.

5. Conclusion

In this paper, we introduced an inertial iterative algorithm for approximating a common solution
of split feasibility problem, monotone inclusion problem and fixed point problem for the class of
Bregman weak relative nonexpansive mapping in p-uniformly convex and uniformly smooth Banach
spaces. Our algorithm is designed in such a way that its implementation does not require a prior
information of the norm of the bounded linear operator. We also proved a strong convergence
theorem and obtain some consequence results for solving split feasibility problem. We finally give
two numerical examples to show the accuracy and efficiency of our algorithm. The results in this
paper improve and extend many related results in the literature.
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Table 2: Computation result for Example 4.2.

Algorithm
3.1

Algorithm
(1.7)

Algorithm
(1.8)

Case I CPU time (sec) 2.9098 13.5328 3.1893
No. of Iter. 12 34 25

Case II CPU time (sec) 2.0835 18.7739 5.8123
No. of Iter. 10 35 26

Case III CPU time (sec) 2.3470 7.5584 4.4957
No. of Iter. 12 34 25

Case IV CPU time (sec) 2.0908 6.0053 3.0760
No. of Iter. 10 27 20
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Figure 2: Example 4.1: Top Left Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV.
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[44] F. Schöpfer, T. Schuster, and A. K. Louis, An iterative regularization method for the solution of the split feasibility
problem in Banach spaces, Inverse Probl., 24(5) (2008) 055008.
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