Int. J. Nonlinear Anal. Appl. 14 (2023) 1, 1–10 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2021.22864.2423

F-contractions fixed point results in extended rectangular b-metric space

Patel Mittal^{a,*}, Jaita Sharma^a, Deheri Gunamani^b

^aDepartment of Applied Mathematics, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara-390 001, India ^bDepartment of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388 120, India

(Communicated by Farshid Khojasteh)

Abstract

In the present paper, we prove the common fixed point theorem for F-contraction by considering one map as an orbitally continuous map in Ω -Extended rectangular b-metric space. In addition, we find a fixed point for Banach and Kannan type contraction inequality without consideration of orbital continuity. Also, the map does not force to be continuous at a fixed point. An example is also provided for the utility of our results.

Keywords: Extended rectangular b-metric space, F-contraction, Orbitally continuous, Common Fixed point, Fixed point

2020 MSC: Primary 47H10; Secondary 54E50

1 Introduction

In 1993, the notion of b-metric space was introduced by Czerwik [10] as a generalization of a metric space, by modifying the third condition in the metric space. In recent years Goswami, Mohanta and Kamran derived some fixed point theorems in that space ([15],[22],[27]). Recently, Kamran [17] generalized b-metric space to become extended b-metric space. In 2000, Branciari [7] introduced rectangular (generalized) metric space (RMS) by replacing triangular inequality with a rectangular one in the context of fixed point theorem.

In 2015, George [14] introduced the concept of rectangular b-metric space and proved Banach contractions Fixed point theorem for this space. Then Mitrovic and Radenovic [21] established a common fixed point in such space. Recently in 2019, Mustafa [23] introduced the Ω -Extended rectangular b-metric space and proved fixed point results. Also, Pant [25] and Bisht [6] derived some fixed point results at which the map does not force to be continuous at the fixed point.

Motivated by the idea of Mustafa [23] and Lukacs et al. [20], we derive common fixed point results in complete Ω -Extended rectangular b-metric space. Consequently, we prove Banach and Kannan type F-contraction and find a unique fixed point. Our results we are deal with the discontinuity of metric space. Also, an example is given to strengthen our new results.

*Corresponding author

Email addresses: mittal.maths49@yahoo.com (Patel Mittal), jaita.sharma-appmath@msubaroda.ac.in (Jaita Sharma), gm.deheri@rediff.com (Deheri Gunamani)

2 Preliminaries

In this section, we need to recall some basic definitions and necessary results from existing literature.

Definition 2.1. [4, 10] Let X be a non-empty set with the coefficient $s \ge 1$, and the mapping $d: X \times X \to [0, \infty)$ satisfies the following:

- (1) d(x, y) = 0 if and only if x = y;
- (2) d(x,y) = d(y,x) for all $x, y \in X$;
- (3) $d(x,y) \leq s[d(x,z) + d(z,y)]; \forall x, y, z \in X.$

Then d is called a b-metric on X and (X, d) is called a b-metric space with coefficient s.

Definition 2.2. [14] Let X be a nonempty set with the coefficient $s \ge 1$, and the mapping $d : X \times X \to [0, \infty)$ satisfies the following:

- (1) d(x, y) = 0 if and only if x = y;
- (2) d(x,y) = d(y,x) for all $x, y \in X$;
- (3) $d(x,y) \le s[d(x,w) + d(w,z) + d(z,y)]$ for all $x,y \in X$ and for all distinct points $w,z \in X \{x,y\}$.

Then (X, d) is called a rectangular b- metric space (in short RbMS).

In 2012, Wardowski [29] introduced a new type of contraction called Wardowski F-contraction and obtained a fixed point for complete metric space. Then several papers have dealt with the F-contraction mappings and their extensions (see [1, 13, 15, 19]). Cosentino et al. [9] introduced the following condition (F_4) and obtained some results in b-metric spaces. Then Lukacs and Kajanto [20] defined F-Contraction as follows:

Definition 2.3. [20] Let (X, d) be a b-metric space with constant $s \ge 1$ and $T: X \to X$ is said to be a F-contraction if there exists $\tau > 0$ such that d(Tx, Ty) > 0 implies

$$\tau + F(s.d(Tx,Ty)) \le F(d(x,y)); \quad \text{for all} \quad x,y \in X.$$

$$(2.1)$$

where, $F: (0, \infty) \to R$ belongs to $\mathcal{F}_{s,\tau}$ satisfying the following conditions:

- (F_1) F is strictly increasing.
- (F_2) For each sequence $\{\alpha_n\}_{n\in\mathbb{N}}$ of positive numbers $\lim_{n\to\infty} \alpha_n = 0$ iff $\lim_{n\to\infty} F(\alpha_n) = -\infty$.
- (F₃) There exists $k \in (0, 1)$ such that $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$.
- (F₄) Let $s \ge 1$ be a real number. For each sequence $\{\alpha_n\}_{n \in N}$ of positive numbers such that $\tau + F(s\alpha_n) \le F(\alpha_{n-1})$, for all $n \in N$ and some $\tau > 0$, then $\tau + F(s^n\alpha_n) \le F(s^{n-1}\alpha_{n-1})$, for all $n \in N$

In our results, (F_3) and (F_4) is not required and denote class of all function satisfies (F_1) and (F_2) by $\mathcal{F}_{\Omega,\tau}$. In 1971, Ciric [8] gave the notion of orbital continuity as below:

Definition 2.4. If f is a self-mapping of a metric space (X, d), then the set $O(x, f) = \{f^n x : n = 1, 2, ...\}$ is called the orbit of f at x and f is called orbitally continuous if $\lim_{k\to\infty} f^{n_k}x = x$, for some $x \in X$ implies $\lim_{k\to\infty} f(f^{n_k}x) = fx$.

Remark: It is obvious that a continuous function is always orbitally continuous but the converse may not be true. The following examples illustrate this fact.

Example 2.5. [5] Let X = [0, 2], the map $f : X \to X$ defined by

$$f(x) = 1$$
 if $x \in [0,1], f(x) = 0$ if $x \in (1,2].$

It is clear that f is orbitally continuous but not continuous at x = 1.

Example 2.6. Let X = [0, 1) and the map $f : X \to X$ defined by

$$f(x) = \begin{cases} 0 & ; x = 0, \\ \frac{1}{2} - x, & ; 0 < x \le \frac{1}{2} \\ \frac{3}{2} - x, & ; \frac{1}{2} < x < 1. \end{cases}$$

Sequence $\{\frac{1}{2^n}\} \to 0$, but $f(\frac{1}{2^n}) \not\rightarrow f(0)$, So f is not orbitally continuous.

Example 2.7. Let $X = A \cup B$, where $A = \{\frac{1}{n}; n = 2, 3, 4, ...\}$ and $B = \{0, 1, 2, 3, ...\}$. The map $f : X \to X$ defined by

$$f(x) = \begin{cases} 1 & ; x = 0, \\ \frac{x}{2}, & ; x \in A \\ \frac{1}{x}, & ; x \in B - \{0\}. \end{cases}$$

Here $\{\frac{1}{n}\} \to 0$, but $f(\frac{1}{n}) \not\rightarrow f(0)$, hence f is not orbitally continuous.

Definition 2.8. [23] Let X be a nonempty set, $\Omega : [0, \infty) \to [0, \infty)$ be a strictly increasing continuous function with $t \leq \Omega(t)$, for all t > 0 and $0 = \Omega(0)$ and let $\tilde{r} : X \times X \to [0, \infty)$ be a mapping such that for all $x, y \in X$ and all distinct points $u, v \in X$, each distinct from x and y satisfies the following conditions:

- (1) $\tilde{r}(x,y) = 0$ if and only if x = y;
- (2) $\tilde{r}(x,y) = \tilde{r}(y,x);$
- (3) $\tilde{r}(x,y) \leq \Omega[\tilde{r}(x,u) + \tilde{r}(u,v) + \tilde{r}(v,y)].$

Then (X, \tilde{r}) is called an extended rectangular b- metric space (in short ERbMS).

The concepts of convergence, Cauchy sequence, and completeness in a ERbMS are defined in a standard way. In [14, Example 1.7], it is seen that sequences in ERbMS may have more than one limit. However, there is a special situation where this is not possible, and this will be used in some proofs.

Theorem 2.9. [23] Let (X, \tilde{r}) be an ERbMS and let $\{x_n\}$ be a Cauchy sequence in X such that $x_n \neq x_m$ whenever $n \neq m$. Then $\{x_n\}$ can converge to at most one point.

While proving our results discontinuity of the Ω -ERbMS can be managed by the following lemma.

Lemma 2.10. [23] Let (X, \tilde{r}) be an ERbMS with the function Ω , then we have the following:

(i) Suppose that $\{x_n\}$ and $\{y_n\}$ are sequences in X such that $x_n \to x, y_n \to y$ and the elements of $\{x, y, x_n, y_n : n \in N\}$ are totally distinct. Then, we have

$$\Omega^{-1}(\tilde{r}(x,y)) \le \lim_{n \to \infty} \inf \tilde{r}(x_n,y_n) \le \lim_{n \to \infty} \sup \tilde{r}(x_n,y_n) \le \Omega(\tilde{r}(x,y))$$

(ii) Let $\{x_n\}$ be a Cauchy sequence in X converging to x. If x_n has infinitely many distinct terms, then

$$\Omega^{-1}(\tilde{r}(x,y)) \le \lim_{n \to \infty} \inf \tilde{r}(x_n,y) \le \lim_{n \to \infty} \sup \tilde{r}(x_n,y) \le \Omega(\tilde{r}(x,y))$$

for all $y \in X$ with $x \neq y$.

3 Main results

Theorem 3.1. Let (X, \tilde{r}) be a complete ERbMS with non-trivial function $\Omega(i.e., \Omega(t) \neq t)$. Let f and g be commuting mappings into itself which satisfies the following:

(i) if there exists $\tau > 0$ such that

$$\tau + F(\Omega[\tilde{r}(fx, fy)]) \le F(\tilde{r}(gx, gy)); \quad \forall x, y \in X.$$
(3.1)

(ii) either f or g is orbitally continuous and the range of g contains the range of f.

Then f and g have a unique common fixed point, say z. Moreover, f and g are continuous at common fixed point z if and only if $\lim_{x\to z} \max\{\tilde{r}(x, fx) + \tilde{r}(x, gx), \tilde{r}(z, fz)\} = 0.$

Proof. Let $x_0 \in X$ be arbitrary. Then fx_0 and gx_0 are well defined. Since $fx_0 \in g(X)$, there exists $x_1 \in X$ such that $gx_1 = fx_0$. Continuing this process, if x_n is chosen, we choose a point in X such that $gx_{n+1} = fx_n$.

Step I: We will prove that $\lim_{n\to\infty} \tilde{r}(gx_{n+1}, gx_n) = 0$. From our contractive condition (3.1) one can have

$$\tau + F(\Omega[\tilde{r}(gx_{n+1}, gx_n)]) = \tau + F(\Omega[\tilde{r}(fx_n, fx_{n-1})])$$

$$\leq F(\tilde{r}(gx_n, gx_{n-1})).$$

This implies

$$F(\Omega[\tilde{r}(gx_{n+1}, gx_n)]) \le F(\tilde{r}(gx_n, gx_{n-1})) - \tau.$$

$$(3.2)$$

Since, $t \leq \Omega(t)$, F is strictly increasing, one can observe with the use of (3.2)

$$F(\tilde{r}(gx_{n+1}, gx_n)) < F(\Omega[\tilde{r}(gx_{n+1}, gx_n)])$$

$$\leq F(\tilde{r}(gx_n, gx_{n-1})) - \tau$$

$$\vdots$$

$$< F(\tilde{r}(gx_1, gx_0)) - n\tau.$$

Then

$$\lim_{n \to \infty} \sup F(\tilde{r}(gx_{n+1}, gx_n)) = \lim_{n \to \infty} \inf F(\tilde{r}(gx_{n+1}, gx_n)) = \lim_{n \to \infty} F(\tilde{r}(gx_{n+1}, gx_n)) = -\infty$$

which together with (2.3 F2) gives

$$\lim_{n \to \infty} \tilde{r}(gx_{n+1}, gx_n) = 0. \tag{3.3}$$

Step 2: We will show that $gx_n \neq gx_m$ for $n \neq m$.

Case (i) If $gx_n = gx_{n+1}$ for some *n*, then $fx_n = gx_n = u$, for some *n*. This yields

$$fu = fgx_n = gfx_n = gu \tag{3.4}$$

Now our claim is to prove $\tilde{r}(u, fu) = 0$. On the contrary, let $\tilde{r}(u, fu) > 0$. Using contractive condition (3.1), one comes across

$$F(\tilde{r}(fx_n, fu)) < F(\Omega \; \tilde{r}(fx_n, fu)) \le F(\tilde{r}(gx_n, gu)) - \tau$$

From equation (3.4), one has

$$F(\tilde{r}(fx_n, fu)) < F(\tilde{r}(fx_n, fu))$$

which is absurd. Hence our assumption is wrong.

$$fu = u = gu.$$

Hence, u is the common fixed point of f and g.

Case (ii): If $gx_n \neq gx_{n+1}$ for all $n \ge 0$, then $gx_n \neq gx_{n+k}$ for all $n \ge 0, k \ge 1$. If $gx_n = gx_{n+k}$ for some $n \ge 0, k \ge 1$, then

$$F(\tilde{r}(gx_{n+1}, gx_n)) < F(\Omega[\tilde{r}(gx_{n+1}, gx_n)]) = F(\Omega[\tilde{r}(gx_{n+k+1}, gx_{n+k})]) \\ \leq F(\tilde{r}(gx_{n+k}, gx_{n+k-1})) - \tau \\ < F(\Omega[\tilde{r}(gx_{n+k}, gx_{n+k-1})]) - \tau \\ \leq F(\tilde{r}(gx_{n+k-1}, gx_{n+k-2})) - 2\tau \\ \vdots \\ < F(\tilde{r}(gx_{n+1}, gx_n)) - k\tau$$

 $F(\tilde{r}(gx_{n+1}, gx_n)) < F(\tilde{r}(gx_{n+1}, gx_n))$, which is a contradiction. Hence $gx_n \neq gx_{n+k}$ for all $n \ge 0, k \ge 1$. Therefore, we can assume that $gx_n \neq gx_m$ for $n \neq m$.

Step 3: Now it is shown that $\{gx_n\}$ is an \tilde{r} -Cauchy sequence. Suppose to the contrary that there exists $\epsilon > 0$ for which we can find two subsequences $\{gx_{m_i}\}$ and $\{gx_{n_i}\}$ of $\{gx_n\}$ such that m_i is the smallest index, where

$$m_i > n_i > i \quad and \quad \tilde{r}(gx_{n_i}, gx_{m_i}) \ge \epsilon.$$
 (3.5)

It means that

$$\tilde{r}(gx_{n_i}, gx_{m_i-2}), \tilde{r}(gx_{n_i}, gx_{m_i-1}) < \epsilon.$$

$$(3.6)$$

By using the Ω -rectangular inequality and (3.5), one obtains

$$\epsilon \le \tilde{r}(gx_{n_i}, gx_{m_i}) \le \Omega[\tilde{r}(gx_{n_i}, gx_{n_i+1}) + \tilde{r}(gx_{n_i+1}, gx_{m_i-1}) + \tilde{r}(gx_{m_i-1}, gx_{m_i})]$$

which together with (3.3) and taking the upper limit as $i \to \infty$, we have

$$\Omega^{-1}(\epsilon) \le \limsup_{i \to \infty} \tilde{r}(gx_{n_i+1}, gx_{m_i-1}).$$
(3.7)

Again, from the Ω -rectangular inequality, one finds that

$$\tilde{r}(gx_{n_i+1}, gx_{m_i-2}) \le \Omega[\tilde{r}(gx_{n_i+1}, gx_{n_i}) + \tilde{r}(gx_{n_i}, gx_{m_i-1}) + \tilde{r}(gx_{m_i-1}, gx_{m_i-2})]$$

Taking the upper limit as $i \to \infty$, From (3.3) and (3.6), one arrives at

$$\limsup_{i \to \infty} \tilde{r}(gx_{n_i+1}, gx_{m_i-2}) \le \Omega(\epsilon).$$
(3.8)

Since F is strictly increasing and with the use of inequalities (3.6) and (3.7), one gets

$$F(\epsilon) = F(\Omega[\Omega^{-1}(\epsilon)])$$

$$\leq F(\Omega[\limsup_{n \to \infty} \tilde{r}(gx_{n_i+1}, gx_{m_i-1})])$$

$$\leq F(\limsup_{n \to \infty} \tilde{r}(gx_{n_i}, gx_{m_i-2}))$$

$$< F(\epsilon)$$

a contradiction. Thus, $\{gx_n\}$ is a \tilde{r} -Cauchy sequence in X. Since (X, \tilde{r}) is a complete Ω -ERbMS. So, there exists $z \in X$ such that

$$\lim_{n \to \infty} gx_n = z \tag{3.9}$$

which yields $\lim_{n\to\infty} gx_n = \lim_{n\to\infty} fx_{n-1} = z$.

Step4: In this we will prove that z is the coincidence point of f and g. i.e. fz = gz. With the use of Ω -rectangular inequality, one finds that

$$\tilde{r}(fz,gz) \le \Omega[\tilde{r}(fz,fgx_n) + \tilde{r}(fgx_n,fgx_{n-1}) + \tilde{r}(fgx_{n-1},gz)].$$

Letting limit supremum, one has

$$\limsup_{n \to \infty} \tilde{r}(fz, gz) \leq \Omega[\limsup_{n \to \infty} \tilde{r}(fz, fgx_n) + \limsup_{n \to \infty} \tilde{r}(fgx_n, fgx_{n-1}) + \limsup_{n \to \infty} \tilde{r}(fgx_{n-1}, gz)]$$

Without loss of generality, we can assume that f is orbitally continuous. Also, we have, f and g are commutative. Applying Lemma (2.2) and equation (3.9), we get

$$\lim_{n \to \infty} \tilde{r}(fz, gz) = \limsup_{n \to \infty} \tilde{r}(fz, gz) \le \Omega(0),$$

one conclude that fz = gz.

Step 5: At last, we will prove that, z is the unique common fixed point of f and g. At first, we will prove that gz = z.

$$\begin{split} F[(\tilde{r}(gx_{n},gz))] &= F[(\tilde{r}(fx_{n-1},fz))] &< F[\Omega(\tilde{r}(fx_{n-1},fz))] \\ &\leq F(\tilde{r}(gx_{n-1},gz)) - \tau \\ &< F[\Omega(\tilde{r}(gx_{n-2},gz))] - 2\tau \\ &\vdots \\ &< F[\tilde{r}(gx_{0},gz)] - n\tau. \end{split}$$

Taking limit as $n \to \infty$ and from definition (2.3), we have

$$\lim_{n \to \infty} F[\tilde{r}(gx_n, gz))] = -\infty.$$

This implies

$$\lim_{n \to \infty} \tilde{r}(gx_n, gz) = 0.$$

Since the Cauchy sequence $\{gx_n\}$ converges to both z and gz, it is clear that gz = z. Thus, gz = z = fz. It is easy to check that z is the unique common fixed point. For the second part, let f and g be continuous at fixed point z, then for the sequence $\{gx_n\}$ of (3.9), we have $\lim_{n\to\infty} fgx_n = fz = z$ and $\lim_{n\to\infty} ggx_n = gz = z$. That is

$$\tilde{r}(gx_n, fgx_n) = 0$$
 and $\tilde{r}(gx_n, ggx_n) = 0.$

So,

$$\lim_{n \to \infty} \max\{\tilde{r}(gx_n, fgx_n) + \tilde{r}(gx_n, ggx_n), \tilde{r}(z, fz)\} = 0$$

Conversely, let $\lim_{x\to z} \max\{\tilde{r}(x, fx) + \tilde{r}(x, gx), \tilde{r}(z, fz)\} = 0$. Then,

$$\lim_{n \to \infty} \{ \tilde{r}(gx_n, fgx_n) + \tilde{r}(gx_n, ggx_n) \} = 0.$$

Now it is obvious that

$$\lim_{n \to \infty} \tilde{r}(gx_n, fgx_n) = 0, \lim_{n \to \infty} \tilde{r}(gx_n, ggx_n) = 0$$

It is clear that f and g are continuous at fixed point z. \Box

Example 3.2. Let $X = A \cup B$, where $A = [0, \frac{1}{3}]$ and $B = (\frac{1}{3}, 1)$. Define $\tilde{r} : X \times X \to [0, \infty)$ such that $\tilde{r}(x, y) = \tilde{r}(y, x)$ for all $x, y \in X$ and

$$\tilde{r}(x,y) = \begin{cases} 0, & ; x = y \\ \frac{1}{16} & ; x, y \in A \\ 1 & ; x, y \in B \\ \frac{1}{4} & ; \text{otherwise} \end{cases}$$
(3.10)

Then (X, \tilde{r}) is a Ω -ERbMS with $\Omega(t) = 2t$, which is not a rectangular metric space. The mappings $f, g: X \to X$ defined by $f(x) = \frac{1}{3}$; $x \in A \cup B$ and

$$g(x) = \begin{cases} \frac{1}{3} & ; x \in A - \{0\} \\ \frac{4}{3} - x & ; x \in B \\ 0 & ; x = 0 \end{cases}$$

Here we have $R(f) \subset R(g)$, f and g are commutative and f is orbitally continuous. A sequence $\{\frac{1}{3^n}\} \to 0$, but $g(\frac{1}{3^n}) \not\rightarrow g(0)$, so g is not orbitally continuous map. For all $x, y \in X$, we have $\tilde{r}(fx, fy) = \tilde{r}(\frac{1}{3}, \frac{1}{3}) = 0$, which is trivially hold. We conclude that the equation (3.1) is satisfied. Thus f and g have unique common fixed point $\frac{1}{3}$.

If we put $gx = I_x$ (the identity map), then equation (3.1) turns into Banach type contractive condition. To prove the below theorem, orbital continuity is not required. **Theorem 3.3.** Let f be a self-map of a complete ERbMS with the non-trivial function Ω , and if there exists $\tau > 0$ such that

$$\tau + F(\Omega[\tilde{r}(fx, fy)]) \le F(\tilde{r}(x, y)); \ \forall x, y \in X.$$
(3.11)

Then f has a unique fixed point. Moreover, f is continuous at fixed point z if and only if

$$\lim_{x \to z} \max\{\tilde{r}(x, fx), \tilde{r}(z, fz)\} = 0.$$

Proof. Let the sequence $\{x_n\}$ defined by $fx_n = x_{n+1}$. It is easy to prove that

$$\lim_{n \to \infty} \tilde{r}(x_{n+1}, x_n) = 0.$$
(3.12)

Next, we will prove $x_n \neq x_m$ for $n \neq m$. Suppose to the contrary, $x_n = x_m$ for some n > m then $x_{n+1} = fx_n = fx_m = x_{m+1}$. By continuing this process, one have $x_{n+k} = x_{m+k}$, for all $k \in N$. Then from inequality (3.11),

$$F(\tilde{r}(x_n, x_{n+1})) < F(\Omega[\tilde{r}(x_m, x_{m+1})]) \le F(\tilde{r}(x_n, x_{n+1})) - \tau < F(\tilde{r}(x_n, x_{n+1}))$$

contradiction, hence $x_n \neq x_m$ for $n \neq m$. In a similar way, as the previous theorem, one can easily prove that $\{x_n\}$ is a Cauchy sequence and hence convergent to z.

$$\lim_{n \to \infty} x_n = z. \tag{3.13}$$

Next, one arrives at

$$F(\Omega[\tilde{r}(fx_{n-1}, fz)]) \leq F(\tilde{r}(x_{n-1}, fz)) - \tau$$

$$< F(\Omega[\tilde{r}(fx_{n-2}, fz)]) - \tau$$

$$\leq F(\tilde{r}(x_{n-2}, fz)) - 2\tau$$

$$\vdots$$

$$< F[\tilde{r}(x_0, fz)] - n\tau.$$

Taking limit as $n \to \infty$ and from definition (2.3), we have

$$\lim_{n \to \infty} F[\tilde{r}(fx_{n-1}, fz))] = -\infty.$$

This implies

$$\lim_{n \to \infty} \tilde{r}(x_n, fz) = 0.$$

Since the Cauchy sequence $\{x_n\}$ converges to both z and fz, it must be the case fz = z. It is easy to check that z is the unique fixed point. The second part can be similarly proved as the previous theorem (3.1). \Box

Example 3.4. Let $X = A \cup B$, where $A = [0, \frac{1}{3}]$ and $B = (\frac{1}{3}, 1)$. Define $\tilde{r} : X \times X \to [0, \infty)$ such that $\tilde{r}(x, y) = \tilde{r}(y, x)$ for all $x, y \in X$ and

$$\tilde{r}(x,y) = \begin{cases} 0, & ;x = y \\ \frac{1}{16} & ;x,y \in A ; x \text{ or } y \neq 0. \\ 1 & ;x,y \in B \\ \frac{1}{4} & ; \text{otherwise} \end{cases}$$
(3.14)

Then (X, \tilde{r}) is a Ω -ERbMS with $\Omega(t) = 2t$, which is not a rectangular metric space. The mappings $f : X \to X$ defined by

$$f(x) = \begin{cases} \frac{1}{3} & ; x \in A - \{0\} \\ \frac{x}{3} & ; x \in B \\ \frac{1}{4} & ; x = 0. \end{cases}$$

Here f is not orbitally continuous. For F(x) = lnx(x > 0) and $\tau = ln 2$, all the conditions required in theorem (3.3) are satisfied. Hence $\{\frac{1}{3}\}$ is the unique fixed point at which the map is discontinuous.

In the next theorem, we have taken Kannan type contractive condition.

Theorem 3.5. Let f be a self-map of a complete ERbMS with non-trivial function Ω (*i.e.*, $\Omega(t) \neq t$). and if their exists $\tau > 0$ such that

$$\tau + F(\Omega[\tilde{r}(fx, fy)]) \le \frac{1}{2} \{ F(\tilde{r}(x, fx)) + F(\tilde{r}(y, fy)) \}; \ \forall x, y \in X.$$
(3.15)

Then f has a unique fixed point. Moreover, f is continuous at fixed point z if and only if

$$\lim_{x \to z} \max\{\tilde{r}(x, fx), \tilde{r}(z, fz)\} = 0.$$

Proof. Let the sequence $\{x_n\}$ defined by $fx_n = x_{n+1}$. It is clear that

$$\lim_{n \to \infty} \tilde{r}(x_{n+1}, x_n) = 0.$$
(3.16)

Now we will show that $x_n \neq x_m$ for $n \neq m$. Suppose to the contrary, $x_n = x_m$ for some n > m then $x_{n+1} = fx_n = fx_m = x_{m+1}$. By continuing this process, one have $x_{n+k} = x_{m+k}$ for all $k \in N$. Let $\mu_n = \tilde{r}(x_n, x_{n+1})$, Then from inequality (3.15),

$$F(\mu_{m}) = F(\mu_{n}) < F(\Omega[\mu_{n}]) \leq F(\mu_{n-1}) - 2\tau < F(\mu_{n-2}) - 4\tau \vdots < F(\mu_{m})$$
(3.17)

contradiction, hence $x_n \neq x_m$ for $n \neq m$. From (3.15),

$$\tau + F(\Omega[\tilde{r}(x_{n+1}, x_{m+1})]) \le \frac{1}{2}F((\mu_n) + (\mu_m)).$$

In the limit as $n \to \infty$ we get

$$F(\tilde{r}(x_{n+1}, x_{m+1})) = -\infty$$

or

$$\tilde{r}(x_{n+1}, x_{m+1}) = 0$$

which means $\{x_n\}$ is a Cauchy sequence and hence convergent to z i.e.

$$\lim_{n \to \infty} x_n = z.$$

Next, one arrives at

$$F(\tilde{r}(fx_{n-1}, fz)) < F(\Omega[\tilde{r}(fx_{n-1}, fz)]) \le \frac{1}{2} \{F(\tilde{r}(x_{n-1}, x_n)) + F(\tilde{r}(z, fz))\} - \tau.$$

Taking limit as $n \to \infty$ and from definition (2.3), we have

$$\lim_{n \to \infty} F[\tilde{r}(fx_{n-1}, fz))] = -\infty.$$

This implies

$$\lim_{n \to \infty} \tilde{r}(x_n, fz) = 0.$$

Since, the Cauchy sequence $\{x_n\}$ converges to both z and fz, it must be the case fz = z. It is easy to check that z is the unique common fixed point. As same as Theorem (3.1), one can easily prove the second part of the theorem. \Box

Example 3.6. Let $X = A \cup B$, where $A = [0, \frac{1}{3}]$ and $B = (\frac{1}{3}, 1)$. Define $\tilde{r} : X \times X \to [0, \infty)$ such that $\tilde{r}(x, y) = \tilde{r}(y, x)$ for all $x, y \in X$ and

$$\tilde{r}(x,y) = \begin{cases} 0, & ; x = y \\ \frac{1}{12} & ; x, y \in A ; x \text{ or } y \neq 0. \\ 1 & ; x, y \in B \\ \frac{1}{2} & ; \text{otherwise} \end{cases}$$
(3.18)

Then (X, \tilde{r}) is a Ω -ERbMS with $\Omega(t) = 2t$, which is not a rectangular metric space. Let the mapping $f: X \to X$ defined as in previous example (3.4), then for $F(x) = \ln x$ (x > 0) and $\tau = 0.20$, all the conditions required in theorem (3.5) are satisfied. Hence $\{\frac{1}{3}\}$ is the unique fixed point at which the map is discontinuous.

References

- H.H. Alsulami, E. Karapınar and H. Piri, Fixed points of generalized F-Suzuki type contraction in complete b-metric spaces, Discrete Dyn. Nat. Soc. 2015 (2015).
- [2] M. Asim, M. Imdad and S. Radenovic, Fixed point results in extended in rectangular b-metric spaces with an application, U. P. B. Sci. Bull. 81 (2019), no. 2, 11–20.
- [3] A. Azam and M. Arshad, Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl. 1 (2008), 45–48.
- [4] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal. 30 (1989), 26-37.
- [5] R.K. Bisht and R.P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl. 445 (2017), no. 2, 1239–1242.
- [6] R.K. Bisht and V. Rakocevic, Discontinuity at fixed point and metric completeness, Appl. Gen. Topol. 21 (2020), no. 2, 349–362.
- [7] A. Branciari, A Fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), 31–37.
- [8] Lj.B. Ciric, On contraction type mappings, Math. Balkanica 1 (1971), 52–57.
- [9] M. Cosentino, M. Jleli, B. Samet, and C. Vetro, Solvability of integrodifferential problems via fixed point theory in b-metric spaces, Fixed Point Theory Appl. 2015 (2015), no. 1.
- [10] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Osraviensis 1 (1993), no. 1, 5–11.
- [11] P. Das, A fixed point theorem on a class of generalized metric spaces, Korean J. Math. Sci. 9 (2002), 29–33.
- [12] H.S. Ding, V. Ozturk and S. Radenovic, On some new fixed point results in b-rectangular metric spaces, J. Nonlinear Sci. Appl. 8 (2015), no. 4, 378–386.
- [13] I.M. Erhan, E. Karapinar and T. Sekulic, Fixed points of (psi, phi) contractions on rectangular metric spaces, Fixed Point Theory Appl. 138 (2012).
- [14] R. George, S. Radenovic, K.P. Reshma and S. Shukla, *Rectangular b-metric space and contraction principles*, J. Nonlinear Sci. Appl. 8 (2015), no. 6, 1005–1013.
- [15] N. Goswami, N. Haokip and V. Mishra, F-contractive type mappings in b-metric spaces and some related fixed point results, Fixed Point Theory Appl. 13 (2019).
- [16] N. Haokip and N. Goswami, Some fixed point theorems for generalized Kannan type mappings in b-metric spaces, Proyecciones J. Math. 38 (2019), no. 4, 763–782.
- [17] T. Kamran, M. Samreen, and Q.UL. Ain, A generalization of b-Metric space and some fixed point theorems, Math. 5 (2017), no. 19.
- [18] R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc. 60 (1968), 71–76.
- [19] S.U. Khan, M. Arshad, A. Hussain and M. Nazam, Two new types of fixed point theorems for F-contraction, J. Adv. Stud. Topology 7 (2016), no. 4, 251–260.

- [20] A. Lukacs and S. Kajanto, Fixed point theorems for various types of F-contractions in complete b-metric spaces, Fixed Point Theory 19 (2018), no. 1, 321–334.
- [21] Z. D. Mitrovic and S. Radenovic, A common fixed point theorem of Jungck in rectangular b-metric spaces, Acta Math. Hungarica 153 (2017), no. 2, 401–407.
- [22] S. Mohanta, Coincidence points and common fixed points for expansive type mappings in b-metric spaces, Iran.
 J. Math. Sci. Inf. 11 (2016), no. 1, 101–113.
- [23] Z. Mustafa, V. Parvaneh, M. Jaradat and Z. Kadelburg, Extended rectangular b-Metric spaces and some fixed point theorems for contractive mappings, Symmetry 11 (2019), no. 4, 594.
- [24] B. Nurwahyu, Common fixed point theorems on generalized ratio contraction mapping in extended rectangular b-metric spaces, Int. J. Math. Math. Sci. 2019 (2019).
- [25] R.P. Pant and N. Ozgur, New results on discontinuity at fixed point, J. Fixed Point Theory Appl. 22 (2020), no. 39.
- [26] J.R. Roshan, N. Hussain and V. Parvaneh, New fixed point results in rectangular b-metric spaces, Nonlinear Anal.: Model. Control 21 (2016), no. 5, 614–634.
- [27] M. Samreen, T. Kamran and N. Shahzad, Some fixed point theorems in b-Metric space endowed with graph, Abstr. Appl. Anal. 2013 (2013), 1–9.
- [28] N. Ullah and M. Shehu Shagari, Fixed point results in complex-valued rectangular extended b-metric spaces with applications, Math. Anal. Convex Optim. 1 (2020), no. 2, 109–122.
- [29] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 94.