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Two numerical methods are proposed for dynamic analysis 
of single-degree-of-freedom systems. Basics of dynamics 
and elementary tools from numerical calculus are 
employed to formulate the methods. The energy 
conservation principles triggered the basic idea of the first 
method, so-called energy-based method (EBM). It is 
devised for dynamic analysis of linear damped system 
whose damping ratio is greater than 1%. The second 
method uses function approximation theory and integration 
scheme, and called simplified integration method (SIM). 
Several numerical examples are investigated through SIM. 
A detailed comparison is made between the proposed 
methods and the conventional ones. The results show that 
the proposed methods can estimate the dynamic response 
of linear damped systems with high accuracy. In the first 
example, the peak displacement is obtained 6.8747 cm and 
6.8290 cm which closely approximate the highly exact 
response of Duhamel integral. Results show that Newmark-
β method is the fastest one whose run-time is 0.0019 sec. 
EBM and SIM computational times are 0.0722 sec and 
0.0021sec, respectively. SIM gives more accurate estimate 
and convergence rate than Newmark-β method. The 
difference of peak displacement obtained from two 
methods is almost less than 1%. Thus, SIM reliably 
estimates the dynamic response of systems with less 
computational cost. 
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Energy method; 
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1. Introduction 

In structural dynamics, a multi-degree-of-

freedom (MDOF) structure is often equalized 

by a single-degree-of-freedom (SDOF) 

model [31]. Such a SDOF system is based on 

the dynamic properties adopted from the 

MDOF system. Structural responses of this 

SDOF model to earthquake is determined by 

conducting a nonlinear time-history analysis 

of the model, subjected to a set of ground 

motion records. Accordingly, the numerical 
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analysis of SDOF systems is of high 

importance in this field of structural 

engineering. 

The dynamic response of SDOF system, 

subjected to an arbitrary time-dependent load 

function, is typically dominated by a second-

order ordinary differential equation (ODE) 

[19]. It is technically known as governing 

differential equation of motion (GDEM). 

The dynamic analysis of a SDOF system is 

possible by numerically solving the GDOM 

at successive instances. Such an analysis is 

often costly and time-consuming [7, 11]. 

Hence, it has been a place of challenge in the 

field of vibration engineering from very 

early. Several approximate numerical 

methods have been developed by researchers 

in the recent decades: Wilson-θ [32], 

Newmark-β algorithm [24], HHT-α method 

[16], WBZ-α method [33], -method [4], HP-

θ1 method [18], Duhamel integral method 

[9], and piecewise exact [8] procedures. 

These methods are categorized according to 

their formulation platform.  

In general, numerical methods are classified 

into two main categories. First, the methods 

in which the dynamic response of structure is 

determined by summing the dynamic 

response of finite short impulse loads. These 

methods are based on the superposition 

principle. They are limited to linear elastic 

systems and cannot be applied to inelastic 

systems [9, 10, 29, 30]. The commonly used 

Laplace and Fourier methods fall into this 

category [15, 27, 14]. Second, the stepwise 

numerical methods which involve 

nonlinearities of mass, stiffness, and 

damping. Numerous stepwise methods are 

available in the literature. Piecewise exact 

method, Runge-Kutta, Newmark-β, Houbolt, 

Wilson-θ [8, 3, 5], finite difference, Euler-

Gauss methods belong to this group [1, 12, 

13, 25, 26, 28]. These methods divide the 

time domain into a sequence of small 

intervals, so-called time steps, and determine 

the response of the system using integration 

method. These methods often work well with 

any type of nonlinearities. 

Recently, a simplified method was proposed 

by Li and Wu [22] to determine the dynamic 

response of inelastic SDOF systems with the 

time-varying mass and stiffness parameters. 

Wu and Lim [34] proposed an iterative 

algorithm solution to estimate the nonlinear 

response of SDOF systems possessing 

general nonlinear restoring behavior. They 

also proposed a new analytical method for 

calculation of the natural period of SDOF 

systems. In another study, some serious 

attempts have been made by Chang [6] to 

demonstrate the accuracy and efficiency of 

the Newmark method. Kazakov [20] studied 

the response of SDOF systems using the 

Duhamel integral for some special loading 

cases. The results showed that the Duhamel 

integral method is accurate enough in 

estimating the dynamic response of linear 

damped and undamped SDOF systems. A 

simple numerical method was developed by 

Kurt and Çevik [21], in which the Taylor 

polynomial was employed to estimate the 

dynamic response of SDOF systems. The 

accuracy and efficiency of some stepwise 

numerical procedures such as Wilson-θ, 

Newmark-β algorithm, central difference 

method, Runge-Kutta method, and Duhamel 

methods have been evaluated by 

Mohammadzadeh et al. [23]. 

In this paper, two new methods are 

introduced to compute the response of the 

SDOF systems to earthquake loads. Different 

formulation base is implemented to achieve 

simple algorithms dynamic analysis. Against 

conventional method like Newmark-β, the 

same procedure is used for main computation 

and iteration. This provides extreme 

simplicity for computer programming of 

linear and nonlinear analysis of vibration. 

The proposed methods benefit the basics of 

dynamics and elementary tools from 
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numerical calculus. The first method, so-

called energy-based method (EBM), is 

extended for linear damped SDOF systems 

whose damping ratios are almost greater than 

1%. The second method is a more general 

one which is called simplified integration 

method (SIM). It can robustly conduct 

nonlinear analysis of various systems. Both 

methods are employed to analyze several 

general systems. A detailed comparison of 

the obtained results shows that the new 

methods accurately estimate the dynamic 

response of linear and nonlinear systems. 

2. Problem statement 

Fig. 1 shows an idealized linear mass-spring 

system under an arbitrary external force F(t). 

This system is composed of three main 

components: mass, spring, and damper. Each 

component may have linear or nonlinear 

behavior. Real systems often experience 

nonlinearity during vibration. This 

nonlinearity is often originated from the 

spring behavior at large displacements or the 

non-viscous damping property of the system. 

Hence, the force induced by each component 

will be identified by a piecewise function of 

displacement and/or velocity.  

 
Fig. 1. Idealized mass-spring model of vibration 

under external force. 

Denoting the relative displacement (or 

deformation) by x, velocity by �̇�, and 

acceleration by �̈�, GDEM of a nonlinear 

system subjected to the external force 𝐹(𝑡) 

can be written as follows: 

𝐹𝑠(𝑥, �̇�) + 𝐹𝑑(𝑥 , �̇�) + 𝑚(𝑡) �̈� = 𝐹(𝑡) (1) 

where 𝐹𝑠(𝑥, �̇�) is the spring force, 𝐹𝑑(𝑥, �̇�) is 

the damping force. The mass of the system is 

𝑚(𝑡). This is the most general form of 

vibration equation in which change of mass 

is included; although, it is not the case in 

structural dynamics. As shown in Fig. 2, 

when this system is subjected to the support 

acceleration of 𝑎𝑔 = 𝑎𝑔(𝑡), the external force 

𝐹(𝑡) should be replaced by −𝑚𝑎𝑔(𝑡).   

 
Fig. 2. Idealized mass-spring model of vibration 

under support excitation. 

Hence, the GDEM of the nonlinear system 

under earthquake excitation is [26, 8]: 

𝐹𝑠(𝑥, �̇�) + 𝐹𝑑(𝑥 , �̇�) + 𝑚(𝑡) �̈� =          (2) 

  −𝑚(𝑡) 𝑎𝑔  

Assuming linear behavior for spring, 𝐹𝑠 =
𝑘𝑥, and viscous damping, 𝐹𝐷 = 𝑐�̇�, we can 

simplify Eq. (1) as: 

𝑘𝑥 + 𝑐�̇� + 𝑚�̈� = 𝐹(𝑡)                              (3) 

where 𝑘 is the constant of the weightless 

spring, 𝑐 is the viscous damping coefficient, 

𝑚 is the constant mass of the system. For 

linear systems subjected to the earthquake 

loading, Eq. (2) can be presented in a simpler 

form as follows: 

𝑘𝑥 + 𝑐�̇� + 𝑚�̈� = −𝑚𝑎𝑔                           (4) 

Dividing Eq. (4) by mass 𝑚, GDEM of linear 

system subjected to the ground acceleration 

can be expressed as: 

𝜔𝑛
2𝑥 + 2𝜁𝜔𝑛�̇� + �̈� = −𝑎𝑔                      (5) 

where 𝜔𝑛 = √𝑘/𝑚 is the natural frequency 

of the oscillator, and 𝜁 = 𝑐/(2𝑚𝜔𝑛) is the 

damping ratio. It is the alternative expression 
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of the vibration equation given by Eq. (4). 

This equation indicates that two systems with 

the same natural frequencies and damping 

ratios have an identical response 𝑥 = 𝑥(𝑡), 

regardless of being massive and stiffer 

relative to each other.  

In structural dynamics, support excitation is 

the mostly stricken case rather than external 

force. Support excitation is a discretely 

valued function which is often given in at 

time instance 𝑡𝑖 where 𝑖 = 1 to 𝑁. 𝑁 is the 

number of time instance; and, 𝑁 − 1 denotes 

the number of time steps. The length of time 

steps is usually assumed constant, i.e., 

∆𝑡 = 𝑡𝑖+1 − 𝑡𝑖. Now, in stepwise algorithms, 

the GDEM should be satisfied at 𝑡𝑖: 

𝐹𝑠,𝑖 + 𝐹𝑑,𝑖 + 𝑚𝑖 �̈�𝑖 = −𝑚𝑖𝑎𝑔,𝑖              (6) 

where 𝐹𝑠,𝑖 = 𝐹𝑠(𝑥𝑖, �̇�𝑖) is the spring force, 

𝐹𝑑,𝑖 = 𝐹𝑑(𝑥𝑖 , �̇�𝑖) is damping force, and 

𝑚𝑖 = 𝑚(𝑡𝑖) is the mass of the system, and 

𝑎𝑔,𝑖 = 𝑎𝑔(𝑡𝑖) is the support acceleration, all 

at time 𝑖𝑡ℎ instance. The objective of the 

numerical method is to determine the 

response at 𝑡𝑖+1, knowing the response at the 

previous time instance 𝑡𝑖. The response 

should satisfy GDEM at 𝑡𝑖+1: 

𝐹𝑠,𝑖+1 + 𝐹𝑑,𝑖+1 + 𝑚𝑖+1 �̈�𝑖+1 =               (7) 

  −𝑚𝑖+1𝑎𝑔,𝑖+1 

where 𝐹𝑠,𝑖+1 = 𝐹𝑠(𝑥𝑖+1, �̇�𝑖+1), 𝐹𝑑,𝑖+1 =
𝐹𝑑(𝑥𝑖+1 , �̇�𝑖+1), 𝑚𝑖+1 = 𝑚(𝑡𝑖+1), and 

𝑎𝑔,𝑖+1 = 𝑎𝑔(𝑡𝑖+1) are the spring force, 

damping force, mass, and support 

acceleration at 𝑡𝑖+1, respectively. 

2.1. Energy-based method (EBM) 

Consider a linear SDOF system subjected to 

the support excitation. To obtain a recursive 

formulation, we first recall the definition of 

the work 𝑑𝑈 done by a force 𝐹 during the 

straight pass 𝑑𝑥: 

𝑑𝑈 = 𝐹 𝑑𝑥                                                (8) 

Multiplying Eq. (4) by 𝑑𝑥, we obtain: 

𝑘𝑥 𝑑𝑥 + 𝑐�̇�𝑑𝑥 + 𝑚�̈�𝑑𝑥 = −𝑚𝑎𝑔𝑑𝑥        (9) 

Each term of Eq. (9) can be interpreted as the 

work or energy corresponding to its 

component. 𝑘𝑥𝑑𝑥 is the differential energy 

value of the spring force, 𝑐�̇�𝑑𝑥 is the 

differential energy dissipated by friction 

force, 𝑚�̈�𝑑𝑥 is the differential kinetic energy 

of the system, and −𝑚𝑎𝑔𝑑𝑥 can be 

considered as the differential work done by 

the external excitation. Indeed, this equation 

indicates that the work done by the 

earthquake force (or the energy input of 

earthquake excitation) is distributed among 

three components of the system. It is 

reserved in spring or dissipated by friction or 

converted to the kinetic energy of the system. 

Now, refining Eq. (9), we prepare it for 

numerical integration. Recalling that the 

velocity of the system and the ground 

acceleration are defined by �̇� = 𝑑𝑥/𝑑𝑡 and 

𝑎𝑔 = 𝑑𝑣𝑔/𝑑𝑡; and, substituting them into Eq. 

(9), we get: 

𝑘𝑥 𝑑𝑥 + 𝑐�̇�𝑑𝑥 + 𝑚�̈�𝑑𝑥 = −𝑚𝑑𝑣𝑔�̇�       (10) 

where 𝑣𝑔 is the velocity of support. Dividing 

the last equation by �̇� and noting that 

𝑑𝑥/�̇� = 𝑑𝑡, we can integrate Eq. (10) from 𝑖 
to 𝑖 + 1: 

∫ 𝑘𝑥𝑑𝑡
𝑡𝑖+1

𝑡𝑖

+ ∫ 𝑐𝑑𝑥
 𝑥𝑖+1

𝑥𝑖

+ ∫ 𝑚�̈�𝑑𝑡 =
𝑡𝑖+1

𝑡𝑖

 (11) 

∫ −𝑚𝑑𝑣𝑔

𝑣𝑔,𝑖+1

𝑣𝑔,𝑖

 

which leads to: 

𝑘 ∆𝑡

2
(𝑥𝑖 + 𝑥𝑖+1) + 𝑐(𝑥𝑖+1 − 𝑥𝑖) +         (12)  

+
𝑚 ∆𝑡

2
(�̈�𝑖 + �̈�𝑖+1) = −𝑚(𝑣𝑔,𝑖+1 − 𝑣𝑔,𝑖) 
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where 𝑥𝑖, �̈�𝑖, and 𝑣𝑔,𝑖 are displacement, 

acceleration, and support velocity at time 

instance 𝑖, respectively. In a similar way,  

𝑥𝑖+1, �̈�𝑖+1, and 𝑣𝑔,𝑖+1 are defined at time 

instance 𝑖 + 1. Solving Eq. (12) for 𝑥𝑖+1, we 

obtain: 

𝑥𝑖+1 = −[𝑚(𝑣𝑔,𝑖+1 − 𝑣𝑔,𝑖) +                (13)  

(
𝑘 ∆𝑡

2
− 𝑐) 𝑥𝑖 +

𝑚 ∆𝑡

2
(�̈�𝑖 + �̈�𝑖+1)]/(

𝑘 ∆𝑡

2
+ 𝑐) 

which provides the required relation for 

computing 𝑥𝑖+1 in an iterative process. 

Similarly, solving Eq. (12) for �̇�𝑖+1, we have: 

�̇�𝑖+1 = −[𝑚(𝑣𝑔,𝑖+1 − 𝑣𝑔,𝑖) +                (14)  

+ (
𝑘 ∆𝑡

2
− 𝑐) 𝑥𝑖 + (

𝑘 ∆𝑡

2
+ 𝑐) 𝑥𝑖+1]/𝑚 + �̇�𝑖 

Eqs. (13) and (14) coupled with Eq. (4) 

constitute the processing core of EBM in 

linear analysis of SDOF systems. The step-

by-step procedure of EBM is summarized in 

Table 1. Despite the extreme simplicity of 

EBM, it provides satisfactorily precise 

response for linear damped systems. 

2.2. Simplified integration method (SIM) 

Direct use of numerical integration scheme 

coupled with function approximation theory 

leads to straightforward and efficient 

formulation for solving nonlinear GDEM. 

Basically, all of the integration-based 

methods essentially benefit from similar 

mathematical background. This study 

presents one of the simplest versions which 

runs fast and works precisely. 

We first consider a SDOF system in which all 

of the nonlinearities are active. The 3
rd

-order 

derivative can be determined by the 

following finite difference formula: 

𝑥𝑖+1 =
�̈�𝑖+1−�̈�𝑖

∆𝑡
                                          (15) 

 Having the value of 𝑥𝑖 and 𝑥𝑖+1, the best 

picture of acceleration function could be a 

3
rd

-order polynomial between 𝑡𝑖 and 𝑡𝑖+1: 

�̈�(𝑡) = 𝐴0 + 𝐴1(𝑡 − 𝑡𝑖) +                       (16) 

+ 𝐴2(𝑡 − 𝑡𝑖)
2 + 𝐴3(𝑡 − 𝑡𝑖)

3

 

Table 1. EBM algorithm for linear analysis of SDOF systems. 

1. Initialize with: 
*
 

𝑖 = 1,    𝑡1 = 0  ,    𝑥1 = 𝑥(0)  ,   �̇�1 = �̇�(0)  ,   �̈�1 = −(𝑎𝑔,1 + 𝜔𝑛
2 𝑥1 + 2𝜔𝑛𝜁�̇�1) 

2. Predict the response at 𝑖 + 1 (or set them all to zero): 

𝑥𝑖+1 = 𝑥𝑖 +
∆𝑡

2
 �̇�𝑖    ,   �̇�𝑖+1 = �̇�𝑖 +

∆𝑡

2
 �̈�𝑖  

3. Correct the system state using the following 

�̈�𝑖+1 = −(𝑎𝑔,𝑖+1 + 𝜔𝑛
2 𝑥𝑖+1 + 2𝜔𝑛𝜁 �̇�𝑖+1) 

𝑥𝑖+1 = − [𝑚(𝑣𝑔.𝑖+1 − 𝑣𝑔.𝑖) + (
𝑘 ∆𝑡

2
− 𝑐) 𝑥𝑖 +

𝑚 ∆𝑡

2
(�̈�𝑖 + �̈�𝑖+1)] /(

𝑘 ∆𝑡

2
+ 𝑐) 

�̇�𝑖+1 = − [𝑚(𝑣𝑔.𝑖+1 − 𝑣𝑔.𝑖) + (
𝑘 ∆𝑡

2
− 𝑐) 𝑥𝑖 + (

𝑘 ∆𝑡

2
+ 𝑐) 𝑥𝑖+1] /𝑚 + �̇�𝑖 

4. Repeat steps 3 and 4 until none of the precision criteria is met. 

5. Set 𝑖 = 𝑖 + 1 and repeat steps 2 to 5 for the next time instance. 
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*
In the case of external loads instead of support excitation, use the following relations in steps 1 and 3, respectively: 

�̈�1 = [𝐹1 − (𝑘𝑥1 + 𝑐�̇�1)]/𝑚 

�̈�𝑖+1 = [𝐹𝑖+1 − (𝑘𝑥𝑖+1 + 𝑐�̇�𝑖+1)]/𝑚 

Important note: EBM does not yield reliable results for undamped systems and the systems with 𝜁 ≤ 0.01. In 

these cases, SIM is advised. However, in most of the real cases, we have ζ ≥ 0.01. 

To determine the coefficients 𝐴𝑖, 𝑖 = 0~3, 
we constitute the set of equations from the 
given conditions at 𝑖 and i+1. Solving this set 
of equations for 𝐴𝑖, and substituting them 
into Eq. (16), we use 𝑑�̇� = �̈� 𝑑𝑡 and integrate 
Eq. (16) from 𝑖 to 𝑖 + 1, we get: 

�̇� 𝑖+1 = �̇�𝑖 +
�̈�𝑖+�̈�𝑖+1

2
∆𝑡 +

𝑥𝑖−𝑥𝑖+1

12
∆𝑡2

         (17) 

This formula uses the Corrected Trapezoidal 
Integration Rule (CTIR) for anti-
differentiation. 

Now, we focus on the displacement. We have 
the acceleration value and its derivative at 𝑖 
and 𝑖 + 1 in addition to the velocities �̇�i and 
�̇�i+1. With these details in hand, we can 
introduce the following function for velocity 
response between the end points: 

�̇�(𝑡) = 𝐵0 + 𝐵1(𝑡 − 𝑡𝑖) +                       (18) 

𝐵2(𝑡 − 𝑡𝑖)
2 + 𝐵3(𝑡 − 𝑡𝑖)

3 + 𝐵4 (𝑡 − 𝑡𝑖)
4 + 

𝐵5 (𝑡 − 𝑡𝑖)
5 

Eq. (18) is a 5
th

-order polynomial with six 
unknown coefficients. The coefficients can 
be obtained in a similar manner which is 
already discussed for the velocity 
component. Substituting these coefficients 
into Eq. (18) and integrating it from 𝒊 to 
𝒊 + 𝟏, we get: 

𝒙𝒊+𝟏 = 𝒙 𝒊 +
�̇�𝒊+�̇�𝒊+𝟏

𝟐
∆𝒕 +                       (19) 

+
�̈�𝒊 − �̈�𝒊+𝟏

𝟏𝟎
∆𝒕𝟐 +

�⃛�𝒊 + �⃛�𝒊+𝟏

𝟏𝟐𝟎
∆𝒕𝟑 

The dynamic response of a nonlinear system 
can then be obtained by iterative use of Eqs. 
(17), (19), and the following equation, which 
is obtained from Eq. (3): 

�̈�𝒊+𝟏 = −(𝒎𝒂𝒈,𝒊+𝟏 + 𝑭𝒔,𝒊+𝟏 +             (20) 

𝑭𝒅,𝒊+𝟏)/𝒎𝒊+𝟏 

or from Eq. (1), as follows: 

�̈�𝒊+𝟏 = [𝑭𝒊+𝟏 − (𝑭𝒔,𝒊+𝟏 + 𝑭𝒅,𝒊+𝟏)]/𝒎𝒊+𝟏 

(21) 

These relations suffice to conduct nonlinear 
analysis; however, the convergence rate of 
SIM can be improved by using an 
appropriate initial prediction for 
displacement and velocity at 𝑖 + 1. Tylor 
polynomial offers great predictions at this 
instance as follows: 

𝑥𝑖+1 = 𝑥𝑖 + �̇�𝑖∆𝑡 +
�̈�𝑖

2
∆𝑡2 +

𝑥𝑖 

6
∆𝑡3         (22) 

�̇�𝒊+𝟏 = �̇�𝒊 + �̈�𝒊∆𝒕 +
�⃛�𝒊

𝟐
∆𝒕𝟐                       (23) 

After obtaining the displacement 𝑥𝑖+1 and 
velocity �̇�i+1, the resisting force 𝐹s,i+1 and 

damping force 𝐹𝑑,𝑖+1 can be estimated using 

the system current state. Table 2 presents the 
stepwise procedure for the nonlinear analysis 
of SDOF systems using SIM.  

It is noted that the mass nonlinearity is also 
included in the formulation, even though it 
may not be the case in structural dynamics. It 
is usually assumed unchanged during 
vibration. 

More investigation shows that SIM is able to 
track the response pass when the system 
components suddenly change their behavior. 
Thus, if the friction or spring components 
were suddenly omitted from the system, the 
algorithm immediately detects the change. 
Despite the EBM, SIM has no limitation on 
system properties. 

Replacing 𝐹𝑠,𝑖, 𝐹𝑠,𝑖+1,  𝐹𝑑,𝑖,  and 𝐹𝑑,𝑖+1 by 

𝑘𝑥𝑖,  𝑘𝑥𝑖+1, 𝑐�̇�𝑖, and 𝑐�̇�𝑖+1, respectively, we 
obtain the linear version of SIM. The 
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procedure of linear SIM is presented in Table 
3 for SDOF systems. 

2.3. Precision criteria  

Iteration should be terminated by pre-

specified conditions to avoid endless trivial 

cycle. One or more of these conditions 

should be met to stop the iteration. Some of 

the common criteria are as follows: 

1. The unbalanced or residual force from Eq. 

(3) diminishes while iteration is in progress. 

The absolute value of this criterion can make 

our judgment base of precision. For nonlinear 

systems, we can write: 

𝑅𝑖 = |𝐹𝑠,𝑖+1 + 𝐹𝑑,𝑖+1 + 𝑚𝑖�̈�𝑖 +

𝑚𝑖𝑎𝑔,𝑖|  
(24) 

For linear systems, it is: 

𝑅𝑖 = |𝑘𝑥𝑖 + 𝑐�̇�𝑖 + 𝑚𝑖�̈�𝑖 + 𝑚𝑖𝑎𝑔,𝑖|        (25) 

Denoting the residual force of 𝑗𝑡ℎ iteration at 

𝑖𝑡ℎ time instant by 𝑅𝑖
(𝑗)

, this criterion is 

controlled by: 

|𝑅𝑖
(𝑗)

| ≤ 𝜀𝑅 (26) 

The tolerance value 𝜀𝑅 is usually selected 

from 10−8 to 10−3. 

2. If displacement changes ∆𝑥𝑖
(𝑗)

= 𝑥𝑖
(𝑗)

−

𝑥𝑖
(𝑗−1)

, corresponding to 𝑗𝑡ℎ iteration of 𝑖𝑡ℎ 

time instant, falls in range, i.e.: 

|∆𝑥𝑖
(𝑗)

| ≤ 𝜀𝑑 (27) 

where tolerance εd is a positive 

value ranging from 10−8 to 10−3. 

 

 

Table 2. SIM algorithm for nonlinear analysis of SDOF systems. 

1. Initialize with: 
*
 

i = 1  ,   𝑡1 = 0  ,   𝑥1 = 𝑥(0)   ,   �̇�1 = �̇�(0) 
𝐹𝑠,1 = 𝐹𝑠(𝑥1, �̇�1)  , 𝐹𝑑,1 = 𝐹𝑑(𝑥1, �̇�1) 

�̈�1 = −(𝐹𝑠,1 + 𝐹𝑑,1 + 𝑚1𝑎𝑔,1)/𝑚1 

𝑥1 = 0 
2. Predict the response at 𝑖 + 1 (or set them all to zero): 

�̇�𝑖+1 = �̇�𝑖 + �̈�𝑖  ∆𝑡 +
𝑥𝑖

2
 ∆𝑡2 

𝑥𝑖+1 = 𝑥𝑖 + �̇�𝑖  ∆𝑡 +
�̈�𝑖

2
∆𝑡2 +

𝑥𝑖

6
 ∆𝑡3 

3. Iterate the following until none of the convergence criteria is met: 

�̈�𝑖+1 = −(𝑚𝑎𝑔,𝑖+1 + 𝐹𝑠,𝑖+1 + 𝐹𝑑,𝑖+1)/𝑚𝑖+1 

𝑥𝑖+1 =
�̈�𝑖+1 − �̈�𝑖

∆𝑡
 

�̇�𝑖+1 = �̇�𝑖 +
�̈�𝑖 + �̈�𝑖+1

2
∆𝑡 +

𝑥𝑖 − 𝑥𝑖+1

12
∆𝑡2 

𝑥𝑖+1 = 𝑥𝑖 +
�̇�𝑖 + �̇�𝑖+1

2
 ∆𝑡 +

�̈�𝑖 − �̈�𝑖+1

10
∆𝑡2 +

𝑥𝑖 + 𝑥𝑖+1

120
∆𝑡3 

𝐹𝑠,𝑖+1 = 𝐹𝑠(𝑥𝑖+1, �̇�𝑖+1)  , 𝐹𝑑,𝑖+1 = 𝐹𝑑(𝑥𝑖+1, �̇�𝑖+1) 

4. Set 𝑖 = 𝑖 + 1 and repeat steps 2 to 4 for the next time instance. 

*
In the case of external loads instead of support excitation, use the following relations in steps 1 and 3, respectively: 

�̈�1 = [𝐹1 − (𝐹𝑠,1 + 𝐹𝑑,1)]/𝑚1 

�̈�𝑖+1 = [𝐹𝑖+1 − (𝐹𝑠,𝑖+1 + 𝐹𝑑,𝑖+1)]/𝑚𝑖+1 
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3. Incremental work done by the residual force 

𝑅𝑖
(𝑗)

= 𝑅𝑖
(𝑗)

− 𝑅𝑖
(𝑗−1)

 through the displacement 

change ∆𝑥𝑖
(𝑗)

= 𝑥𝑖
(𝑗)

− 𝑥𝑖
(𝑗−1)

 becomes less than its 

tolerance value 𝜀𝑤 [8]: 

1

2
|∆𝑥𝑖

(𝑗)
𝑅𝑖

(𝑗)
| ≤ 𝜀𝑤 (28) 

The value of 𝜀𝑤 is chosen near to the computer 

precision, the smallest positive value recognizable, 

since the left side of this inequality is the product of 

two infinitesimal quantities. 

2.4. Approaches to increase precision 

There are various approaches to increase the 

accuracy of response with stepwise algorithms. 

Some of them are as follows:  

 For the excitation given in the form of a 

continuous analytical function, use of fine mesh 

for time steps is an efficient way to increase 

precision of response. 

 

Table 3. SIM algorithm for linear analysis of SDOF systems. 

1. Initialize with * 

i = 1  ,   𝑡1 = 0  ,   𝑥1 = 𝑥(0)   ,   �̇�1 = �̇�(0) 

�̈�1 = −(𝑚𝑎𝑔,1 + 𝑘𝑥1 + 𝑐�̇�1)/𝑚 

𝑥1 = 0 

2. Predict the response at 𝑖 + 1 (or set them all to zero): 

�̇�𝑖+1 = �̇�𝑖 + �̈�𝑖  ∆𝑡 +
𝑥𝑖  ∆𝑡2

2
 

𝑥𝑖+1 = 𝑥𝑖 + �̇�𝑖  ∆𝑡 +
�̈�𝑖∆𝑡2

2
+

𝑥𝑖  ∆𝑡3

6
 

3. Iterate the following until none of the convergence criteria is met: 

�̈�𝑖+1 = −(𝑚𝑎𝑔,𝑖+1 + 𝑘𝑥𝑖+1 + 𝑐�̇�𝑖+1)/𝑚  

𝑥𝑖+1 =
�̈�𝑖+1 − �̈�𝑖

∆𝑡
 

�̇�𝑖+1 = �̇�𝑖 +
�̈�𝑖 + �̈�𝑖+1

2
∆𝑡 +

𝑥𝑖 − 𝑥𝑖+1

12
∆𝑡2 

𝑥𝑖+1 = 𝑥𝑖 +
�̇�𝑖 + �̇�𝑖+1

2
 ∆𝑡 +

�̈�𝑖 − �̈�𝑖+1

10
∆𝑡2 +

𝑥𝑖 + 𝑥𝑖+1

120
∆𝑡3 

4. Set 𝑖 = 𝑖 + 1 and repeat steps 2 to 4 for the next time instance. 

*In the case of external loads instead of support excitation, use the following relations in steps 1 and 3, respectively: 

�̈�1 = [𝐹1 − (𝑘𝑥1 + 𝑐�̇�1)]/𝑚 

�̈�1 = [𝐹𝑖+1 − (𝑘𝑥𝑖+1 + 𝑐�̇�𝑖+1)]/𝑚 

 

 If the values of 𝐹(𝑡) 𝑜𝑟 − 𝑚�̈�𝑔 are only given 

(or sampled in advanced) at discrete time 

instances, we can minify the length of sampling 

time steps, linearly interpolating its values for a 

finer mesh. Linear interpolation does not add 

redundant information to the excitation data; 

nevertheless, the algorithm works more exactly 

with finer mesh.  

 In the case of earthquake excitation, spline 

interpolation of earthquake record for finer 

mesh almost yields reliable results; although, 
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this may slightly manipulate the frequency 

content of the excitation function. 

3. Examples 

Here, several numerical examples are investigated 

to show the generality and efficiency of the 

presented algorithms. The results are compared 

with some of the conventional methods. It is noted 

that the systems are loaded by earthquake 

excitation rather than other simple functions. It is 

evident that if the proposed techniques work 

appropriately with irregular earthquake excitation, 

they can certainly handle simpler cases as well as 

step, ramp, or even impulse load functions. 

 
Fig. 3. El Centro’s ground motion record. 

 

3.1. Example I: Linear damped system under El 

centro earthquake 

The performance of the EBM and SIM is studied 

on a linear system subjected to El Centro ground 

motion record (Fig. 3). The peak ground 

acceleration (PGA) is 0.32g.  

The system is initially at rest. The properties of the 

system are: mass 

𝑚 = 45.594 𝑘𝑔 = 0.45594 𝑘𝑁. 𝑠𝑒𝑐2/𝑐𝑚, natural 

period 𝑇𝑛 =  0.5 𝑠𝑒𝑐, damping ratio 𝜁 = 0.02, and 

stiffness  𝑘 = 72 𝑘𝑁/𝑐𝑚. Time step of the 

earthquake record is 𝛥𝑡 = 0.02 𝑠𝑒𝑐. The dynamic 

response of this system is obtained by EBM and 

SIM, Duhamel integral, and Newmark-β methods. 

The responses are plotted in Fig. 4. All methods 

yield approximately close responses. New methods 

properly detect the response curve with a time 

increment of 𝛥𝑡 = 0.02 𝑠𝑒𝑐. As expected, Duhamel 

integral works more precisely; however, it is very 

time consuming. 

To show the convergence of new methods, we re-

analyze the same problem using a finer mesh of 

𝛥𝑡 = 0.002. The obtained results are graphically 

presented in Fig. 5. It is noted that Duhamel, 

Newmark-β, and simplified integration methods all 

provide almost identical responses with 

insignificant differences. 

The peak response values and run-time of the 

methods are summarized in Table 4. According to 

Table 4, Duhamel integral is the slowest one and 
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Newmark-β method is the fastest method. 

However, SIM also runs fast compared to 

Newmark-β. 

Table 4. Peak response values and run times of linear analyses in example I with Δ𝑡 = 0.002 sec. 

 

                          method 

item 

Duhamel 

integral method 

Newmark-β 

method 

Presented 

EBM 

Presented 

SIM 

Max Disp. (cm) 6.8277 6.8272 6.8747 6.8290 

Max Vel. (cm/sec) NC* 81.954 82.418 81.908 

Max Accel. (cm/sec
2
) NC* 1235.51 1240.84 1234.80 

Number of iteration 1 1 5 2 

Run time (sec) 13.005 0.0019 0.0722 0.0021 

*NC: Not compute 

  
Fig. 4. Displacement responses for the linear SDOF system in example I (Coarse mesh). 

  
Fig. 5. Displacement responses for the linear SDOF system in example I (Fine mesh). 
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3.2. Example II: Linear damped system 

under Kobe earthquake 

This example investigates another linear 

undamped system to study stability and 

convergence of new methods. Kobe ground 

motion record (Fig. 6) with peak ground 

acceleration 𝑃𝐺𝐴 = 0.34𝑔 is applied to the 

system which is initially at rest. The 

properties of the system are: mass 𝑚 =

45.594 𝑘𝑔 = 0.45594 𝑘𝑁. 𝑠𝑒𝑐2/𝑐𝑚, natural 

period 𝑇𝑛 =  0.3 𝑠𝑒𝑐, damping ratio 𝜁 =

0.05, and stiffness  𝑘 = 200 𝑘𝑁/𝑐𝑚. Time 

step of the earthquake record is 𝛥𝑡 =

0.02 𝑠𝑒𝑐. The system is analyzed by various 

methods and the responses are plotted and 

compared in Fig. 7. Duhamel integral is 

identified as the most exact response. New 

methods have very small deviation from 

Duhamel integral. 

Their stabilities are evident in Fig. 7 and 

there is no distinct artificial damping with the 

presented responses.  

 

 
Fig. 6. Kobe’s ground motion record. 
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Fig. 7. Displacement responses for the linear SDOF system in example II.  

Table 5. Peak response values and run times of linear analyses in example II with Δ𝑡 = 0.01 sec. 

                          

method 

item 

Duhamel 

integral method 

Newmark-β 

method 

Presented 

EBM 

Presented 

SIM 

Max Disp. (cm) 1.8123 1.8182 1.8197 1.8171 

Max Vel. (cm/sec) NC* 34.613 34.553 34.593 

Max Accel. (cm/sec
2
) NC* 720.86 717.09 720.45 

Number of iteration 1 1 5 2 

Run time (sec) 0.945 0.005 0.0722 0.005 

*NC: Not computed 

 

The peaks and the run time of each method 

are reported in Table 5. Examples I and II 

show that the proposed methods work 

properly with damped and undamped 

systems under earthquake excitation. Away 

from computational time, the capability of 

achieving satisfactory level of precision is 

admirable with the current algorithms. 

3.2. Example III: Nonlinear undamped 

system under El Centro ground motion 

This example conducts a nonlinear analysis 

using SIM. We should first compute the 

elastic response of the corresponding linear 

system to obtain the required information for 

nonlinear analysis. The system is subjected to 

El Centro ground motion record given by 

Fig. 3. The system properties are: mass 

𝑚 = 45.594 𝑘𝑔, natural period 𝑇𝑛 =

 0.5 𝑠𝑒𝑐, damping ratio 𝜁 = 0, stiffness  

𝑘 = 72 𝑘𝑁/𝑐𝑚, and 𝛥𝑡 = 0.02 𝑠𝑒𝑐 time 

step. EBM cannot analyze this linear system 

because it is an undamped one. Hence, 

general method of SIM is implemented in 

this section. First, we analyze the system 

using Newmark-β method to regenerate the 
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solution presented in reference [8]. This 

response is shown in Fig. 8. Newmark-β 

parameters are set 𝛾 = 1/2 and β=1/6 to 

work with 𝛥𝑡 = 0.01𝑠𝑒𝑐 time step. The 

obtained response curve is plotted in Fig. 9. 

The peak displacement is computed 3.34 inch 

at 𝑡 = 26.36 𝑠𝑒𝑐. This is almost the same as 

that one reported in [8]. In Fig. 9, the overall 

layout of the presented response closely 

matches that one given in [8]. However, use 

of finer mesh size shows this response is not 

accurate at all. It means that Newmark-β 

method needs finer steps to yield an accurate 

enough response in this case. To have a 

precise comparison, this system is re-

analyzed with 𝛥𝑡 = 0.001𝑠𝑒𝑐 finer step size. 

The response is plotted in Fig. 10. A high 

level of coincidence is evident in this figure. 

Both Newmark-β method and SIM identify 

the peak at 𝑡 = 11.53 𝑠𝑒𝑐 instead of 

𝑡 = 26.36 𝑠𝑒𝑐. Comparison of response in 

Fig. 9 and Fig. 10 shows that the peak 

displacement is 𝑥𝑚𝑎𝑥 = 8.200 𝑐𝑚, which 

occurs at 𝑡 = 11.53 𝑠𝑒𝑐, whereas it is 

reported 𝑥𝑚𝑎𝑥 = 8.483 𝑐𝑚 at 𝑡 = 26.35 𝑠𝑒𝑐 

in [8]. Displacement, velocity, and 

acceleration responses are plotted in Fig. 11. 

Peak values are also given on the same plot. 

According to Fig. 11, the accurate maximum 

resisting force is: 

𝑓𝑜 = 𝑘 𝑥𝑚𝑎𝑥,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 70 × 8.200 

= 574 𝑘𝑁 
(29) 

Nevertheless, to obtain comparable results 

with reference [8], we use the same value of 

𝑓𝒐 which is given in this reference: 

𝑓𝑜 = 𝑘 𝑥𝑚𝑎𝑥.𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 70 × 8.48 

 = 593.6 𝑘𝑁 
(30) 

It is slightly different from its exact value.

 
Fig. 8. Displacement response reported in [8] for the linear SDOF system in example III (Coarse mesh). 
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Fig. 9. Displacement response obtained from Newmark-β method for the linear SDOF system in example 

III (Coarse mesh). 

 
Fig. 10. Displacement response for the linear SDOF system in example III (Fine mesh). 

 

Here, we consider the same system except 

that its resisting force follows the nonlinear 

behavior given by Fig 12. The magnitude of 

yielding force is assumed to be 0.125𝑓𝑜: 

𝑓𝑦 = 0.125𝑓𝑜 = 0.125 × 593.6 =

74.6 𝑘𝑁  
(31) 

Fig. 13 is the displacement response from 

𝑡 = 0~10 𝑠𝑒𝑐 which is reported in [8]; and, 

Fig. 14 shows the response obtained from 

SIM. An excellent agreement is evident 

between the presented approach and 

Newmark-β method. The peak values are 

also the same. All kinematic responses of the 

nonlinear system are plotted in Fig. 15. A 

summary report is also available in Table 6.  
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Fig. 11. Responses for the linear SDOF system in example III (Fine mesh). 

 
Fig. 12. Idealized elastoplastic behavior of restoring force-deformation component in example III. 



96 M. Babaei et al./ Journal of Rehabilitation in Civil Engineering 10-3 (2022) 81-99 

 
Fig. 13. Displacement response reported in [8] for the nonlinear SDOF system in example III. 

 
Fig. 14. Displacement response for the nonlinear SDOF system in example III. 

 
Fig. 15. Responses obtained from SIM for the nonlinear SDOF system in example III (Fine mesh). 
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Table 6. Peak response values and run times of nonlinear analyses in example III with Δ𝑡 = 0.001 sec. 

                method 

item 
Nonlinear Newmark-β method Presented SIM 

Max Disp. (cm) 4.3611 4.3610 

Max Vel. (cm/sec) 31.658 31.660 

Max Accel. (cm/sec
2
) 460.70 460.7 

Number of iteration 1 2 

Run time (sec) 0.0086 0.0088 

4. Conclusions 

Two numerical methods were proposed for 

dynamic analysis of structural systems: 

energy-based method (EBM) and simplified 

integration method (SIM). EBM uses basic 

kinematic relations and energy concept. It is 

presented only for linear damped systems. 

SIM is a more general method for linear and 

nonlinear analysis of vibration. It benefits 

from the function approximation theory and 

integration platform in the formulation.  

Current version of EBM has some 

deficiencies: (1) EBM cannot be converged 

for undamped systems and those ones whose 

damping ratios are less than 1%. (2) 

Convergence speed of EBM is dissatisfying 

and it needs tens of iteration to give precise 

response. 

SIM is a general method which has 

noticeable advantages as follows: (1) wide 

variety of vibration problems is covered. (2) 

Highly-exact solution is offered. (3) Any 

type of nonlinearities can be included. (4) 

Free vibration can also be dealt with, as well 

as forced vibration. (5) Complex earthquake 

excitation can be analyzed. (6) Vastly simple 

and straightforward calculation is required. 

(7) Computer programming is remarkably 

facilitated for nonlinear analysis. (8) 

Beginners with a little theoretical and 

technical background in this field can use this 

method.  

The performance of both methods is 

carefully investigated through numerous. 

examples. Detailed discussion on 

mathematical assessment of convergence and 

stability of the methods is avoided; however, 

convergence and stability of the solution are 

graphically verified through the general 

examples. In conclusion, presented SIM 

introduces a robust and fast analysis tool for 

nonlinear analysis of vibration in structural 

dynamics. 
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