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Abstract

Let L be a left module over a ring S with identity. In this paper, the concept of primary isolated
submodules is introduced. We look for relations between this class of submodules and related mod-
ules. A number of facts and characterizations that concern is gained. The aim of this work is to
introduce and study the primary isolated submodules as a generalization of isolated submodules. A
submodule A of L is primary isolated if for each proper B of A, there is a primary submodule C of
L, B ⊆ C but A ⊈ C. Some properties are gained and we look for any relationship between this
type of modules and other related modules.
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submodules, Primary submodules, Prime submodules.

1. Introduction

Throughout this work, S is denoted a ring has an identity and L denotes a left S-module. Notation
⊆ indicates inclusion. A proper submodule A of an S-module L is prime if IB ⊆ A for an ideal I of
S and a submodule B of L, then B ⊆ A or IL ⊆ A [3]. The (prime) radical for any submodule A (in
L), denoted by radL (A) =

⋂
A⊆B B where B is prime of L. If A is not in any prime, then the radical

of A is defined to be radL (A) = L. Further, L ̸= A is said to be radical (in L) if A = radL(A).
Prime B of a submodule A of L can be lifted to L if there is prime C of L with B = A ∩ C [3].
L ̸= A is named primary if whenever sl ∈ A, for s ∈ S and l ∈ L, then l ∈ A or snL ⊆ A for a
positive integer n [4].One can easily see that A is primary of L if and only if sB ⊆ A, for some s ∈ S
and submodule B of L, then B ⊆ A or snL ⊆ A for a positive integer n. The primary radical for
any submodule A in L is indicated by P -radL (A) =

⋂
A⊆B B where B is primary of L. If A is not
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contained in any primary, then the primary radical of A is dfined to be P -radL (A) = L [2]. Moreover,
a proper submodule A is primary radical in L if A = P -radL (A). L is cocyclic when it includes an
essential simple submodule [5]. A submodule A is essential in L if for any nonzero submodule B of
L, A ∩ B ̸= 0 [5]. A submodule A of L is called isolated when any proper submodule B of A, there
is prime C of L with B ⊆ C while A ⊈ C [3].

This work contains three sections. In section two, we introduce the primary isolated submodules.
Some properties of this concept are discussed (Proposition 2.4 and Proposition 2.7). Further, we
define the primary lifted submodules as a generalization of lifted submodules . By using the concept
primary lifted submodules we will give a description of the concept of primary isolated submodules
(Theorem 2.12). In section three, we give another description of primary isolated submodules by
using the concept primary radical of submodules (Proposition 3.1). Moreover, we look for any
relationships between primary isolated submodules and the primary radical of submodules or some
other related modules (Proposition 3.2, Proposition 3.6, Proposition 3.7 and Theorem 3.11). In what
follows, Z, Zp∞ , and Zn = Z

nZ denote respectively, integers, the p-Prüfer group and the residue ring
of integers modulo n.

2. Primary Isolated Submodules

Definition 2.1. A is primary isolated when each proper submodule B of A, there exists a primary
submodule C of L such that B ⊆ C but A ⊈ C.

Remark 2.2.

(1) Isolated submodules are primary isolated but the reverse is not hold in general. For instance,
nZ is a primary isolated submodule but it is not isolated of Z as Z-module for each positive
integer n.

(2) The zero submodule is always an isolated submodule and hence it is primary isolated.

(3) Every simple module is an isolated submodule and hence it is primary isolated.

(4) The simple submodules need not be primary isolated (and hence not isolated). For example,
< 2 > is a simple submodule in the Z-module Z4. However, < 2 > is not primary isolated in
Z4 because there is no primary submodule A of Z4 such that < 0 >⊆ A and < 2 >⊈ A

(5) All non-zero submodules of Z-module Zp∞ are not primary isolated and hence they are not
isolated. In fact all proper submodules of Z-module Zp∞ are not primary and hence they are
not prime.

(6) If J is a maximal (or prime) of L, then J may not be primary isolated (and hence not isolated).
For example, < 2 > is maximal in Z4 as Z-module but < 2 > is not primary isolated

(7) Even though < 2 > is not primary isolated in Z4 as a Z-module, but Z4 is isolated and hence
it is primary isolated.

(8) The maximal submodule of a local module L is not primary isolated and hence it is not isolated
as we have seen in example (6).

(9) Let N ⊆ H ⊆ M . If H is primary isolated then N may not be primary isolated. Z8 as a
Z-module is primary isolated in Z8 while < 2 > is not primary isolated in Z8 since there is no
primary submodule A of Z8 such that < 4 >⊆ A and < 2 >⊈ A.

(10) Let N ⊆ H ⊆ M . If N is primary isolated then H may not be primary isolated in M . For
example, < 0 > is a primary isolated submodule in Z4 as Z-module. However, < 2 > is not a
primary isolated submodule in Z4.

(11) All submodules of Z6 and Z10 as Z-module are isolated and hence they are primary isolated.
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(12) Consider Z12 as a Z-module. Then Z12, < 4 >, < 6 >, < 3 > are primary isolated . However,
< 2 > is not primary isolated since there is no primary submodule A of Z12 such that < 2 >⊈ A
and < 4 >⊆ A.

Proposition 2.3. Let B be a submodule of L with B ⊈ A for some primary submodule A. Yield

(1) A ∩B is primary of B.

(2)
√

[A ∩B :R B] =
√

[A :R L].

Proof .

(1) r ∈ R and x ∈ B, rx ∈ A ∩ B implies rx ∈ A . So that either x ∈ A and hence x ∈ A ∩ B or
rnL ⊆ A for n and thus rnB = rnL ∩ rnB ⊆ A ∩B as desired.

(2) Let r ∈
√

[A ∩B :R B] then rn ∈ [A ∩B :R B] and so rnB ⊆ A ∩B implies rnB ⊆ A then for
each x ∈ B, rnx ∈ A. This implies either x ∈ A and it follows B ⊆ A which is a contradiction
or (rn)

m
L ⊆ A for some positive integer m. Put t = nm so we have rtL ⊆ A and hence

r ∈
√

[A :R L]. Let r ∈
√

[A :R L] then rnL ⊆ A implies rnB ⊆ A. But rnB ⊆ B so that

rnB ⊆ A ∩B means r ∈
√

[A ∩B :R B].

□

Proposition 2.4. If A is a primary isolated of L then each proper submodule of A is cotained in
primary of A.
Proof .Let B and A be submodules of L with B is proper in A and A is a primary isolated. So there
is primary C of L, B ⊆ C and A ⊈ C implies B = B ∩ A ⊆ C ∩ A. By Proposition 2.3, C ∩ A is
primary of A as desired. □

Example 2.5. Every proper submodule of < 2 > in Z4 as Z-module is contained in a prime sub-
module and hence it is contained in primary. However, < 2 > is not primary isolated.

Lemma 2.6. Let L = A ⊕ B be a direct sum of two submodules A and B as S-module. If C is
primary of A then C ⊕B is primary of M .
Proof .Let L = A ⊕ B be direct sum. r ∈ R, x ∈ L, rx ∈ C ⊕ B for some primary C of A. On
the other hand, x = a + b for some a ∈ A and b ∈ B and hence rx = c + d for some c ∈ C and
d ∈ B and hence ra + rb = r (a+ b) = rx = c + d. This implies −c + ra = d − rb ∈ A ∩ B = 0
and so ra = c. It follows that ra ∈ A. Further, C is a primary submodule of A and a ∈ A it follows
that either a ∈ C or rnA ⊆ C for positive n. If a ∈ C then x = a + b ∈ C ⊕ B. If rnA ∈ C then
rnM = rn (A+B) = rnA+ rnB ⊆ C +B as desired. □

Proposition 2.7. Let A be a summand of M . If each proper of A is included in primary of A then
A is primary isolated.
Proof .Let M = A⊕B and D be proper of A. By hypotheisis, there is primary C of A with D ⊆ C.
By Lemma (2.6), C ⊕B is primary of M . Further, D ⊆ C ⊕B and A ⊈ C ⊕B it follows that A is
primary isolated. □

Corollary 2.8. If A is finitely generated summand of L then each proper of A is included in primary
of A.
Proof .Let A be a finitely generated summand of L and B be proper in A. So there is maximal C of
L such that B ⊆ C. □
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Corollary 2.9. Each finitely generated summand of L is primary isolated.
Proof .Directly obtained by Proposition 2.7 and Corollary 2.8. □

Example 2.10. Consider M= Zp∞⊕Zp as Z-module and A= Zp∞⊕0 is summand of M. However,
A is not finitely generated , it is not primary isolated and every submodule of A is not primary.

Definition 2.11. Let A be a submodule of L. We call a primary submodule B of A can be primary
lifted to L if there is primary C of L with B = A ∩ C.

Theorem 2.12. The next are the same

(1) A is primary isolated of M .

(2) For each each proper C of A, there is primary B of A, C ⊆ B and B can be primary lifited to
M .

Proof .
(1)=⇒(2) Let A be primary isolated of M and C be proper of A. Via Definition (2.1), there is
primary D of M such that C ⊆ D and A ⊈ D. By Proposition (2.3), A ∩D is primary of A. Put
B = A ∩D. Thus C ⊆ B and B can be primary lifited to M as desired.
(2)=⇒(1) It is clear. □

Theorem 2.13. Let I be primary of R and A of M . The next are equal

(1) An P -primary submodule B of A can be primary lifted to M

(2) A ∩ PM ⊆ B.

Proof .
(1)=⇒(2) Assume that (1) is hold. Then B = A∩C for some P -primary C of M , implies A∩PM ⊆
A ∩ C = B.
(2)=⇒(1) Let A ∩ PM ⊆ B where B is P -primary of A. By modular law, A ∩ (B + PM) =
(A ∩B) + (A ∩ PM) = B. A submodule T of M maximal to the properties B + PM ⊆ T and
T ∩ A = B. Also T is proper in M since if T = M implies that A = B which is a contradiction.
r ∈ R and S of M with T is proper in S and rS ⊆ T . By the choice of T , then B is proper in S ∩A.
But rn (S ∩ A) ⊆ rnS ∩ rnA ⊆ T ∩ A = B and so rn ∈ P . Therefore rnM ⊆ PM ⊆ T and hence T
is primary of M . This means that B can be primary lifted to M . □

3. Primary Isolated Submodules and Primary Radical

Proposition 3.1. Let M be an T -module and A of M . The next are the same

(1) For each proper submodule B of A, P -radM (A) ̸= P -radM(B).

(2) A is primary isolated.

Proof .
(1)=⇒(2) Let B is a proper submodule of A, so by (1) P -radM (A) ̸= P -radM(B). This means that
there is primary C of M , B ⊆ C and A ⊈ C as desired.
(2)=⇒(1) by the same argument of (1)=⇒(2). □

Proposition 3.2. Let A be a submodule of M and r ∈ R. Then P -radM (rnA) = P -radM (A ∩ rnM)
for n.
Proof .It is clear that rnA ⊆ A ∩ rnM . Then P -radM (rnA) ⊆ P -radM (A ∩ rnM). The other
inclusion, for each primary B of M , rcA ⊆ B for positive c, A ⊆ B or (rc)tM ⊆ B for positive t. If
we choose n = tc then A ∩ rnM ⊆ P-radM (rnA) and hence P -radM (A ∩ rnM) ⊆ P-radM (rnA). □
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Corollary 3.3. Let A be a submodule of M over a principal ideal ring S and I of S. Then P -
radM (InA) = P -radM (A ∩ InM) for n.
Proof .Via similar way of Proposition 3.2. □

Corollary 3.4. Let A be primary isolated and r ∈ S. Then A ⊆ rnM if and only if A = rnA.
Proof .Assume A ⊆ rnL. Then A = A∩rnL ⊆ P -radM (A ∩ rnL) = P-radM (rnA) by Proposition
(3.2). Because of A is primary isolated of M it follows that A = rnA. The reverse side is clear. □

Corollary 3.5. Let A be a submodule of M over a principal ideal ring S and T of S. Yield A ⊆ T nM
if and only if A = T nA.
Proof .By similar way of Corollary 3.4. □

Proposition 3.6. Let A be a submodule of M with rnA is primary radical for an element r ∈ R
and for a positive integer n. Then A ∩ rnM = rnA.
Proof .Directly by Proposition 3.2. □

Proposition 3.7. Let A be a submodule of M over a principal ideal ring R and with InA is primary
radical of M for an ideal I of R for a positive integer n. Then A ∩ InM = InA.
Proof .By similar way of Proposition 3.6. □

The following lemma is stated and proved in [3], we give it for completeness

Lemma 3.8. Let M be a cocyclic F -module with S an essential simple submodule, S ∩ IM = IS for
any left primitive ideal I of T . Implies the zero submodule is prime.
Proof .Let I = {a ∈ F : aS = 0}. Yield I is left primitive of F . Further, S ∩ IM = IS = 0, but S is
essential in M so IM = 0. Assume J be an ideal of F and 0 ̸= A submodule of M , JA = 0. Because
S is the intersection of each nonzero submodules of M , implies that S ⊆ A and hence JS = 0. Thus
J ⊆ I it follows that JM = 0. This means that < 0 > is prime. □

Proposition 3.9. The next are equal.

(1) Each submodule is isolated of M .

(2) Each proper submodule is radical.

(3) A ∩ IM = IA for each A of M and for each ideal I of T .

(4) A ∩ PM = PA for every A of M and for every left primitive I of T .

(5) For every x ∈ M and r ∈ R, rx = rtrx for some element t ∈ T .

(6) T
annR(x)

is regular for every element x ∈ M .

(7) J ∩ I = JI for any two ideals Iand J of R.

(8) r = rtr for every element r ∈ R and for some element t ∈ R.

Proof .
(1) ⇐⇒ (2) ⇐⇒(3) ⇐⇒ (4) by [3] and (3) ⇐⇒ (5) ⇐⇒ (6) ⇐⇒ (7) ⇐⇒ (8) by [6]. □

Compare the following lemma with lemma 3.8

Lemma 3.10. Let M be a cocyclic over a principal ideal ring T with an essential simple submodule
S such that S ∩ InM = InS for n. Yield the zero submodule is primary.
Proof .By similar way of Lemma 3.8. □

We finish our work by the following result
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Theorem 3.11. The next are the same for M over a principal ideal ring S.

(1) Any submodule is primary.

(2) Every proper submodule is primary radical.

(3) A ∩ InM = InA for each A of M and each ideal I of S and for some positive integer n.

(4) A ∩ InM = InA for each A of M and left primitive I of S.

(5) For every x ∈ M and r ∈ R, rnx = rntrnx for element t ∈ R and for positive integer n.

(6) R
annR(x)

is n-regular ring for every element x ∈ M

(7) J ∩ In = JIn for every ideal I and J of R.

(8) rn = rntrn for every element r ∈ R, for element t ∈ R.

Proof .
(1)=⇒(2) Let H be a proper of M . We show that P -radM (H) = H. It is clear that P -radM (H) ⊇ H.
Suppose that H is a proper submodule in P -radM (H). By (1), P -radM (H) is primary isolated implies
that there is primary A of M such that A ⊇ H and A ⊉ P -radM (H) which is a contradiction. Thus
P -radM (H) = H.
(2)=⇒(3) Assume that every submodule is contained properly in M is primary radical so that for
each A of M , and I an ideal of R we have, InA = P -radM (rnA) and A∩InM = P -radM (A ∩ rnM).
By Corollary 3.4, P -radM (InA) = P -radM (A ∩ InM) and hence A ∩ InM = InA.
(3)=⇒(4) It is clear.
(4)=⇒(2) Let H be proper of M . For each x ∈ M and x /∈ H, let Ax be a submodule in M maximal
with the properties H ⊆ Ax and x /∈ Ax. Obviously, H =

⋂
x∈M Ax and H is one of the elements of

this family {Ax}x∈M . Let x ∈ M and x /∈ H. Put Bx =< x > +Ax. We claim that Bx

Ax
is an essential

simple submodule in M
Ax

. To show this. Suppose that Bx

Ax
is not simple in M

Ax
so that there exists a

nonzero a proper submodule Dx

Ax
in Bx

Ax
for some submodule Dx of M . Now, there are two cases, if

x /∈ Dx and by assumption H ⊆ Ax ⊆ Dx which is contradicts with maximality of Ax with respect to
H. If x ∈ Dx, then

Dx

Ax
= Dx

Ax
∩ Bx

Ax
= Dx

Ax
∩ <x>+Ax

Ax
= Dx∩(<x>+Ax)

Ax
= (Dx∩<x>)+(Dx∩Ax)

Ax
= <x>+Ax

Ax
which

is a contradiction. This means that Bx

Ax
must be a simple submodule in M

Ax
. Now we prove that Bx

Ax
is

an essential submodule of M
Ax

. Suppose that Bx

Ax
is not essential in M

Ax
so there exists nonzero a proper

submodule Dx

Ax
of M

Ax
with Dx

Ax
∩ <x>+Ax

Ax
= 0 M

Ax
. By similar way of above argument, if x /∈ Dx lead us

to a contradiction. If x ∈ Dx, then 0 M
Ax

= Dx

Ax
∩ Bx

Ax
= <x>+Ax

Ax
which is a contradiction. Hence M

Ax
is

a cocyclic R-module. By (4), Bx ∩ InM = InBx for each left primitive I, implies Bx

Ax
∩ In M

Ax
= InBx

Ax
.

By Theorem 3.11, Ax is primary of M for each x ∈ M and x /∈ H.
(2)=⇒(1) Let A be proper of M and B be proper of A. By (2), B = P -radM (B) is primary of M
and B ⊆ B and A ⊈ B as desired. If A = M , then A is a summand of M and because every proper
submodule is primary radical (and hence primary) so by Proposition 3.6, M is primary isolated.
(3) ⇐⇒ (5) ⇐⇒ (6) ⇐⇒ (7) ⇐⇒ (8) by [1]. □

4. Conclusion

In this work we present the primary isolated submodules as generalization of isolated submodules.
We see that many properties of isolated submodules can be extended to primary isolated submodules.
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