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Abstract

Measles is a respiratory system infection caused by a Morbillivirus genus virus. The disease
spreads directly or indirectly through respiration from the infected person’s nose and mouth after
contact with fluids. The vast population of infects in developing countries is yet at risk. Generally,
the mathematical model of Measles virus propagation is nonlinear and therefore changeable to solve
by traditional analytical and finite difference schemes by processing all properties of the model
like boundedness, positivity feasibility. In this paper, an unconditionally convergent semi-analytical
approach based on modern Evolutionary computational technique and Padé-Approximation (EPA)
has been implemented for the treatment of non-linear Measles model. The convergence solution of
EPA scheme on population: susceptible people, infective people, and recovered people have been
studied and found to be significant. Eventually, EPA reduces contaminated levels very rapidly and
no need to supply step size. A robust and durable solution has been established with the EPA in
terms of the relationship between disease-free equilibrium in the population. When comparing the
Non-Standard Finite Difference (NSFD) approach, the findings of EPA have shown themselves to be
far superior.
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1. Introduction

Studies of epidemiology in the human population play an important role in understanding the
human population’s disease. Mathematical epidemiology’s work often consists of model construc-
tion, parameter estimation, and model sensitivity investigation to change parameters and numerical
simulations. Mathematical models are used by epidemiologists to understand the nature of how
diseases spread in the past. Measles disease is highly contagious with an individual’s 90 percent
chance of infection. Every year, Measles infects about 30 to 40 million kids. The disease was and
remains a major killer of the world’s children. Despite the introduction of the Measles vaccine in
1963, as far back as 1980, Measles caused an estimated 2.6 million deaths per year. The surviving
children eventually experience blindness, loss of sight, damage to the brain, and death [28]. World-
wide, Measles vaccination was highly efficient, preventing an estimated 80 million instances and 4.5
million fatalities per year [16]. While there has been a significant reduction in worldwide incidence
through vaccination, Measles continues a significant public health issue. Since vaccination coverage
is not evenly high globally, Measles is the world’s leading vaccine-preventable child killer; Measles
is estimated to have caused 614000 fatalities annually globally in 2002, with more than half of the
fatalities from Measles in sub-Saharan Africa [5]. The research of this kind helps to understand
the ratio of disease spread in the population and to control their parameters [7]. These types of
diseased models are often called infectious diseases Measles, rubella, chickenpox, mumps, aids, and
gonorrhea syphilis are examples of infectious disease [15]. Rubella virus is a highly infectious illness
which is also known as morbilli or Measles. The virus can be found in the mucus of the throat,
the nose of an infected adult and child. Measles symptoms caused by the Rubella virus always
included fever, coryza, conjunctivitis, and at least one of the three Cs-coughs. Symptoms appear
after the initial infection about 9-11 days [14]. The epidemiological models are crucial processes for
investigating and acquiring improved development information using a mathematical tool based on
arithmetic and numerical analysis, influence, and the derivative mechanisms, especially where an
analysis solution is not available. Some recent studies like [9, 11, 24] also investigate these kinds of
developments. Most of the methods like traditional analytical and finite difference schemes does not
handle the properties of the model like boundedness, positivity, feasibility. There is the dire need of
developing such a method that may be capable of handling these properties and give true insights
into model dynamics. In recent years a lot of sophisticated meta-heuristics have been introduced to
solve the most complex problems by transforming them into problems of optimization [17, 20, 18, 2].
Improvisations to differential equations of these suggested metaheuristics can be seen in [12, 19] as
well, but the application of these meta-heuristics [26, 25, 22, 21] to widely distributed and disease
models are difficult to see. The study conducted by Farhan et al. for the treatment of the HIV/AIDS
epidemic model with vertical transmission [6], Hepatitis-B Model [23] and Smoking Model [1] by us-
ing evolutionary Padé-approximation, extend this work to solve under line measles dynamical model.
The contribution of the current work can be summarized as under: Points of equilibrium (virus
equilibrium (VE) and virus-free equilibrium (VFE)) have been calculated and analyzed for their
stability analyses. A new approach based on Padé-Approximation has been implemented for solving
Measles dynamical model. All the necessary initial conditions (boundedness, positivity, feasibility)
properties have been modeled as problem constraints. The control equations are converted to the
constraint function and then a penalty function approach has been used to resolve the optimization
problem. The solution purposed by this scheme is unconditionally convergent to steady-state and
meets all the model requirements. For these reasons, this entire paper has been drawn up. The
nonlinear dynamic Measles model having comprehensive detail in Section 2. Section 3 is based on
the Padé approach, the differential development, the penalty function, and the structure of the EPA
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scheme for the solution of the nonlinear epidemiologic Measles model. Throughout section 4, the
interpretation and simulations of the findings presented are the objects of attention. Finally, remarks
and recommendations for future directions were discussed in the last segment.

2. Dynamical Measles Model

The considered model of Measles that was proposed by Allen et al in [27] described in Figure 1.

Figure 1: SIR model for Measles treatment

In proposed model population is divided into three following groups. The models’ variables are
defined at any time t as:
S(t): Susceptible people never come into contact with Measles
I(t): Infective people with Measles and can transmit the disease
R(t): Recovered people from Measles
The model parameters are:
N(t): Total population, µN : Recruitment rate into susceptible class, α : Transitivity, γ : Per-capita
recovery rate, µ : Per-capita removal rate.

S ′(t) = µN − αS(t)I(t)− µS(t), (2.1)

I ′(t) = αS(t)I(t)− (γ + µ)I(t), (2.2)

R′(t) = γI(t)− µR(t), (2.3)

The initial conditions for the model are follows

N(t) = S(t) + I(t) +R(t). (2.4)

The Measles model may be rewritten as

S ′(t) = X1(t) = µN − αS(t)I(t)− µS(t), (2.5)

I ′(t) = X2(t) = αS(t)I(t)− (γ + µ)I(t), (2.6)

R′(t) = X3(t) = γI(t)− µR(t), (2.7)

The initial conditions are :

S0 = S(0) = 990; I0 = I(0) = 50;R0 = R(0) = 10.
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The basic reproduction number R0 of the system (2.1-2.3)

R0 =
αN

γ + µ

Model (2.1-2.3) has a distinctive endemic equilibrium whenever R0 > 1(2.85), the model’s endemic
equilibrium is given by E1=(S*,I*,R*)=(350,30.95,619.04)

S∗ = (γ + µ)

α

I∗ = αµN − µ(γ + µ)

α(γ + µ)

R∗ = αµN − µ(γ + µ)

αµ(γ + µ)

The disease-free equilibrium of the system (1) denoted by E0=(N,0,0)

3. Evolutionary Pade Approximation Scheme

The design of this scheme is based on Pade-approximation [13], Differential Evolution [3, 4] and
penalty function [27]. Evolutionary Pade Approximation scheme has been applied on a nonlinear
epidemiology Measles model which involves the following steps.

3.1. Pade Approximation

At the end of the 19th century, in the classical theory of the continuing fraction, the concept of
Pade approximation was started. The reasonable (N,M) order function of the approximation of Pade
referred to in [13].

PN,M(t) =

∑N
i=0 ait

i∑M
j=0 ajt

j

Pade approximation are
∑N

i=0 ait
i and

∑M
j=0 ajt

j and by putting b0 ̸= 0 the above expression becomes:

PN,M(t) =
ΣN

i=0ait
i

1 + ΣM
j=1bjt

j

The above equation having (N+M+1) undetermined coefficients, by using the Maclaurine series
PN,M(t) referred in [28] we get the value of coefficient. Suppose that S(t), I(t) and R(t) are Pade
rational functions approximated as

S(t) =
ΣN

i=0ait
i

1 + ΣM
j=1bjt

j

I(t) =
ΣN

i=0cit
i

1 + ΣM
j=1djt

j

R(t) =
ΣN

i=0eit
i

1 + ΣM
j=1fjt

j

By imposing initial conditions we obtain

a0 = S0, c0 = I0, e0 = R0. (3.1)
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The discrete-time steps are tq = t0 + qh; q = 0, 1, 2, 3, ..., qmax, then the system (2.5-2.7) becomes:
ε1(tq) = 0,

ε2(tq) = 0,

ε3(tq) = 0,

(3.2)

Here ε1, ε2 and ε3 are the residuals defined by

ε1(tq) = (1 + ΣM
j=1bjt

j
q)(Σ

N
i=0iait

i−1
q )− (ΣN

i=0ait
i
q)(Σ

M
j=1jbjt

j−1
q )−X1(tq)(1 + ΣM

j=1bjt
j
q). (3.3)

ε2(tq) = (1 + ΣM
j=1djt

j
q)(Σ

N
i=0icit

i−1
q )− (ΣN

i=0cit
i
q)(Σ

M
j=1jdjt

j−1
q )−X2(tq)(1 + ΣM

j=1djt
j
q). (3.4)

ε3(tq) = (1 + ΣM
j=1fjt

j
q)(Σ

N
i=0ieit

i−1
q )− (ΣN

i=0eit
i
q)(Σ

M
j=1jfjt

j−1
q )−X3(tq)(1 + ΣM

j=1fjt
j
q). (3.5)

The problem reduces the problem to find 3(M+N) coffieciently of approximators in Pade by solving
system (3.2) with 3qmax nonlinear simultaneous equations.
Problem Constraints
The model’s constraints on equality are seen as stated in the system (3.1):

h1(t) = S(t)− S0 = 0. (3.6)

h2(t) = I(t)− I0 = 0. (3.7)

h3(t) = R(t)−R0 = 0. (3.8)

The inequality constraints have to do with positivity

g1q =
ΣN

i=0ait
i
q

1 + ΣM
j=1bjt

j
q

≥ 0.

g2q =
ΣN

i=0cit
i
q

1 + ΣM
j=1djt

j
q

≥ 0.

g3q =
ΣN

i=0eit
i
q

1 + ΣM
j=1fjt

j
q

≥ 0.

whereas represents the bounded-ness of the solution.

g1q + g2q + g3q ≤ N.

Objective Function
Suppose that

x =

[
a1, a2, ..., am, b1, b2, ..., bN , c1, c2, ..., cM ,
d1, d2, ..., dm, e1, e2, ..., eN , f1, f2, ..., fM ,

]t
∈ R3(M+N).

After converting the above model the minimization becomes:
Minimize ϕ(x) = 1

3
Σ3

z=1Σ
qmax

q=0 [εZ(tq)].
Penalty Function
A large number of positive factors are added to the objective function in accordance with the degree
of violation of the constraints.

θ =

{
ψ(x) + ζ(x)ifxisinfeasible,

ψ(x)ifxisinfeasible.
(3.9)
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Here objective function = ψ(x) and the penalty function = ζ(x) describes penalized function = ϕ(x).
Here ‘ζ(x) ≥ 0 is for minimization and ζ(x) ≤ 0 for maximization, the unconstrained optimization
model becomes:

ζ(x) =

qmax∑
q=1

Pq ×max 0, (h1)
2, (h2)

2, (h3)
2,−g1q,−g2q,−g3q,

3∑
s=1

gsq −N.

Here scalar Pq is a large positive real number then the unconstrained objective function is
Minimize

ω(x) = ϕ(x) + ζ(x). (3.10)

4. Optimization process with differential evolution

Price and Storn have created DE as a function optimizer that is easy to use, safe, and flexible.
The first published paper on DE appeared as a technical document in 1995. Like nearly all evolu-
tionary algorithms, DE is a population-based optimizer that attacks the starting point problem by
sampling the objective function at various randomly chosen starting points? In this original popu-
lation, the preset bound parameter describes the domain from which the vectors are chosen. Each
vector is indexed between 0 and Np-1. DE produces fresh points that interfere with current points.
Instead,DE disturbs vectors that have the scaled distinction with two randomly chosen population
vectors. To generate the trial vector, µ0 DE adds the scaled, random vector difference to a third
randomly chosen population vector. In the selection phase, the trial vector competes against the
same index population vector, which is number 0 in this case. The step of selecting and saving
that marks the vector as a next-generation member with the reduced objective function value. The
technique repeats until all vectors of the Np population compete against a randomly generated trial
vector. After testing the last test vector, the Np survivors become siblings in the next generation’s
evolutionary process [3, 4]. To optimize objective function (3.10) using EPA scheme the following
steps are involved:
Step 1. Generate population randomly, population of K solution xj ∈ R3(M+N); 1 ≤ j ≤ K.
Step 2. Evaluate the value ω̄j = ω̄(Xj) of each of solution. Collect the best solution with the mini-
mum value of objective function. Initially set T=0
Step 3. Set T=T+1
Step 4. Choose three distinct solutions xA, xBandxC from the population excluding xj for each of
j=1,2,3,4,.......,K, Set y = xj
Step 5. For each of dimensions i = 1, 2, 3, ......3(M +N), alter the ith coordinate according to

yi =

{
xAi + F × (xBi − xCi)ifrandi[0, 1] < CR

xjiotherwise
(4.1)

Step 6. If ω̄(y) < ω̄j then xj ← y, otherwise discard y.
Step 7. Best solution must be updated.
Step 8. If T > number of iterations, then terminate, by maintaining the best solution, other wise
repeat all the process from step 3.

5. Numerical Results

Set parameters of DE algorithm for numerical illustrations: N = 50; F = 0.55;CR = 0.91
and maximum iterations = 2000. The approximation order for Padé is set to (N, M) = (2, 2).
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The qmax parameter is set to 2000. The penalty factor for all q is set to Lq = 1010. The optimized
Measles model parameters are α = 0.003, µ = 0.05, γ = 1, N = 1000. In all simulations 10
independent runs have been taken and chosen the best one, Intel Core i3 with 4GB RAM computer
was used for experimentation with Microsoft windows 10. The source code was executed by using
MATLAB (R2015b). The mathematical analysis of the non-linear epidemic Measles model was
provided. Figures 2-4 demonstrate the sound effects of the EPA algorithms on the population which
is sensitive, infected, and recovered compared to NSFD which is special and healthy. Figures show a
convergence solution in relation to disease-free equilibrium among different population groups, with
the aid of EPA algorithm and NSFD, it can be easily observed that the EPA algorithm results are
more reliability and better than the numerical scheme. Figure 5 illustrates the rapidly decreasing
effect of vaccination on infected and chronic populations. The resilient and recovered population
growth also shows that the effect of vaccines can easily be managed after calculating the disease.

Figure 2: Dynamical behavior for susceptible population S(t) in a time t with EPA and NSFD

Figure 3: Dynamical behavior for infected population I(t) in a time t with EPA and NSFD
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Figure 4: Dynamical behavior for recovered population R(t) in a time t with EPA and NSFD

Figure 5: Dynamical behavior of S(t), I(t) and R(t) in a time t with EPA

6. Conclusion

In this study, to get the numerical solutions of the non-linear epidemic Measles model, the evolution-
ary Padé approach was implemented. EPA has given strong state variables approximations, which
fulfill the high accuracy of the governing equations. The solution obtained is very quickly convergent
and superior then NSFD, as regards the relationship between different population compartments to
disease-free equilibrium. We also implemented the numerical simulation and tested all analytical
findings by using EPA to reduce contaminated disease-free equilibrium levels very quickly. The
Padé approximation of order (2, 2) was used in the current work, it is worth mentioning. By using
the higher-order and robust optimization strategy, the accuracy of the numerical solution can be
improved. Finally, this technique removing the need to supply a step size and we can control the
spreading of Measles in the community.
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