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Abstract

We introduce a novel distance structure called a b-interval metric space to generalize and extend
metric interval space. Also, we demonstrate that the collection of open balls, which forms a basis
of a b-interval metric space, generates a T0-topology on it. Further, we define topological notions
like an open ball, closed ball, b-convergence, b-Cauchy sequence and completeness of the space on a
b-interval metric space to create an environment for the survival of a near fixed point and a unique
equivalence class of near fixed point. Towards the end, we introduce notions of interval circle, fixed
interval circle, its equivalence class and established the existence of a near fixed interval circle and
its equivalence interval C-class of near fixed interval circle to study the geometric properties of
non-unique equivalence C-classes of nearly fixed interval circles.
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1. Introduction

In 1922, Banach established the acclaimed Banach contraction principle exploiting metric spaces.
Subsequently, this principle was generalized in different frameworks. Recently, Wu [20] familiarized
metric interval spaces exploiting the null set to study near fixed points. It is interesting to mention
that metric interval space is not a conventional metric space and all the closed and bounded intervals
on the collection of real numbers may not be a vector space, as the additive inverse of each of its
elements may not exist in it. Acknowledging the work of Wu [20], we familiarize a novel distance
structure called a b−interval metric space and study its topology. In spite of the fact that the metric
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space may not essentially be a vector space, we equip a b−metric to the collection of closed and
bounded intervals in the set of real numbers utilizing a null set. Besides, we introduce notions like
b−convergence, b−Cauchy sequence, completeness and demonstrate that the collection of open balls,
which forms a basis of a b−interval metric space, generates a T0 topology on it. We illustrate by
means of examples that conventional Banach contraction principle, Theorem 5 of Sehgal [17] and
consequently results in, [3], [6], [8], [9]-[13], [15], [16], [18]-[19], and so on , may not be proved
in a b−interval metric space. Thereby, we infer that the celebrated fixed point conclusions may
not be proved in a conventional way in a novel b−interval metric space which demonstrates the
prominence of b−interval metric space over celebrated distance structures. We also include examples
to demonstrate that a b−interval metric space is neither a b−metric space (see, Bhaktin [1], Czerwik
[5]) nor a metric interval space [20]. Towards the end, we introduce notions of interval circle, near
fixed interval circle, its equivalence class and establish the existence of near fixed interval circle and
its equivalence C−class to study the geometric properties of non-unique equivalence C−classes of
near fixed interval circles. These near fixed points and near fixed interval circles results promote
further examinations and applications in metric fixed point theory, which has been utilized in solving
numerous real-life problems.

2. Preliminaries

The addition and scalar multiplication on the set U of closed and bounded intervals in R is defined
as:

[p, q]⊕ [r, s] = [p+ r, q+ s], and

k[p, q] =

{
[kp, kq], k ≥0

[kq, kp], k < 0
, [p, q], [r, s] ∈ U .

[0, 0] ∈ U is zero element of U . For any [p, q] ∈ U , [p, q] ⊖ [p, q] = [p, q]⊕ [−q,−p] = [p− q, q− p],
that is, U is not a vector space in a conventional way, under the operations of addition and scalar
multiplication defined above, since the additive inverse of each of its non-degenerated closed interval
may not exist.

Now, the null set is defined as:

N = {[p, q]⊖ [p, q] : [p, q] ∈ U}
= {[−a, a] : a ≥ 0}
= {a[−1, 1] : a ≥ 0},

that is, N is generated by [−1, 1].

Remark 2.1. [20]

1. In general, (a+ b)[p, q] ̸= a[p, q] + b[p, q].

2. If a, b ≥0, (a+ b)[p, q] = a[p, q] + b[p, q].

3. If a, b ≤0, (a+ b)[p, q] = a[p, q] + b[p, q], ∀a, b ∈ R.
4. [p, q]

N
= [r, s] if and only if there exist n1, n2 ∈ N such that

[p, q] + n1 = [r, s] + n2.
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Clearly, [p, q] = [r, s] =⇒ [p, q] + n1 = [r, s] + n2, n1 = n2 =[0, 0] =⇒ [p, q]
N
= [r, s]. However, the

converse may not essentially be true. Exploiting the binary relation
N
=, for any [p, q] ∈ U , we define〈

[p, q]
〉
= {[r, s] ∈ U : [p, q]

N
= [r, s]}. (2.1)

The family of all classes
〈
[p, q]

〉
for [p, q] ∈ U is symbolized by

〈
U
〉
.

The binary relation
N
= is an equivalence relation [20]. Noticeably, class (2.1) constitutes the equiv-

alence class and the family
〈
U
〉
of all the classes (2.1) is said to be the quotient set of U . It is

significant to mention that a quotient set
〈
U
〉
is also not a conventional vector space. Moreover,

[r, s] ∈
〈
[p, q]

〉
=⇒

〈
[p, q]

〉
=

〈
[r, s]

〉
. Consequently, the family of equivalence classes constitutes a

partition of the entire collection of closed and bounded intervals U in R.

Definition 2.2. [20] Let U be the set of closed and bounded intervals and N be the null set. A
metric interval space is a pair (U , d), on a non-empty set U if and only if a map d : U × U −→ R+

satisfies the subsequent conditions:

1. d([p, q], [r, s]) = 0 if and only if [p, q]
N
= [r, s];

2. d([p, q], [r, s]) = d([r, s], [p, q]);

3. d([p, q], [r, s]) ≤ d([p, q], [t, u]) + d([t, u], [r, s]), [p, q], [r, s], [t, u] ∈ U .

Remark 2.3. In this paper, we slightly modify the name of this notion and call it interval metric
space instead of metric interval space in the next section.

Definition 2.4. [20] d : U × U −→ R+ is said to satisfy null equalities, if for n1, n2 ∈ N and
[p, q], [r, s] ∈ U , the subsequent conditions holds:

1. d([p, q]⊕ n1, [r, s] + n2) = d([p, q], [r, s]);

2. d([p, q]⊕ n1, [r, s]) = d([p, q], [r, s]);

3. d([p, q], [r, s]⊕ n2) = d([p, q], [r, s]).

Definition 2.5. [20] Let M : U → U be a function. A point [p, q] ∈ U is known as a near fixed

point of U if and only if M([p, q])
N
= [p, q].

3. Main results

First, we present formally the novel distance structure as a b−interval metric space.

Definition 3.1. Let U be the set of closed and bounded intervals and N be the null set. A b−interval
metric on a nonempty set U with s ≥ 1, is a map db : U × U −→ R+ satisfying:

(db1) db([p, q], [r, s]) = 0 if and only if [p, q]
N
= [r, s];

(db2) db([p, q], [r, s]) = db([r, s], [p, q]);

(db3) db([p, q], [r, s]) ≤ s
[
db([p, q], [t, u]) + db([t, u], [r, s])

]
, [p, q], [r, s], [t, u] ∈ U .

A pair (U , db) is known as a b−interval metric space.
A b−interval metric space reduces to an interval metric space [20], for s = 1.

Following, Wu [20], we introduce null equalities in a b−interval metric space.
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Definition 3.2. db : U ×U −→ R+ satisfies b−null equalities, if for n1, n2 ∈ N , the null set, s ≥ 1,
and [p, q], [r, s] ∈ U , the subsequent conditions holds:

1. db([p, q]⊕ n1, [r, s] + n2) = db([p, q], [r, s]);

2. db([p, q]⊕ n1, [r, s]) = db([p, q], [r, s]);

3. db([p, q], [r, s]⊕ n2) = db([p, q], [r, s]).

Example 3.3. Let U be the set of closed and bounded intervals and N be the null set. Let db :
U × U →R+ be defined as:

db([p, q], [r, s]) = (p+ q− r− s)2. (3.1)

We assert that (U , db) is a b−interval metric space and s = 2.

(db1) Let [p, q], [r, s] ∈ U , p ≤ q, r ≤ s. Now,

db([p, q], [r, s]) = 0,

=⇒ (p+ q− r− s)2 = 0,

=⇒ p+ q = r+ s, which is possible if and only if q ≥ r,

that is, p+ r− s = 2r− q.

Since, p ≤ q, r ≤ s, and q ≥ r, p+ r− s ≤ q+ s− r and 2r− q ≤ q+ s− r, we have two iden-
tical intervals [p+ r− s, q+ s− r] and [2r− q, q+ s− r]. These intervals may be written as
[p+ r− s, q+ s− r] = [p, q]⊕ [r− s, s− r] and [2r− q, q+ s− r] = [r, s]⊕ [r− q, q− r].
Suppose, n1 = [r− s, s− r] and n2 = [r− q, q− r], n1, n2 ∈ N .
Now, we have [p, q]⊕ n1 = [r, s]⊕ n2.

Hence, [p, q]
N
= [r, s].

Conversely, suppose that [p, q]
N
= [r, s], then [p, q]⊕ n1 = [r, s]⊕ n2, n1, n2 ∈ N ,

where, n1 = [−(s− r), s− r] and n2 = [−(q− r), q− r].
It is easy to verify that, db([p, q]⊕ n1, [r, s]⊕ n2) = 0.

(db2) Since, db([p, q], [r, s]) = (p+ q− r− s)2

= (r+ s− p− q)2

= db([r, s], [p, q]).

(db3) For [p, q], [r, s], [t, u] ∈ U ,

db([p, q], [r, s]) = (p+ q− r− s)2

= (p+ q− t− u+ t+ u− r− s)2

≤ 2
[
(p+ q− t− u)2 + (t+ u− r− s)2

]
= 2

[
db([p, q], [t, u]) + db([t, u], [r, s])

]
.

Hence, (U , db) is a b−interval metric space but db is neither a b−metric nor an interval metric on
U .

Example 3.4. Let U be the set of closed and bounded intervals and N be the null set.
Let db([p, q], [r, s]) = d([p, q], [r, s])p, p > 1 is a real number. One may verify that db is a b−interval
metric and s = 2p−1, but db is neither an interval metric nor a b−metric on U .

Remark 3.5. It is fascinating to note that for some n1 = [−l, l] and n2 = [−m,m], l,m ∈ R,
b−interval metrics db defined in Examples 3.3 and 3.4 satisfy b−null equalities.
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Example 3.6. Let U = {[−1, 0], [0, 1], [−1, 1]}, N = {[0, 0]} and
db([−1, 0], [−1, 1]) = db([−1, 1], [−1, 0]) = m,m > 2,
db([−1, 0], [0, 1]) = db([0, 1], [−1, 1]) = 1, and
db([−1, 0], [−1, 0]) = db([0, 1], [0, 1]) = db([−1, 1], [−1, 1]) = 0,
then one may verify that (U , db) is a b−interval metric space but db is neither an interval metric nor
a b−metric on U . For m = 2, (U , db) is an interval metric space.
Since, db([−1, 0]⊕ [−1, 1], [0, 1]) = db([−2, 1], [0, 1]) is not defined, that is, a b−interval metric db does
not satisfy null equalities.

To discuss the topology corresponding to b−interval metric with s ≥ 1 and the null set N , the open
ball centred at [p0, q0] and radius ϵ ∈ (0,∞) is defined as:
O([p0, q0], ϵ) = {[p, q] ∈ U : db([p0, q0], [p, q]) <

ϵ
s
}.

The closed ball centred at u and radius ϵ ∈ (0,∞) is defined as:
C([p0, q0], ϵ) = {[p, q] ∈ U : db([p0, q0], [p, q]) ≤ ϵ

s
}.

Lemma 3.7. Let (U , db) be a b−interval metric space, N be the null set, and s ≥ 1. Then the
collection of all open balls,
O([p0, q0], ϵ) = {[p, q] ∈ U : db([p0, q0], [p, q]) <

ϵ
s
} forms a basis of U .

Proof . Let [r0, s0] ∈ O([p0, q0], ϵ), then db([p0, q0], [r0, s0]) <
ϵ
s
. Suppose there exists ϵ1 > 0 such that

db([p0, q0], [r0, s0]) +
ϵ1
s
= ϵ

s
.

Again, let [r1, s1] ∈ O([r0, s0], ϵ1), so db([r0, s0], [r1, s1]) <
ϵ1
s
. Again, suppose there exists ϵ2 > 0 such

that db([r0, s0], [r1, s1]) +
ϵ2
s
= ϵ1

s
.

Now,
db([p0, q0], [r1, s1]) ≤ s

[
db([p0, q0], [r0, s0]) + db([r0, s0], [r1, s1])

]
= s

[ ϵ
s
− ϵ1

s
+

ϵ1
s
− ϵ2

s

]
= ϵ− ϵ2.

Hence, O([r0, s0], ϵ1) ⊆ O([p0, q0], ϵ). □

Theorem 3.8. If (U , db) is a b−interval metric space, N is the null set, s ≥ 1, τb is a topology
generated by the open ball O([p0, q0], ϵ), then (U , τb) is a T0−space.

Proof . Let (U , db) be a b−interval metric space and [p, q], [r, s] ∈ U are two distinct points.
Then db([p, q], [r, s]) > 0. Firstly, assume that for s > 1, if we chose ϵ > 0 so that db([p, q], [r, s]) =

ϵ
s
,

then [r, s] /∈ O([p, q], ϵ).
Next, assume that for s > 1, if we chose ϵ1 > 0 such that db([p, q], [r, s]) =

ϵ
s
, then [p, q] ∈ O([p, q], ϵ1)

and [r, s] /∈ O([p, q], ϵ1).
So proceeding as above, one may easily find an open ball so that [p, q] ∈ O([p, q], ϵ1) and [r, s] /∈
O([p, q], ϵ1),
that is, for two distinct points [p, q], [r, s] ∈ U , there exists a ball including the point [p, q] but not
including the other point [r, s]. Thus, (U , db) is a T0−space. □

Now, we discuss b−convergence, completeness, and b−Cauchy sequence in the b−interval metric
space.

Definition 3.9. Let (U , db) be a b−interval metric space, s ≥ 1 and N be the null set. The sequence
{[pn, qn]}∞n=1 in U is said to be b−convergent if and only if limn→∞ db([pn, qn], [p, q]) = 0, [p, q] ∈ U .
The element [p, q] is known as a b−limit of the sequence {[pn, qn]}∞n=1.
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If there exists [p, q], [r, s] ∈ U so that limn→∞ db([pn, qn], [p, q]) = limn→∞ db([pn, qn], [r, s]) = 0, then

d([p, q], [r, s]) ≤ s
[
d([p, q], [pn, qn]) + d([pn, qn], [r, s])

]
→ 0, as n → ∞, (3.2)

so, by Definition 3.1, [p, q]
N
= [r, s], that is, [r, s] ∈

〈
[p, q]

〉
.

Proposition 3.10. Let {[pn, qn]}∞n=1 be a sequence in a b−interval metric space (U , db), s ≥ 1, and
N be the null set, satisfying limn→∞ db([pn, qn], [p, q]) = 0. Then,

lim
n→∞

db([pn, qn], [r, s]) = 0, for any[r, s] ∈
〈
[p, q]

〉
.

Proof . For [r, s] ∈
〈
[p, q]

〉
, we have [p, q]⊕ n1 = [r, s]⊕ n2, for some n1, n2 ∈ N . Exploiting the null

equality, we attain

0 ≤ d([pn, qn], [r, s]) = d([pn, qn], [r, s]⊕ n2) = d([pn, qn], [p, q]⊕ n1) = d([pn, qn], [p, q]),

which tends to 0 as n → ∞. Hence, limn→∞ d([pn, qn], [r, s]) = 0. □

Definition 3.11. Let (U , db) be a b−interval metric space, N be the null set and s ≥ 1. If
{[pn, qn]}∞n=1 is a sequence in U satisfying limn→∞ db([pn, qn],

〈
[p, q]

〉
) = 0, [p, q] ∈ U or limn→∞[pn, qn] =〈

[p, q]
〉
, then the equivalence class

〈
[p, q]

〉
is known as a b−class limit of the sequence {[pn, qn]∞n=1}.

Proposition 3.12. The b−class limit in the b−interval metric space (U , db), s ≥ 1, and the null set
N is unique.

Proof . Let, if possible, the sequence {[pn, qn]∞n=1} be b−convergent to two distinct b−class limits〈
[p, q]

〉
and

〈
[r, s]

〉
. Consequently, limn→∞d([pn, qn],

〈
[p, q]

〉
) = 0 and limn→∞ d([pn, qn],

〈
[r, s]

〉
) = 0,

that is, d(
〈
[p, q]

〉
,
〈
[r, s]

〉
) = 0 by referring to (3.2). Therefore, we obtain [r, s] ∈

〈
[p, q]

〉
,

that is,
〈
[r, s]

〉
=

〈
[p, q]

〉
. This completes the proof. □

Definition 3.13. Let (U , db) be a b−interval metric space, N be the null set, and s ≥ 1.

1. A sequence {[pn, qn]}∞n=1 in a b−interval metric space (U ,db) is known as a b−Cauchy sequence
if for given ϵ > 0, there exists numbers n,m, N ∈ N so that db([pn, qn], [pm, qm]) < ϵ, n > N,
and m > N.
Equivalently, {[pn, qn]}∞n=1 in a topological b−interval space (U , T b) is known as a b−Cauchy se-
quence if and only if, for given ϵ > 0, there exists numbers n,m, N ∈ N so that [pn, qn], [pm, qm] ∈
O([p0, q0], ϵ), n > N and m > N.

2. Let V ⊆ U , then (V , db) is a complete subspace of (U , db) if and only if each b−Cauchy sequence
in (V , db) is b−convergent in (V , db).

Proposition 3.14. Every b−convergent sequence in a b−interval metric space (U , db), s ≥ 1, and
the null set N is a b−Cauchy sequence.

Proof . If {[pn, qn]}∞n=1 is a b−convergent sequence, then, for any ϵ > 0, db([pn, qn], [p, q]) <
ϵ
2s
, for

n > N. Therefore for m, n > N ,

db([pn, qn], [pm, qm]) ≤ s
[
db([pn, qn], [p, q]) + db([p, q], [pm, qm])

]
< s[

ϵ

2s
+

ϵ

2s
]

= ϵ,

that is, {[pn, qn]}∞n=1 is a b−Cauchy sequence. □
Following example demonstrate that the opposite of above result may not essentially be true,

that is, every b−Cauchy sequence may not be a b−convergent in a b−interval metric space.
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Example 3.15. Let U = {[p, q] : 0 < p, q < 1}. Define a b−interval metric, db : U × U →R+ as
db([p, q], [r, s]) = |p+ q− r− s|3, with s = 4 and null set N . Define a sequence {[pn, qn]} = {[ 1

n
, 1−

1
n
]}, which is a b−Cauchy sequence but not a b−convergent sequence in a b−interval metric space.

Next, we prove the first main result for a b−interval metric variant of Banach contraction [2] for
determining near fixed points of the function M and its equivalence classes.

Theorem 3.16. Let (U , db) be a complete b−interval metric space and s ≥ 1 satisfying null equali-
ties. Suppose a self map M : U −→ U satisfies

db(M[p, q],M[r, s]) ≤ ηdb([p, q], [r, s]), η <
1

s
and [p, q], [r, s] ∈ U . (3.3)

Then M has a near fixed point [p, q] ∈ U . Further, M has a unique equivalence class of near fixed
points

〈
[p, q]

〉
, that is, if [p̄, q̄] is a near fixed point of M, then [p̄, q̄] ∈

〈
[p, q]

〉
or

〈
[p, q]

〉
=

〈
[p̄, q̄]

〉
.

Equivalently, if [p, q] and [p̄, q̄] are the near fixed points of M, then [p, q]
N
= [p̄, q̄].

Proof . Given an initial element [p0, q0] ∈ U , the iterative sequence {[pn, qn]}∞n=1, utilizing the
function M, is defined as follows:

[pn+1, qn+1] = M([pn, qn]) = Mn+1([p0, q0]). (3.4)

Now, we assert that {[pn, qn]} is a b−convergent sequence, converging to a near fixed point of M in
a b−interval metric space. Utilizing, (3.3)

db([pn+1, qn+1], [pn, qn]) = db(M[pn, qn],M[pn−1, qn−1])

≤ ηdb([pn, qn], [pn−1, qn−1])

= ηdb(M[pn−1, qn−1],M[pn−2, qn−2])

≤ η2db([pn−1, qn−1], [pn−2, qn−2])

...

≤ ηndb([p1, q1], [p0, q0]).

Next, for m > n, we have

db([pn, qn], [pm, qm]) ≤ s
[
db([pn, qn], [pn+1, qn+1]) + db([pn+1, qn+1], [pm, qm])

]
≤ sdb([pn, qn], [pn+1, qn+1]) + s2

[
db([pn+1, qn+1], [pn+2, qn+2]) + db([pn+2, qn+2], [pm, qm])

]
...

≤ sdb([pn, qn], [pn+1, qn+1]) + s2db([pn+1, qn+1], [pn+2, qn+2])

+ s3db([pn+2, qn+2], [pn+3, qn+3]) + · · ·+ sm−ndb([pm−1, qm−1], [pm, qm])

≤ sηndb([p1, q1], [p0, q0]) + s2ηn+1db([p1, q1], [p0, q0]) + . . .

+ sm−nηm−1db([p1, q1], [p0, q0])

= sηn[1 + sη + (sη)2 + · · ·+ (sη)m−n−1]db([p1, q1], [p0, q0])

= sηn
(1− (sη)m−n

1− sη

)
db([p1, q1], [p0, q0]) → 0, as n → ∞.

Therefore, the sequence {[pn, qn]}∞n=1 is a b−Cauchy sequence in U . As (U , db) is a complete b−interval
metric space, we have [p, q] ∈ U so that db([pn, qn], [p, q]) → 0, that is, [pn, qn] → [p, q], that is,
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[p, q] ∈
〈
[p, q]

〉
.

Now, we establish that any [p̄, q̄] ∈
〈
[p, q]

〉
is a near fixed point ofM. Since, db satisfies null equalities,

[p̄, q̄]⊕ n1 = [p, q]⊕ n2, for some n1, n2 ∈ N .
Now,

db(M[p̄, q̄], [p̄, q̄]) = db(M[p̄, q̄], [p̄, q̄]⊕ n1)

≤ s
[
db(M[p̄, q̄], [pn, qn]) + db([pn, qn], [p̄, q̄]⊕ n1)

]
= s

[
db(M[p̄, q̄],M[pn−1, qn−1]) + db([pn, qn], [p̄, q̄]⊕ n1)

]
≤ s

[
ηdb([p̄, q̄], [pn, qn]) + db([pn, qn], [p, q]⊕ n2)

]
= s

[
ηdb([p̄, q̄]⊕ n1, [pn, qn]) + db([pn, qn], [p, q]⊕ n2)

]
= s

[
ηdb([p, q]⊕ n2, [pn, qn]) + db([pn, qn], [p, q]⊕ n2)

]
= s

[
ηdb([p, q], [pn, qn]) + db([pn, qn], [p, q])

]
→ 0, as n → ∞,

that is, M[p̄, q̄]
N
= [p̄, q̄], for any [p̄, q̄] ∈

〈
[p, q]

〉
.

Suppose [p, q] and [r, s] are two distinct near fixed points ofM with [p, q] ∈
〈
[p, q]

〉
and [r, s] /∈

〈
[p, q]

〉
,

however [r, s] belongs to some different equivalence class. So, M[p, q]
N
= [p, q] and M[r, s]

N
= [r, s].

Then M[p, q]⊕ n1 = [p, q]⊕ n2 and M[r, s]⊕ n3 = [r, s]⊕ n4, for some n1, n2, n3, n4 ∈ N .
Now,

db([p, q], [r, s]) = db([p, q]⊕ n2, [r, s]⊕ n4)

= db(M[p, q]⊕ n1,M[r, s]⊕ n3)

= db(M[p, q],M[r, s])

≤ ηdb([p, q], [r, s]),

a contradiction. Hence, [r, s] ∈
〈
[p, q]

〉
, concluding thereby that

〈
[p, q]

〉
is a unique equivalence class

of near fixed points of a self map M. □
Next, we contribute an explanatory example to validate the efficiency and strength of our novel

b−interval metric in creating an environment for the survival of near fixed points as well as a unique
equivalence class of near fixed points.

Example 3.17. Let U be the set of closed and bounded intervals and N be the null set. Define
a b−interval metric, db : U × U →R+ on U as db([p, q], [r, s]) = (p+ q− r− s)2. Then (U , db) is a
complete b−interval metric space and s = 2. Now, define a map M : U → U as M[p, q] = [−1 +
3
5
p, 1+ 3

5
q].

Observe that, for [p, q], [r, s] ∈ U ,

db(M[p, q],M[r, s]) = db

(
[−1 +

3

5
p, 1 +

3

5
q], [−1 +

3

5
r, 1 +

3

5
s]
)

=
(
− 1 +

3

5
p+ 1 +

3

5
q+ 1− 3

4
r− 1− 3

5
s
)2

=
9

25
(p+ q− r− s)2

≤ 9

25
db([p, q], [r, s]),

that is, M satisfies inequality (3.3) for η = 9
25

< 1
s
. Hence, M has a unique equivalence class of near

fixed points
〈
[−1, 1]

〉
, and [−4, 4]

N
= [−1, 1]. Noticeably, M has infinitely many near fixed points.
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Remark 3.18. It is fascinating to note that Example 3.17 can not be covered by near fixed point
theorem 1 of Wu [20] and consequently, Theorem 3.16 is a genuine generalization and extension of
Theorem 1 of Wu [20] to b−interval metric space.

Next, we discuss some examples to establish the significant fact that contraction condition (3.3) is an
essential prerequisite for the existence of a unique equivalence class of near fixed points. Otherwise,
an equivalence class of near fixed points may or may not be unique.

Example 3.19. Let U be the set of closed and bounded intervals and N be the null set. Define
a b−interval metric db : U × U →R+ on U as db([p, q], [r, s]) = (p+ q− r− s)2 with s = 2. Then
(U , db) is a complete b−interval metric space. If M : U → U is defined as M[p, q] = [2, 4] − [p, q],
then for [p, q], [r, s] ∈ U ,

db(M[p, q],M[r, s]) = db

(
[2, 4]− [p, q], [2, 4]− [r, s]

)
= (p+ q− r− s)2

= db([p, q], [r, s]),

that is, there does not exist any η ∈ [0, 1), so that inequality (3.3) is satisfied. But M has a near
fixed point [1, 2] and a unique equivalence class of near fixed point

〈
[1, 2]

〉
in U .

Again, if M : U → U is defined as M[p, q] = 2[p, q]− [−2, 2], then for [p, q], [r, s] ∈ U ,

db(M[p, q],M[r, s]) = db

(
2[p, q]− [−2, 2], 2[r, s]− [−2, 2]

)
= 4(p+ q− r− s])2

= 4db([p, q], [r, s]),

that is, there does not exist any η ∈ [0, 1), so that inequality (3.3) is satisfied. But M has a near
fixed point [−2, 2] and a unique equivalence class of near fixed points

〈
[−2, 2]

〉
in U .

Example 3.20. Let U be the set of closed and bounded intervals and N be the null set. Define
a b−interval metric db : U × U →R+ on U as db([p, q], [r, s]) = |p+ q− r− s|3 with s = 4. Then
(U , db) is a complete b−interval metric space. If M : U → U is defined as M[p, q] = [p, q], then for
[p, q], [r, s] ∈ U ,

db(M[p, q],M[r, s]) = db

(
[p, q], [r, s]

)
= |p+ q− r− s|3

= db([p, q], [r, s]),

that is, there does not exist any η ∈ [0, 1), so that inequality (3.3) is satisfied. Here, M have infinitely
many near fixed points and infinitely many equivalence classes of near fixed points corresponding to
near fixed points in U .

Next, we present an improved b−interval metric variant of Theorem 5 of Sehgal [17] which is an
extension of Banach [2], Bianchini [3], Edelstein [6], Kannan [8], Rakotch [15], Reich [16], and so on.

Theorem 3.21. Theorem 3.16 still holds, if (3.2) is replaced by the following:

db(M[p, q],M[r, s]) ≤ ηmax{db([p, q], [r, s]), db([p, q],M[p, q]), db([r, s],M[r, s])}, (3.5)

η < 1
s

and [p, q], [r, s] ∈ U .
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Proof . Let the sequence {[pn, qn]} be defined as in Theorem 3.16. Now,

db([pn+1, qn+1], [pn, qn]) = db(M[pn, qn],M[pn−1, qn−1])

≤ ηmax{db([pn, qn], [pn−1, qn−1]), db([pn, qn],M[pn, qn]),

db([pn−1, qn−1],M[pn−1, qn−1])},
= ηmax{db([pn, qn], [pn−1, qn−1]), db([pn, qn], [pn+1, qn+1]), db([pn−1, qn−1], [pn, qn])},
= ηmax{db([pn, qn], [pn+1, qn+1]), db([pn−1, qn−1], [pn, qn])}.

We discuss two cases:

Case (i) If max{db([pn, qn], [pn+1, qn+1]), db([pn−1, qn−1], [pn, qn])} = db([pn, qn], [pn+1, qn+1]), then
db([pn+1, qn+1], [pn, qn]) ≤ ηdb([pn, qn], [pn+1, qn+1]),
a contradiction.

Case (ii) If max{db([pn, qn], [pn+1, qn+1]), db([pn−1, qn−1], [pn, qn])} = db([pn−1, qn−1], [pn, qn]), then
db([pn+1, qn+1], [pn, qn]) ≤ ηdb([pn−1, qn−1], [pn, qn]).

Thus, the sequence {[pn, qn]}∞n=1 satisfies all the hypotheses of Theorem 3.16. So, following similar
steps as in Theorem 3.16, we may deduce that U has a near fixed point and a unique equivalence
class of near fixed points

〈
[p, q]

〉
. □

The following example is given to illustrate the above theorem and demonstrate the significant
fact that Theorem 5 of Sehgal [17] is not valid in the b−interval metric space.

Example 3.22. Let U be the set of closed and bounded intervals and N be the null set. Define
a b−interval metric, db : U × U →R+ on U as db([p, q], [r, s]) = (p+ q− r− s)2. Then (U , db) is a
complete b−interval metric space and s = 2. Now, define a map M : U → U as M[p, q] = [ 3

10
p, 3

10
q].

Observe that, for [p, q], [r, s] ∈ U ,

db(M[p, q],M[r, s]) = db

(
[
3

10
p,

3

10
q], [

3

10
r,

3

10
s]
)

=
( 3

10
p+

3

10
q− 3

10
r− 3

10
s
)2

=
9

100
(p+ q− r− s)2

≤ 9

100
max{db([p, q], [r, s]), db(M[p, q],[r, s]), db(M[p, q],[r, s]), db([p, q],M[r, s])},

that is, M satisfies inequality (3.5) for η = 9
100

< 1
s
. Hence, M has a unique equivalence class of

near fixed points
〈
[−1, 1]

〉
, a near fixed point [0, 0] and [−1, 1]

N
= [0, 0]. Noticeably, M have infinitely

many near fixed points.

4. Application

Since the b−interval metric space (U , db) discussed here is not a metric space, we can not study
the fixed circle introduced by, Taş and Özgür [14] on b−interval metric space (U , db) in a traditional
way. So, we shall study the geometric properties of the set of non-unique near fixed points of a self
map in reference to a so called near fixed interval circle and define its equivalence class as equivalence
C−class of interval circles.

Now, we define an interval circle in a b−interval metric space as:
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Definition 4.1. Let U be the set of closed and bounded intervals and N be the null set. Let a
function M : U → U be defined on a b−interval metric space (U , db) with s ≥ 1. An interval circle
C([p0, q0], r) having centre at [p0, q0] and radius r on (U , db) is defined as:

C([p0, q0], r) = {[p, q] ∈ U : db([p, q], [p0, q0]) = r, [p0, q0] ∈ U , r ∈ [0,∞)}. (4.1)

Remark 4.2. For s = 1, (4.1) is the interval circle in an interval metric space. Noticeably, an
interval circle is not necessarily the same as a circle in a Euclidean space.

Example 4.3. Let U be the set of closed and bounded intervals and N be the null set. Let a
b−interval metric db : U → U be defined as db([p, q], [r, s]) = |p+ q− r− s|3 with s = 4. Then
an interval circle centred at [2, 5] ∈ U having radius r = 6 is

C([2, 5], 5) = {[p, q] ∈ U : d([p, q], [2, 5]) = 6}
= {p, q] ∈ U : |p+ q− 2− 5|3 = 6}
= {p, q] ∈ U : |p+ q− 7|3 = 6}.

For any [r, s] ∈
〈
[p0, q0]

〉
, C([p0, q0], r) = C([r, s], r). So, we define a C−class of interval circles having

radius r, using a binary relation
R
≈ as:〈

C([p, q], r)
〉
= {C([r, s], r) : C([p, q], r)

R
≈ C([r, s], r),

if C([p, q], r) = C([r, s], r) and [p, q]
N
= [r, s], [p, q], [r, s] ∈ U}.

(4.2)

If C̆ denotes the set of all C−classes of interval circles defined on elements of U .

Proposition 4.4. The binary relation
R
≈ is an equivalence relation.

Proof .

1. For C([p, q], r) ∈ C̆, C([p, q], r) = C([p, q], r) for n1 = n2 =[0, 0], [p, q]
R
≈[p, q],

C([p, q], r)
R
≈ C([p, q], r), which shows the reflexivity.

2. Let C([p, q], r)
R
≈ C([r, s], r),

that is, C([p, q], r) = C([r, s], r) and [p, q]⊕ n1 = [r, s] + n2,
or C([r, s], r) = C([p, q], r) and [r, s]⊕ n2 = [p, q] + n1,

=⇒ C([r, s], r)
R
≈ C([p, q], r), which shows the symmetry.

3. Let C([p, q], r)
R
≈ C([r, s], r) and C([r, s], r)

R
≈ C([t, u], r). We assert that C([p, q], r)

R
≈ C([t, u], r).

Since, C([p, q], r) = C([r, s], r), [p, q] + n1 = [r, s] + n2
and since, C([r, s], r) = C([t, u], r), [r, s] + n3 = [t, u] + n4, for some n1, n2, n3, n4 ∈ N .
Hence, C([p, q], r) = C([t, u], r) and [p, q] + n1 + n3 = [r, s] + n2 + n3 = [t, u] + n4 + n2,

=⇒ C([p, q], r)
R
≈ C([t, u], r), which shows transitivity.

Hence, the C−classes of interval circles defined in (4.2) constitute the equivalence C−classes of interval
circles. The family

〈
C̆
〉
, of equivalence C−classes of interval circles, is known as the quotient set

of C̆. It is interesting to mention that a quotient set
〈
C̆

〉
is still not a conventional vector space.

Further, C([r, s], r) ∈
〈
C([p, q], r)

〉
=⇒ C([r, s], r) = C([p, q], r) and [p, q]

N
= [r, s]. Equivalently, the

family of equivalence C−classes constitutes a partition of the entire set of all C−classes of interval
circles defined on elements of U . □
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Definition 4.5. Let U be the set of closed and bounded intervals and N be the null set. Let M be
a self map defined on U . An interval circle C([p0, q0], r) is known as a near fixed interval circle of M
if and only if M[p, q]

N
= [p, q], [p, q] ∈ C([p0, q0], r).

Next, we establish a result utilizing a b−interval metric variant of the classical Caristi map [4] for
determining near fixed interval circle of the function M and its equivalence class.

Theorem 4.6. Let Cb([p0, q0], r) be an interval circle in a b−interval metric space (U , db), s ≥ 1 and
N be the null set. Define ζ : U → [0,∞) as:

ζ([p, q]) = db([p, q], [p0, q0]), [p, q] ∈ U . (4.3)

If there exists a self map M : U → U so that

1. db([p, q],M[p, q]) ≤ ζ([p, q])− ζ(M[p, q]);

2. db(M[p, q], [p0, q0]) ≥ r, [p, q] ∈ U ,
then C([p0, q0], r) is a near fixed interval circle of M.

3.
If db(M[p, q],M[r, s]) ≤ ηdb([p, q], [r, s]), η ∈ [0, 1) and [p, q], [r, s] ∈ U , (4.4)

then M[p, q]
N
= [p, q] and M[p̄, q̄]

N
= [p̄, q̄] =⇒ [p̄, q̄] ∈

〈
[p, q]

〉
.

4. Further, if for [p, q] ∈ C([p0, q0], r) and [r, s] ∈ U \ C([p0, q0], r), contraction condition (4.4)
is satisfied, then M has a unique equivalence interval C−class of near fixed interval circles〈
C([p0, q0], r)

〉
, that is, if C([p̄0, q̄0], r) is a near fixed interval circle of M, then C([p̄0, q̄0], r) ∈〈

C([p0, q0], r)
〉
or

〈
C([p0, q0], r)

〉
=

〈
C([p̄0, q̄0], r)

〉
. Equivalently, if C([p0, q0], r) and C([p̄0, q̄0], r)

are the near fixed interval circles of M, then C([p0, q0], r)
R
≈ C([p̄0, q̄0], r).

Proof . Let [p, q] ∈ C([p0, q0], r) be any arbitrary point. Using 1 and equation (4.3)

db([p, q],M[p, q]) ≤ ζ([p, q])− ζ(M[p, q])

= db([p, q], [p0, q0])− db(M[p, q], [p0, q0])

= r− db(M[p, q], [p0, q0])

≤ 0, using (2)

and so M[p, q]
N
= [p, q], that is, [p, q] is a near fixed point of M. We assert that for point [p̄, q̄] ∈〈

[p, q]
〉
, M[p̄, q̄]

N
= [p̄, q̄]. Since, db satisfies null equalities, so [p̄, q̄]⊕ n1 = [p, q]⊕ n2, n1, n2 ∈ N .

Now,

db(M[p̄, q̄], [p̄, q̄]) = db(M[p̄, q̄], [p̄, q̄]⊕ n1)

≤ s
[
db(M[p̄, q̄], [pn, qn]) + db([pn, qn], [p̄, q̄]⊕ n1)

]
= s

[
db(M[p̄, q̄],M[pn−1, qn−1]) + db([pn, qn], [p̄, q̄]⊕ n1)

]
≤ s

[
ηdb([p̄, q̄], [pn, qn]) + db([pn, qn], [p, q]⊕ n2)

]
= s

[
ηdb([p̄, q̄]⊕ n1, [pn, qn]) + db([pn, qn], [p, q]⊕ n2)

]
= s

[
ηdb([p, q]⊕ n2, [pn, qn]) + db([pn, qn], [p, q]⊕ n2)

]
= s

[
ηdb([p, q], [pn, qn]) + db([pn, qn], [p, q])

]
→ 0, as n → ∞,
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that is, M[p̄, q̄]
N
= [p̄, q̄], for any [p̄, q̄] ∈

〈
[p, q]

〉
and for all [p, q] ∈ C([p0, q0], r),

that is, C([p0, q0], r) is a near fixed interval circle of M.
Let there exists two equivalence classes of near fixed interval circles

〈
C([p0, q0], r)

〉
and

〈
C([p̄0, q̄0], r)

〉
of M, that is, M satisfies conditions (1) and (2) for each of the near fixed interval circles C([p0, q0], r)
and C([p̄0, q̄0], r). Now, for [p, q] ∈ C([p0, q0], r) and [r, s] ∈ U \ C([p0, q0], r), M[p, q]

N
= [p, q] and

M[r, s]
N
= [r, s].

Then M[p, q]⊕ n1 = [p, q]⊕ n2 and M[r, s]⊕ n3 = [r, s]⊕ n4, for some n1, n2, n3, n4 ∈ N .
Now,

db([p, q], [r, s]) = db([p, q]⊕ n2, [r, s]⊕ n4)

= db(M[p, q]⊕ n1,M[r, s]⊕ n3)

= db(M[p, q],M[r, s])

≤ ηdb([p, q], [r, s]),

a contradiction. Hence,
〈
C([p0, q0], r)

〉
is a unique equivalence C−class of a near fixed interval circles

of M. □

Remark 4.7. It is obvious that geometrically (1) implies that M[p, q] is in the interior of an interval
circle and (2) implies that M[p, q] is in the exterior of an interval circle, that is, M

(
C([p0, q0], r)

)
⊆

C([p0, q0], r).

The following example illustrates Theorem 4.6.

Example 4.8. Let U be the set of closed and bounded intervals and N be the null set. Let a
b−interval metric db : U → U be defined as db([p, q], [r, s]) = (p+ q− r− s)2 with s = 2. Choose
[α, β] ∈ U such that db([−2, 2], [α, β]) > 4. The circle

C([−2, 2], 4) = {[p, q] ∈ U : db([p, q], [−2, 2]) = 4}
= {[p, q] ∈ U : (p+ q)2 = 4}.

Define a self map M : U −→ U as M[p, q] =

{
[p, q], [p, q] ∈ C([−2, 2], 4)

[α, β], [p, q] /∈ C([−2, 2], 4)

and db([p, q], [α, β]) ≤ ηdb([p, q], [r, s]), where, η ∈ [0, 1), [p, q] ∈ C([−2, 2], 4) and [r, s] /∈ C([−2, 2], 4).
Then the self map M verifies all the postulates of Theorem 4.6, that is, the set of non-unique near
fixed points of M, {[p, q] ∈ U : (p+ q)2 = 4} contains a near fixed interval circle C([−2, 2], 4).
However, one may notice that there are infinitely many near fixed interval circles contained in the
unique equivalence C−class

〈
C([−2, 2], 4)

〉
of near fixed interval circles of M.

The following examples depict the significance of conditions (1) and (2) in the survival of a near
fixed interval circle and a unique equivalence C−class of near fixed interval circles.

Example 4.9. Let b−interval metric be defined as in Example 4.8 and C([p0, q0], r) be an interval
circle defined on U . Now, define a self map M : U −→ U as M[p, q] = [p0, q0], [p, q] ∈ U .
Then the map M verifies condition (1) but does not verify conditions (2), (3), and (4) of Theorem
4.6. One may notice that M does not nearly fix the interval circle C([p0, q0], r).

Example 4.10. Let b−interval metric be defined as in Example 4.8 and C([p0, q0], r) be an interval
circle defined on U . Choose a point [α, β] ∈ U such that db([p0, q0], [α, β]) = ρ > r. Now, define a self
map M : U −→ U as M[p, q] = [α, β], [p, q] ∈ U .

Then the map M verifies condition (2) but does not verify conditions (1), (3), and (4) of Theorem
4.6. One may notice that M does not nearly fix the interval circle C([p0, q0], r).
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Theorem 4.11. Theorem 4.6 still holds even if we substitute (1) by (1)
′
, (2) by (2)

′
.

(1)
′
db([p, q],M[p, q]) ≤ ζ([p, q]) + ζ(M[p, q])− 2r;

(2)
′
db(M[p, q], [p0, q0]) ≤ r.

Proof . Let [p, q] ∈ C([p0, q0], r) be any arbitrary point. Using (1)
′
and equation (4.3)

db([p, q],M[p, q]) ≤ db([p, q], [p0, q0]) + db(M[p, q]− 2r, [p0, q0])

= r+ db(M[p, q], [p0, q0])− 2r

≤ r+r− 2r = 0, using (2)
′
,

and so M[p, q]
N
= [p, q]. Now, C([p0, q0], r) is near fixed circle of M and uniqueness of equivalence

interval C−class of near fixed interval circle of M may be proved as in Theorem 4.6. □

Remark 4.12. It is obvious that geometrically (1)
′
implies that M[p, q] is in the exterior of an inter-

val circle and (2)
′
implies that M[p, q] is in the interior of an interval circle, that is M

(
C([p0, q0], r)

)
⊆

C([p0, q0], r).

Example 4.13. Let U be the set of closed and bounded intervals and N be the null set. Let a
b−interval metric db : U → U be defined as db([p, q], [r, s]) = |p+ q− r− s|3 with s = 4. Choose,
[α, β] ∈ U such that db([2, 9], [α, β]) < 10. The interval circle

C([2, 9], 10) = {[p, q] ∈ U : db([p, q], [2, 9]) = 10}
= {[p, q] ∈ U : |p+ q− 11|3 = 10}.

Define a self map M : U −→ U as M[p, q] =

{
[p, q], [p, q] ∈ C([2, 9], 10)
[α, β], [p, q] /∈ C([2, 9], 10)

.

Then the self map M verifies all the postulates (1)
′
and (2)

′
of Theorem 4.11 except (3), that is, the

set of non-unique near fixed points of M, {[p, q] ∈ U : |p+ q− 11|3 = 10} contains a near fixed
interval circle C([−2, 2], 4). However, one may notice that there does not exist any η ∈ [0, 1) such
that postulate (3) is satisfied, even then there are infinitely many near fixed interval circles contained
in the unique equivalence C−class

〈
C([2, 9], 10)

〉
of near fixed interval circle of M.

The following example depicts the significance of conditions (1)
′
and (2)

′
in the survival of a near

fixed interval circle.

Example 4.14. Let a b−interval metric be defined as in Example 4.13 and C([p0, q0], r) be a near
fixed interval circle defined on U . Choose, a point [α, β] ∈ U such that db([p0, q0], [α, β]) = ρ < r.
Now, define a self map M : U −→ U as M[p, q] = [α, β], [p, q] ∈ U .

Then the map M verifies condition (2)
′
, but does not verify conditions (1)

′
, (3), and (4) of Theorem

4.11. One may notice that M does not nearly fix the interval circle C([p0, q0], r).

5. Conclusion

Acknowledging the work of Wu [20] and motivated by the fact that the set of closed and bounded
intervals on the collection of real numbers may not be a vector space, we have equipped b−interval
metric to the set of closed and bounded intervals on the collection of real numbers by utilizing
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the notion of a null set. Our novel distance structure, b−interval metric space, is an extension
and a generalization of an interval metric space [20], which is different from the standard metric
space [7]. We have also included examples to demonstrate that a b−interval metric is neither a
b−metric ([1],[5]) nor an interval metric [20]. Further, we have introduced notions like b−convergence,
b−Cauchy sequence, completeness and demonstrated that the set of open balls, which forms a basis
on a b−interval metric space, generates a T0−topology on it. Example 3.17 demonstrates that a
conventional Banach contraction principle may not be proved in a b−interval metric space. Also,
Example 3.22 demonstrates that the Theorem 5 of Sehgal [17] may not be proved via b−interval
metric. Thereby, we have deduced that the celebrated results in metric fixed point theory may not
be proved in a novel b−interval metric space. However, Examples 3.17 and 3.22 demonstrated the
significant fact that b−interval metric space have created an environment for the survival of a near
fixed point and a unique equivalence class of near fixed point. We have concluded the paper by
introducing notions of interval circle, near fixed interval circle, its equivalence class, and establishing
the existence of near fixed interval circle and its equivalence class.
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3 (1922) 133–181.
[3] R.M.T. Bianchini, Su un problema di S. Reich aguardante la teoŕıa dei punti fissi, Boll. Un. Mat. Ital. 5 (1972)
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