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In this study, the buckling analysis of multilayer composite closed cylindrical shells, as well as 

composite grid cylindrical shells, was investigated using a high-order theory modified from 

Reddy’s third-order shear theory under simply supported conditions. The advantage of the pre-

sent theory compared to other high-order theories is the calculation of the effect of the term of 

the shell section trapezoidal coefficient on relations related to displacement and strain fields, 

which improves the accuracy of the results. In grid shells, the discontinuous distribution of stiff-

ness and mass of the shell between the reinforcing ribs and the distance between them is ex-

pressed by a suitable distribution function. In the case of integrated and grid cylindrical shells, 

the validation of the results was performed in comparison with other studies, as well as with the 

results of the numerical solution obtained using Abaqus software. It is shown that for the first 

buckling mode, the critical load first increases and then reaches a constant value and for the sec-

ond buckling mode, the critical load first decreases and then reaches a constant value. Also, in 

the case of grid shells, by increasing the ratio of the cavity dimension to the dimensions of the 

whole shell, whether in single-cavity or multi-cavity mode, the present theory and finite element 

solution find more difference, indicating the higher accuracy of the present theory for integrated 

shells. 

1. Introduction    

Composite structures are used in various indus-
tries, including aviation and space industries, be-
cause of their high weight resistance and resistance 
to moisture, corrosion, and other unique properties. 
Composite shells are one of the most widely used 
structures and have been considered for many years. 
One way to improve the performance of composite 
shells is to use a variety of stiffeners. The nature of 
the lattice structure changes the direction of destruc-
tive loads around the damaged points and thus in-
creases the damage tolerance in these structures. 
The buckling of lattice shells under various loads, in-
cluding axial load, is one of the most important 

modes of their failure. Therefore, studying their 
buckling behavior is of particular importance. Jaunky 
et.al [1] proposed a method to calculate the buckling 
load of composite panels, called the smeared stiff-
ener method. In this method, using mathematical 
methods, the stiffened plate panels are converted to 
an equivalent uniform plate panel, which has an ani-
sotropic equivalent stiffness to the original panel. 
The interaction of the outer shell and the stiffeners 
was calculated by calculating the stiffness of the ribs 
and the shell in the joint area. The buckling load is 
calculated by placing the final equivalent stiffness in 
the Rayleigh-Ritz method. In 2003, Kidane et al. [2] 
used the same theory to provide an analytical 

https://macs.semnan.ac.ir/article_5842.html
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method to examine a composite grid cylinder under 
buckling loads. The method provided a total critical 
buckling load. In this method, a single cell of the 
structure is considered, and the stress and strain ma-
trix and its stiffness are calculated according to the 
strains of the middle layer of the shell and general-
ized to the whole structure. Then, the buckling criti-
cal load is calculated using the energy method, and 
finally, the effect of different parameters on the criti-
cal load is studied. In 2003, Wodesenbet et al. [3] ex-
amined the buckling of an isogrid shell using the 
same method. In this method, the equations are pre-
sented based on the middle plane of the shell, and the 
critical buckling load for the equivalent shell is calcu-
lated by minimizing the total potential energy. The 
effect of the stiffener stiffness on the stiffness of the 
whole structure is calculated using the effect of force 
and the moment of the stiffeners on a single element 
of the outer shell and integration on the whole struc-
ture. Also, using three-dimensional modeling in 
ANSYS finite element software and experimental ex-
periments, the results obtained from the analytical 
solution were validated. In 2009, Yazdani et al. [4] ex-
perimentally investigated the buckling of composite 
lattice cylinders. In this study, shells with different 
grids made by a fiber twisting machine were sub-
jected to axial quasi-static loading. According to the 
test results, the critical load for cylinders with hexag-
onal and triangular grids was more compared to cyl-
inders with rhombus grids and without grids. Rahimi 
et al. [5] in 2013 examined the effect of stiffener 
cross-section profile on the axial buckling load of the 
composite lattice cylinder shell. In this study, using 
ANSYS finite element software, peripheral and helix 
ribs were used to stiff the shell. In the same year, 
Ghasemi et al. [6], based on the smear method and 
using the first-order shear theory, proposed a new 
method for buckling analysis of composite lattice 
shells, also taking into account the effect of trans-
verse shear forces of the stiffener. Further, the effect 
of some geometric parameters on the buckling load 
was also investigated. In 2014, Kalantari and Fadaei 
[7] modified the smear method to examine the effect 
of some geometric parameters on the critical load of 
the stiffened metal shell. Kidane et.al [2, 3] in 2002 
and 2003 presented an analytical method. This 
method is one of the methods that has been consid-
ered by many researchers, and despite the limita-
tions and approximations in this method, it has been 
referred to many times in recent years. In 2017, Ci-
valek [18] analyzed the buckling of composite panels 
and shells with different material properties by the 
discrete singular convolution (DSC) method. He in-
vestigated the effects of shell geometric quantities 
and material properties on buckling and results pre-
sented for isotropic, FGM, CNT reinforced FGM, and 
laminated composite conical and cylindrical shells 
and panels. In 2018, Shahgholian Ghahfarokhi and 

Rahimi [19] studied an analytical approach for the 
global buckling of composite sandwich cylindrical 
shells with lattice cores. The results show that the 
proposed approach has high prediction accuracy and 
low computational cost for the global buckling anal-
ysis of composite sandwich shells with lattice cores. 
Also, another advantage of the developed approach is 
the ability to predict the global buckling load of stiff-
ened composite cylindrical shells with better accu-
racy.  In 2020, Babaei Mahani et.al [20] investigated 
the thermal buckling of laminated Nano-Composite 
conical shells reinforced with graphene platelets. 
They studied the effects of the volume fraction of 
GPLs, semi vertex angle, length-to-thickness ratio, 
and other parameters on the critical temperature.  

In this study, a modified method for analyzing 
grid shells is proposed, and the stiffeners will be 
equivalent to a three-layer shell. These layers, along 
with the laminate layer of the main shell, will create 
an equivalent shell, the stiffness matrix of which can 
be easily calculated. After determining the equivalent 
stiffness for the shell and rib assembly, the critical 
load of the axial buckling was calculated using the 
Ritz method and based on the minimum potential en-
ergy principle. Abaqus finite element software was 
used to validate the results. Examination of the re-
sults shows that the proposed method is less differ-
ent from the results of a finite element compared to 
previous methods, and it can be claimed that it has 
higher accuracy than existing methods. 

2. Derivation of Equilibrium Equations 
Based on a High-Order Theory 

In recent decades, many researchers have ana-
lyzed composite shells using the theory of three-di-
mensional elasticity. Given that this theory has an ex-
tremely high computational volume when the shell of 
a material with a high degree of anisotropy is sub-
jected to asymmetric and complex loading, so the 
analysis of the problem becomes very complex. 
Therefore, most researchers have analyzed the cylin-
drical shell using two-dimensional and three-dimen-
sional high-order shell engineering theories. 

2.1. Hypotheses 

To analyze cylindrical shells and derive equilib-
rium equations, the following hypotheses are first 
considered: 

• Thin-walled shell hypotheses and the first love ap-
proximation are used. 

• Dimensions of the shell (length and diameter) are 
limited. 

• The damping effect is ignored. 
• The material is in the linear elastic range. 
• The effect of the nonlinear terms in the equations 

is not considered. 
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2.2. Determining the displacement components  

Figure 1 shows a composite cylindrical shell with 
medium radius R, thickness h, and length L with ref-
erence coordinates (conventional positive direc-
tions). The shell middle surface is considered as the 
reference surface, and the cylindrical coordinate sys-
tem is installed on a shell head according to Fig. 1 [10, 
11]. 

(1 ) 

𝑢(𝑥, 𝜑, 𝑧, 𝑡) = 𝑢0(𝑥, 𝜑, 𝑡) + 𝑧𝜃𝑥(𝑥, 𝜑, 𝑡)

+ 𝑧2𝑢0
∗(𝑥, 𝜑, 𝑡)

+ 𝑧3𝜃𝑥
∗(𝑥, 𝜑, 𝑡) 

𝑣(𝑥, 𝜑, 𝑧, 𝑡) = (1 + 𝛾0𝑧/𝑅)𝑣0(𝑥, 𝜑, 𝑡)

+ 𝑧𝜃𝜑(𝑥, 𝜑, 𝑡)

+ 𝑧2𝑣0
∗(𝑥, 𝜑, 𝑡)

+ 𝑧3𝜃𝜑
∗ (𝑥, 𝜑, 𝑡) 

𝑤(𝑥, 𝜑, 𝑧, 𝑡) = 𝑤0(𝑥, 𝜑, 𝑡) 

In relation (1), terms u, v, and w are the displace-
ments of the desired point with coordinates (x, , z) 
in the multilayer space and the x, , and z directions, 
respectively, and t is the time. Parameters u0 and v0 
are in-plane displacements, and w0 is the out-of-
plane displacement of the desired point (x, ) on the 
multilayer middle surface. Functions 𝜃𝑥 and 𝜃𝜑 are 

the rotations of the line perpendicular to the middle 
surface of the shell element around the  and x-axes, 
respectively. Parameters 𝑢0,  𝑣0, 𝛳𝑥

∗, and  𝛳ᵠ
∗ are high-

order terms in the Taylor expansion and represent 
the transverse deformation modes of the shell and 
are defined as follows: 

(2 ) 

0
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Fig.1. Composite cylindrical shell and reference coordinates [12] 

As mentioned above, in the theory used in this 
study, the effect of transverse normal strains (along 
with the thickness) on the surface of the cylindrical 
shell is considered zero. This assumption makes the 
calculations of this theory easier, and the results of 
this theory can be compared with other theories. 
Similar to Reddy’s theory [9], traction forces on the 
internal and external surfaces are defined as follows: 

(3 ) 
𝜎𝑥𝑧(𝑥, 𝜑, ±

ℎ

2
, 𝑡) = 0 

𝜎𝜑𝑧(𝑥, 𝜑, ±
ℎ

2
, 𝑡) = 0 

According to the definition of lateral strains and 
the placement of Eq. (1) in these definitions and fi-
nally zeroing them, a simpler definition of the dis-
placement components is available [9]: 

(4 ) 𝛾𝑥𝑧 =
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
, 𝛾𝜑𝑧 = (

1

𝑅

𝜕𝑤

𝜕𝜑
−
𝑣0
𝑅
) +

𝜕𝑣

𝜕𝑧
 

(5 ) 

𝑢0
∗ = 𝑣0

∗ = 0 

𝜃𝑥
∗ =

−4

3ℎ2
(𝜃𝑥 +

𝜕𝑤0
𝜕𝑥

), 𝜃𝜑
∗

=
−4

3ℎ2
(𝜃𝜑 +

1

𝑅

𝜕𝑤0
𝜕𝜑

−
𝑣0
𝑅
) 

Finally, the displacement components are sum-
marized as follows [9]: 

(6 ) 

𝑢(𝑥, 𝜑, 𝑧, 𝑡) = 𝑢0(𝑥, 𝜑, 𝑡) + 𝑧𝜃𝑥(𝑥, 𝜑, 𝑡)

+
−4

3ℎ2
(𝜃𝑥 +

𝜕𝑤0
𝜕𝑥

) 

𝑣(𝑥, 𝜑, 𝑧, 𝑡) = (1 + 𝛾0𝑧/𝑅)𝑣0(𝑥, 𝜑, 𝑡)

+ 𝑧𝜃𝜑(𝑥, 𝜑, 𝑡) +
−4

3ℎ2
(𝜃𝜙

+
1

𝑅

𝜕𝑤0
𝜕𝜑

−
𝑣0
𝑅
) 

𝑤(𝑥, 𝜑, 𝑧, 𝑡) = 𝑤0(𝑥, 𝜑, 𝑡) 
It should be noted that the presence of a trapezoi-

dal coefficient in the main displacement equations, 
which is considered in the final programming and the 
present theory, is compared with the results of 
Reddy’s HOST theory [9], which is a continuation of 
analytical calculations without taking into account 
the trapezoidal coefficient. 

3. Defining Strain-Displacement Rela-
tions 

By defining strains from the theory of linear elas-
ticity for cylindrical shells, the general strain-dis-
placement relations in the cylindrical coordinate sys-
tem taking into account the effect of the trapezoidal 
term are as follows [13, 14]: 
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(7 ) 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
 

𝜀𝜑 = (
1

𝑅

𝜕𝑣

𝜕𝜑
+
𝑤

𝑅
)

1

1 + 𝛾0𝑧/𝑅
 

𝜀𝑧 = 0 

𝜀𝜑𝑥 = (
1

𝑅

𝜕𝑢

𝜕𝜑
)

1

1 + 𝛾0𝑧/𝑅
 

𝜀𝑥𝜑 =
𝜕𝑣

𝜕𝑥
, 𝛾𝑥𝑧 =

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
 

𝛾𝜑𝑧 = (
1

𝑅

𝜕𝑤

𝜕𝜑
−
𝑣

𝑅
)

1

1 + 𝛾0𝑧/𝑅
+
𝜕𝑣

𝜕𝑧
 

In the present theory, the definition of the  𝑔𝑗𝑧  

strain is more complete than in the present Reddy’s 
third-order shear deformation theory (RTSDT) [9]. 
This can be considered as one of the factors compar-
ing the two theories [9]. The current RTSDT theory is 

defined as 𝛾𝜑𝑧 = (
1

𝑅

𝜕𝑊

𝜕𝜑
−

𝑉0

𝑅
)

1

1+𝛾0𝑍/𝑅
+

𝜕𝑉

𝜕𝑧
, which has 

fewer parameters and sections than the current 
Reddy’s higher-order shell theory (RHOST) theory. 
The reason is that in the present theory, 𝑔𝑗𝑧 is defined 

instead of   
𝑉

𝑅
 . 

4. Definition of Stress-Strain Relation-
ships in Composites and Stress Result-
ants 

Assuming that the main axes are defined in the 
material coordinate system (1,2,3), and the multi-
layer axes (x, , z) are defined in the cylindrical coor-
dinate system, the three-dimensional stress-strain 
relationships for the kth orthotropic layer, according 
to the main axes for the theory that we want to de-
velop, are defined based on different displacement 
models as follows: 

{
 
 

 
 
𝜎1
𝜎2
0
𝜏12
𝜏13
𝜏23}
 
 

 
 
𝑘

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66]

 
 
 
 
 
𝐾

{
 
 

 
 
𝜀1
𝜀2
0
𝛾12
𝛾13
𝛾23}
 
 

 
 
𝑘

 

(8 ) 𝜀3 = 𝜎3 = 0 

In relation (8), stiffness matrix elements are de-
fined as follows [10]: 

(9 ) 

𝐶11 =
𝐸11(1 − 𝜈23𝜈32)

𝜈∗
, 𝐶12 =

𝐸11(𝜈21 + 𝜈31𝜈23)

𝜈∗
 

𝐶13 =
𝐸11(𝜈31 + 𝜈21𝜈32)

𝜈∗
, 𝐶22 =

𝐸22(1 − 𝜈13𝜈31)

𝜈∗
 

𝐶23 =
𝐸22(𝜈32 + 𝜈12𝜈31)

𝜈∗
, 𝐶33 =

𝐸33(1 − 𝜈12𝜈21)

𝜈∗
 

𝐶44 = 𝐺12, 𝐶55 = 𝐺13, 𝐶66 = 𝐺23 

𝜈∗ = (1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈13𝜈31 − 2𝜈21𝜈32𝜈13) 

In relation (9), 𝐺𝑖𝑗  is shear modulus, and 𝐸𝑖𝑗  and  

𝑛𝑖𝑗 are Young’s modulus and Poisson’s coefficients, 

respectively, which are not independent of each 
other and are related to the following relations [10]: 

(10 ) 
𝜈12
𝐸11

=
𝜈21
𝐸22

,
𝜈13
𝐸11

=
𝜈31
𝐸33

,
𝜈23
𝐸22

=
𝜈32
𝐸33

 

The main material axes of every single layer may 
not correspond to the main coordinate axes (x, , z). 
Therefore, it is necessary to transfer the fundamental 
relations from the single-layer axes (1,2,3) to the 
multi-layer reference axes. The final relationships 
are as follows [10]: 

{
 
 

 
 
𝜎𝑥
𝜎𝜙
0
𝜎𝑥𝜙
𝜎𝑥𝑧
𝜎𝜙𝑧}

 
 

 
 
𝑘

=

[
 
 
 
 
 
𝑄11 𝑄12 𝑄13 𝑄14 0 0
𝑄12 𝑄22 𝑄23 𝑄24 0 0
𝑄13 𝑄23 𝑄33 𝑄34 0 0
𝑄14 𝑄24 𝑄34 𝑄44 0 0
0 0 0 0 𝑄55 𝑄56
0 0 0 0 𝑄56 𝑄66]

 
 
 
 
 
𝑘

{
 
 

 
 
𝜀𝑥
𝜀𝜙
0
𝛾𝑥𝜙
𝛾𝑥𝑧
𝛾𝜙𝑧}

 
 

 
 
𝑘

 

(11 ) 𝜀𝑧 = 0 

or in brief: 

𝜎 = 𝑄𝜀                                                                            (12) 

The coefficients of the matrix are the elastic con-
stants of the orthotropic material related to the kth 
layer, according to the arrangement of the layers 
from the inside (K =1) to the outside (K = NL) [10]: 

(13) 

1 6, j ,...,i 

4 2 2 4
11 11 12 44 22

4 4 2 2
12 12 11 22 44

2 2
13 13 23

3 3
14 11 12 44 12 22 44

4 2 2 4
22 11 12 44 22

2 2
23 13 23

3
24 11 12 44

12

2 2

4

2 2

2 2

2

( ) ;

( ) ( ) ;

( );

( ) ( ) ;

( ) ;

;

( )

(

Q C c C C s c C s

Q C c s C C C s c

Q C c C s

Q C C C sc C C C s c

Q C s C C s c C c

Q C s C c

Q C C C s c

C C 3
22 44 33 33 34 31 32

2 2 4 4
44 11 12 22 44 44

2 2
55 55 66 56 55 66

2 2
66 55 66

2

2 2

C ) ; ; ( ) ;

( ) (c );

( ); ( )sc;

( );Q Qij ji

sc Q C Q C C sc

Q C C C C s c C s

Q C c C s Q C C

Q C s C c

 

In Eq. (13), s = sin, c = cos, and  are the angles 
of fiber orientation in each layer. The conventional 
positive direction of angle  is clockwise rotation rel-
ative to the reference direction of the fiber angle, i.e., 
the positive direction of the x-axis. By placing the 
strain relation (7) in relation (11) and integrating 
with respect to the thickness, Eq. (12) is reduced to 
the following equation: 

𝜎̄ = 𝐷𝜀̄                                                                             (14) 

In Eq. (14): 
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(15) 𝐷 = [
𝐷𝑓 0

0 𝐷𝑠
] , 𝐷𝑓 = [

𝐷𝑚 𝐷𝑚𝑐
𝐷𝑏𝑐 𝐷𝑏

] 

In Eq. (14), the corresponding components of the 
stress resultant vector 𝜎̅ and the components of the 
middle surface strain vector 𝜀 ̅are defined as follows: 

(16) 
𝜎̄ =

(

 
 

𝑁𝑥, 𝑁𝜑, 𝑁𝜑𝑥, 𝑁𝑥𝜑, 𝑁𝑥
∗, 𝑁𝜑

∗ , 𝑁𝜑𝑥
∗ , 𝑁𝑥𝜑

∗ ,

𝑁𝑧, 𝑁𝑧
∗, 𝑀𝑥, 𝑀𝜑, 𝑀𝜑𝑥, 𝑀𝑥𝜑, 𝑀𝑥

∗,

𝑀𝜑
∗ , 𝑀𝜑𝑥

∗ , 𝑀𝑥𝜑
∗ , 𝑀𝑧, 𝑄𝑥, 𝑄𝜑, 𝑅𝜑,

𝑄𝑥
∗ , 𝑄𝜑

∗ , 𝑅𝜑
∗ , 𝑆𝑥, 𝑆𝜑, 𝑇𝜑, 𝑆𝑥

∗, 𝑆𝜑
∗

)

 
 

𝑇

 

(17) 

 
𝜀̄ =

(

 
 

𝜀𝑥0 , 𝜀𝜑0 , 𝜀𝜑𝑥0 , 𝜀𝑥𝜑0 , 𝜀𝑥0
∗ , 𝜀𝜑0

∗ , 𝜀𝜑𝑥0
∗ ,

𝜀𝑥𝜑0
∗ , 𝜀𝑧0 , 𝜀𝑧0

∗ , 𝜒𝑥, 𝜒𝜑, 𝜒𝜑𝑥, 𝜒𝑥𝜑, 𝜒𝑥
∗ ,

𝜒𝜑
∗ , 𝜒𝜑𝑥

∗ , 𝜒𝑥𝜑
∗ , 𝜒𝑧, 𝛽𝑥, 𝛽𝜑0 , 𝛽𝜑1 , 𝛽𝑥

∗,

𝛽𝜑0
∗ , 𝛽𝜑1

∗ , 𝜒𝑥𝑧, 𝜒𝜑𝑧0 , 𝜒𝜑𝑧1 , 𝜒𝑥𝑧
∗ , 𝜒𝜑𝑧0

∗

)

 
 

𝑇

 

As can be seen in Eqs. (16) and (17), stress result-
ant 𝜎̅ vector and middle surface strain 𝜀 ̅vector have 
30 components, which, given that 𝜀𝑥0

∗ , 𝜀𝜑0
∗ ,  𝜀𝜑𝑥0

∗  ,  

𝜀𝜑𝑥0
∗ , 𝜀𝑧0 , 𝜀𝑧0

∗ , 𝜒𝑧, 𝛽𝜑0
∗ ,  𝜒𝑥𝑧  ,  𝜒𝜑𝑧1  and 𝜒𝑥𝑧

∗  are zero, 

their resultants 𝑁𝑥
∗, 𝑁𝜑

∗   , 𝑁𝜑𝑥
∗ ,  𝑁𝑥𝜑

∗ , 𝑁𝑧, 𝑁𝑧
∗  , 𝑀𝑧,  𝑄𝜑

∗ ,  

𝑆𝑥,  𝑇𝜑  and  𝑆𝑥
∗ will be zero and removed from the 

equations. The use of these 19 components can be ef-
fective in making the results more accurate [15]. 

In relation (14), the stress resultant vectors 𝜎̅ for 
a multilayer with NL number of layers are calculated 
as follows: 

[
 
 
 
𝑁𝑥 𝑀𝑥 − 𝑀𝑥

∗

𝑁𝑥𝜑 𝑀𝑥𝜑 − 𝑀𝑥𝜑
∗

𝑄𝑥 − 𝑄𝑥
∗ −

𝑅𝜑 − 𝑅𝜑
∗ − ]

 
 
 

=∑∫ {

𝜎𝑥
𝜎𝑥𝜑
𝜎𝑥𝑧
𝜎𝜑𝑧

}(1, 𝑧, 𝑧2, 𝑧3)(1
𝑧𝑖+1

𝑧𝑖

𝑁𝐿

𝑖=1

+
𝛾0𝑧

𝑅
)𝑑𝑧 

[

𝑁𝜑 𝑀𝜑 − 𝑀𝜑
∗

𝑁𝜑𝑥 𝑀𝜑𝑥 − 𝑀𝜑𝑥
∗

𝑄𝜑 𝑆𝜑 − 𝑆𝜑
∗

]

=∑∫ {

𝜎𝜑
𝜎𝜑𝑥
𝜎𝜑𝑧

} (1, 𝑧, 𝑧2, 𝑧3)𝑑𝑧
𝑧𝑖+1

𝑧𝑖

𝑁𝐿

𝑖=1

 

(18)  
In relation (18), zi and zi + 1 are the distances be-

tween the inner and outer surfaces of each layer of 
the middle surface, respectively. 

 
 

5. Governing Equations 

The extraction of governing equations was done 
using Hamilton’s principle and the principle of vir-
tual work. 

6. Hamilton’s principle  

The analytical form of Hamilton’s principle can be 
expressed as follows [14]: 

(19) 2

1
0 

t

t
U K W dt 

In Eq. (19), U is the total energy caused by defor-
mation and is defined as follows: 

(20) 

𝑈 =
1

2
∭ 𝜎𝑖𝑗𝜀𝑖𝑗𝑑𝑉

𝑉

=
1

2
∫ ∫ ∫ [𝜎𝑥𝜀𝑥 +

ℎ

2

−
ℎ

2

2𝜋

0

𝐿

0

𝜎𝜑𝜀𝜑

+ 𝜎𝑥𝜑𝜀𝜑𝑥 + 𝜎𝜑𝑥𝜀𝑥𝜑
+ 𝜎𝑥𝑧𝜀𝑥𝑧 + 𝜎𝜑𝑧𝜀𝜑𝑧]𝑑𝐴𝑑𝑧 

In relation (20), the definition of the shell surface 
element is as follows [14]: 

(21) 𝑑𝐴 = 𝑅𝑑𝑥𝑑𝜑 
In relation (19), W is the potential energy caused 

by external forces and is defined as follows: 

0xW W W  

2 2
0

0
2

2

0 0

1[ ]( )

[q ]

h

x x xz

h

L

z
u v w Rd dz

R

w dA

 
(22) 

In relation (22), Wx is the work of edge forces at 
the boundaries, and W0 is the work of surface forces. 
Also, 𝜎̂𝑥, 𝜎̂𝑥𝜑 and 𝜎̂𝑥𝑧 are constant static stresses of 

the edge, and q is wide pressures on the surface of the 
shell. In relation (19), K is the kinetic energy and is 
defined as follows: 

(23) 

𝐾 =
1

2
∭𝜌

𝑉

[𝑢̇2 + 𝑣̇2 + 𝑤̇2]𝑑𝑉 = 

1

2
∫ ∫ ∫ 𝜌

ℎ

2

−
ℎ

2

2𝜋

0

𝐿

0

[𝑢̇2 + 𝑣̇2 + 𝑤̇2]𝑑𝐴𝑑𝑧 

To solve the problem, Eq. (19) can be written as 

follows: 

(24) 2

1
0 

t

t
U K W dt 

In the following, each of the terms 𝛿𝑈, 𝛿𝑊 and 
𝛿𝐾are calculated. 
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7. Finite Element Modeling and Analysis 
of Results 

In this section, a brief explanation of the simula-
tion provided for the integrated composite cylinder 
with Abaqus software for numerical analysis of finite 
element is provided. For finite element analysis using 
Abaqus software, a cylindrical shell model was mod-
eled, and, for dynamic analysis, a buckling simply 
supported-simply supported boundary conditions 
were provided. For buckling analysis, proper loading 
for this axial analysis is also required. Naturally, dif-
ferent dimensions and properties are selected for the 
model to provide different analyzes. Using a compo-
site laminated layer, the thickness of the composite 
structure is applied to the structure. Then, using the 
meshing section, the structure meshed with the S8R 
element with an average of 17,535 elements, and fi-
nally, the present dynamic and buckling analyzes 
were performed for the structure. 

8. Results of Buckling Analysis 

Considering that one of the aims of the present 
study is the static study of cylindrical shells, in this 
section, the results of the buckling analysis of compo-
site cylindrical shells under both external pressure 
loading and compressive axial force are compared 
with other theories. The result of this analysis is the 
recognition of the critical limit for the initial stresses 
applied to the shell. To compare the buckling analysis 
answers, according to Fig. 2, a composite cylindrical 
shell with inner radius a, critical radius b, thickness 
h, and length L is subjected to compressive axial force 
P and external pressure p. 

The simply-simply boundary conditions of the 
shell are considered. Load interaction parameter S is 
defined as follows [16]: 

(25 ) 𝑆 =

𝑃

2𝜋

𝑝𝑏2
 

The concepts of P and p loads are shown in Fig. 2. 

 
Fig. 2. Composite cylindrical shell under the combined loads of 

external pressure and compressive axial force [16] 

 
1 Modified Reddy’s third-order shear deformation theory 

Also, for comparison purposes, two parameters 

𝑃and 𝑝are defined as follows [16]: 

(26 ) 𝑃 =
𝑃

𝜋(𝑏2 − 𝑎2)

𝑏

𝐸22ℎ
→ 𝑝 =

𝑝𝑏3

𝐸11ℎ
3 

In Tables 1 and 2, the values of critical buckling 
loads of P and p, along with the number of corre-
sponding buckling modes obtained from the present 
study (MRTSDT1 and RTSDT), were compared with 
the results of linear buckling analysis using the three-
dimensional elasticity theory [17], respectively, for 
S = 1 and S = 5. 

Material properties (glass/epoxy) are: 
𝐸11 = 57𝐺𝑃𝑎,  𝐸22 = 14𝐺𝑃𝑎,  𝐸33 = 14𝐺𝑃𝑎,𝐺13 =

5.7𝐺𝑃𝑎,  𝐺12 = 5.7𝐺𝑃𝑎,  𝐺23 = 5.0𝐺𝑃𝑎,  𝜈13 = 0.068,  
𝜈12 = 0.277,  𝜈23 = 0.400. The direction of the fibers 
in all layers is in the peripheral direction (perpendic-
ular to the axis of the cylinder). The main reason for 
the difference between the results of the present the-
ory (RHOST) and the exact results of three-dimen-
sional elasticity is the hypotheses and approxima-
tions used in the high-order theory of the shell.  

The effect of different mode numbers (n) on the 
critical buckling loads in the interaction mode of dif-
ferent loads S (combined loading) is shown in Fig. 3. 
As the number of environmental modes increases, 
the overall trend of critical loads decreases. How-
ever, the least critical load occurs in the fourth to 
eighth environmental modes. According to the figure, 
in the lower modes, the two theories are good com-
pliance, but in the higher modes, the distance be-
tween the two theories increases. 

 
Fig. 3. Changes of the critical value of buckling in combined load-
ing in terms of the mode values of different shapes and different 

interaction coefficients 
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The effect of thickness to average radius ratio on 
critical buckling loads is shown in Fig. 4. As the thick-
ness of the structure increases, the overall trend of 
critical loads decreases. However, the lowest critical 
load occurs at high thicknesses. In sum, the two the-
ories coincide in all directions, and the differences 
between the new theory and the predefined theory of 
the high-order are not apparent except at higher 
thicknesses. 

The effect of the load interaction parameter on 
the critical buckling load in the laminated layer mode 
is investigated, and the two buckling modes are 
shown in Fig. 5. As the effect of the load interaction 
(S) increases, the overall trend of the critical load 
moves toward a constant value. According to the fig-
ure, in different interaction effects, the two theories 
are completely coincident; for the first buckling 
mode, the critical load first increases and then 
reaches a constant value, and, for the second buckling 
mode, the critical load first decreases and then 
reaches a constant value. 

 
Fig. 4. Changes of the critical buckling load in combined loading 

in terms of thickness to medium radius ratio 

 
Fig. 5. Changes of the critical buckling load in combined loading 

during different load interactions (S) 

9. Validation of Lattice Cylindrical Shell 
Results 

As mentioned earlier, due to the presence of ribs 
and empty spaces in the geometry of the lattice cylin-
der, this non-uniformity in the stiffness and mass of 
the lattice shell must be entered into the calculations 
by a distribution function, which is done by the Heav-
iside step function. Then, by obtaining a stiffness ma-
trix and a new mass for the lattice shell, natural fre-
quencies were extracted. 

It should be noted that due to the lack of similar 
research, the obtained results were compared with 
the results of the numerical solution. Before continu-
ing the discussion about the results obtained from 
the present tables, some points about how to model 
and analyze the lattice cylinder in finite element soft-
ware are mentioned. For finite element analysis, us-
ing Abaqus software, a lattice cylindrical shell model 
was modeled with a special method by creating par-
allel partitions and was prepared for dynamic and 
buckling analysis with simply-simply boundary con-
ditions (Fig. 6). For buckling analysis, proper axial 
and peripheral loading is also required. Naturally, 
different dimensions and properties are selected for 
the model to provide different analyzes. Using a com-
posite laminated layer, the thickness of the compo-
site structure is applied to the structure. Then, using 
the meshing section, the structure meshed with the 
S8R element with an average of 7,980 elements, and 
finally, the present dynamic and buckling analyzes 
were performed for the structure. 

In the present study, the main geometric proper-
ties of the cylindrical shell for the lattice code are de-
scribed as follows: 

(27 ) 
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Fig. 6. Grid composite cylindrical shell modeled in Abaqus soft-

ware 
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In the above cases, 𝑚𝑥 and 𝑛𝑦 are the number of 

cavities of the mentioned geometric design, in the 
longitudinal and the circumference direction of the 
cylinder, respectively. ℎ𝑥−𝑅𝑖𝑏 and ℎ𝑦−𝑅𝑖𝑏 are the 

thickness of the ribs present on the cylinder surface 
in the longitudinal and circumferential directions, re-
spectively, and, then, ℎ𝑥−𝐵𝑎𝑦 and ℎ𝑦−𝐵𝑎𝑦 are the sur-

face thickness of the cavities on the cylinder surface 
in both longitudinal and circumferential directions, 
the amount of which is determined by the rib size. 

10.  Results of Buckling Analysis 

In the present section, the results of the static 
analysis on the lattice cylindrical shell are investi-
gated. The geometric properties of the shell are sim-
ilar to those of frequency analysis. In the following ta-
bles, the results of the present generalized theory 
(MRTSDT) are compared with the results of the pre-
sent RTSDT theory and the results of the finite ele-
ment method (FEM). In Table 3, the critical buckling 
load values of  𝑁𝑐𝑟  for the three corresponding buck-
ling modes obtained from the present study 
(MRTSDT and RTSDT) are compared with the results 
of finite element analysis for different thickness to 
radius ratios (h/R). Material properties 
(glass/epoxy) are: 𝐸11 = 57𝐺𝑃𝑎  ,  𝐸22 = 14𝐺𝑃𝑎,  
𝐸33 = 14𝐺𝑃𝑎,  𝐺13 = 5.7𝐺𝑃𝑎,𝐺12 = 5.7𝐺𝑃𝑎,  𝐺23 =
5.0𝐺𝑃𝑎, 𝜈13 = 0.068, 𝜈12 = 0.277, 𝜈23 = 0.400. 

By comparing the present results, a good approx-
imation is established between the results and the fi-
nite element results, so that in the thin-walled shell 
and h/R equal to 0.01, the maximum difference be-
tween the present generalized theory and the finite 
element is 2.57% for the third buckling mode. If in 
the case of thick-walled shell due to the limitations of 
the theory and the results, the difference between the 
generalized theory and the finite element is 15.07% 
for the third buckling mode, it can be noted that with 
increasing the h/R ratio, the percentage of the differ-
ence between MRTSDT and FEM increases, and also 
with increasing the number of mode m, the percent-
age of difference usually decreases. It should be 
noted that in Table 3, the shape of the modes is plot-
ted for h/R = 0.01. Table 3 presents the critical buck-
ling load values 𝑁𝑐𝑟  for the first buckling mode and 
different orthotropic ratios for the whole structure. 
The difference between the results and the finite ele-
ment results can be investigated due to large changes 
in the orthotropic ratio. In the isotropic state and  
𝐸1

𝐸2
= 1, the difference between the results reached 

8.08%, while in the  
𝐸1

𝐸2
= 40  state is 12.84%. It 

should be noted that the present difference is due to 
extensive changes in the stiffness of the structure in 
the present theory and is predictable. As the modulus 
of elasticity of the composite fibers increases, the 

stiffness of the structure increases significantly, and, 
as a result, the critical load of the structure increases 
significantly. In Table 5, the critical buckling load val-
ues 𝑁𝑐𝑟  for the three corresponding buckling modes 
obtained from the present study (MRTSDT and 
RTSDT) are compared with the results of finite ele-
ment analysis for different orthotropic ratios for lon-

gitudinal and transverse ribs 
𝐸𝑟𝑖𝑏1

𝐸𝑟𝑖𝑏2 
. 𝐸𝑟𝑖𝑏1is the modu-

lus of elasticity of the circumferential rib, and 𝐸𝑟𝑖𝑏2 is 
the modulus of the longitudinal rib. The direction of 
the fibers in all layers is in the peripheral direction 
(perpendicular to the axis of the cylinder). By com-
paring the present results, there is a good approxi-
mation between the results and the finite element re-
sults, so that in the case of the thin-walled shell, the 
maximum difference between the present general-
ized theory and the finite element is 2.57% for the 

third buckling mode. However, in higher 
𝐸𝑟𝑖𝑏1

𝐸𝑟𝑖𝑏2 
, due to 

the limitations of the theory in terms of stiffness and 
the results, the difference between the generalized 
theory and the finite element is 15.53% for the first 

buckling mode, and 
𝐸𝑟𝑖𝑏1

𝐸𝑟𝑖𝑏2 
is equal to 10. 

Comparing the present results, there is a good ap-
proximation between the analytical results and the 
finite element results, such that in the case of the 
thin-walled shell and h/R equal to 0.001, the differ-
ence between the present generalized theory of 
MRTSDT and the finite element is 0% for all buckling 
modes. In the case of thick-walled cases, the differ-
ence between the generalized theory and the finite 
element is 10.88% for the third buckling mode. 

In Table 6, the critical buckling load values 𝑁𝑐𝑟  for 
the three corresponding buckling modes from the 
present study (MRTSDT and RTSDT) are compared 
with the results of the FEM finite element analysis for 
different thickness to radius ratios (h/R). The num-
ber of cavities in the present circumferential and lon-
gitudinal lattice structure is 20 (𝑁𝑦) and 10 (𝑀𝑥). 

Comparing the present results, there is a good ap-
proximation between the analytical results and the 
finite element results, such that in the case of the 
thin-walled shell and h/R equal to 0.001, the differ-
ence between the present generalized theory of 
MRTSDT and the finite element is 0% for all buckling 
modes. In the case of thick-walled cases, the differ-
ence between the generalized theory and the finite 
element is 6.42% for the third buckling mode. The 
reason for this can be explained by the higher density 
of the structure and its proximity to the integrated 
structure in the case of smaller networks. The stiff-
ness of the lattice structure in the case of more cavi-
ties brings the results closer to an integrated struc-
ture in terms of accuracy. 
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11.  Conclusions 

The present MRTSDT theory is more accurate 
than the RTSDT theory, in which the effect of the 
trapezoidal term is not taken into account and also 
does not have higher terms in the definition of 𝛾𝜑𝑧. 

This is especially evident in the comparison of theory 
with finite element simulations for cylindrical shells. 

In the comparison between different high-order 
theories, the more accurate results of the present 
theory show a positive effect of the trapezoidal effect, 
as well as higher-order terms in the definition of 𝛾𝜑𝑧. 

 

Table 1. Comparison of the values of critical combined loads of axial (𝑃) and circumferential buckling (𝑝) with the number of corresponding 
buckling modes, in terms of  S = 1 

S = 1 

RTSDT MRTSDT 
L/b = 5 

3D Elasticity [17] 

* 

Difference 

(%) 

 

𝑝 

Difference 

(%) 

 

𝑃 

Difference 

(%) 

 

𝑝 

Difference 

(%) 

 

𝑃 (n, m) 𝑝 𝑃 b/a 

5.34 0.092 5.40 0.770 4.384 0.091 4.409 0.763 (3, 1) 0.088 0.731 1.03 

14.88 0.106 14.87 0.536 13.60 0.105 13.64 0.530 (2, 1) 0.092 0.466 1.05 

13.24 0.133 13.23 0.344 11.30 0.131 11.30 0.338 (2, 1) 0.117 0.303 1.1 

12.57 0.176 12.61 0.310 10.54 0.173 10.55 0.304 (2, 1) 0.156 0.275 1.15 

12.04 0.220 11.99 0.297 9.99 0.216 9.976 0.292 (2, 1) 0.196 0.265 1.2 

11.26 0.261 11.30 0.289 9.31 0.257 9.34 0.284 (2, 1) 0.235 0.26 1.25 

* 100% difference × reference [17]/(reference [17] - MRTSDT) 

Table 2. Comparison of the values of critical combined loads of axial (𝑃) and circumferential buckling (𝑝) with the number of corresponding 
buckling modes, in terms of S = 5 

S = 5 

RTSDT MRTSDT 
L/b = 5 

3D Elasisity [17] 

* 

Difference 

(%) 

 

𝑝 

Difference 

(%) 

 

𝑃 

Difference 

(%) 

 

𝑝 

Difference 

(%) 

 

𝑃 (n, m) 𝑝 𝑃 b/a 

13.71 0.380 13.72 0.632 13.07 0.378 13.07 0.628 (2, 1) 0.334 0.556 1.03 

12.09 0.335 12.07 0.337 10.87 0.331 10.87 0.334 (2, 1) 0.299 0.301 1.05 

9.96 0.420 9.99 0.216 8.13 0.413 8.13 0.213 (2, 1) 0.382 0.197 1.1 

7.04 0.506 7.08 0.178 6.14 0.502 6.16 0.176 (2, 2) 0.473 0.166 1.15 

6.45 0.525 6.44 0.142 5.40 0.520 5.37 0.140 (2, 2) 0.494 0.133 1.2 

2.48 0.514 2.48 0.113 2.47 0.514 2.49 0.113 (1, 1) 0.527 0.116 1.25 

* 100% difference × reference [17]/(reference [17] - MRTSDT) 
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Table 3. Comparison of critical buckling load values with the results of the finite element model (Abaqus) in terms of different thickness ra-

tios (h/R) and the number of different buckling modes, 
𝐿

𝑅
= 2 

Critical buckling load  (𝑁𝑐𝑟) *  107 

n = 3 n = 2 n = 1 

ℎ/𝑅 Difference 

(%) 
RTSDT MRTSDT FEM 

Differenc

e (%) 

 

RTSD

T 

MRTSD

T 
FEM 

Difference 

(%) 
RTSDT MRTSDT FEM 

2.57 0.158 0.1591 0.163 1.65 0.785 0.7861 0.799 2.34 4.423 4.4238 4.530 0.01 

5.21 5.109 5.1281 5.410 3.31 9.003 9.5493 9.876 2.38 4.437 4.4392 4.449 0.1 

8.39 26.57 29.423 32.12 6.14 26.96 28.518 30.38 5.39 9.067 9.1049 9.624 0.2 

12.10 258.5 261.34 297.3 9.38 178.9 180.67 199.3 9.31 24.30 30.026 29.00 0.5 

15.07 995.5 1012.6 1192.3 11.77 649.9 655.51 743.0 10.69 59.00 67.664 72.42 1 

 
  

Mode 

shape 

 

Table 4. Comparison of critical buckling load values with the results of the finite element model (Abaqus) for different orthotropic ratios (
𝐸1

𝐸2 
), 

L/R = 2, h/R = 0.01, m = n = 1 

Critical buckling load  (𝑁𝑐𝑟) *  107 

Difference (%) FEM MRTSDT 𝐸1/𝐸2 

8.08 13.756 12.644 1 

8.01 687.45 635.57 5 

10.27 2246.5 2015.7 10 

12.84 3785.1 3298.8 40 

 

Table 5. Comparison of critical buckling load values with the results of the finite element model (Abaqus) for different orthotropic ratios of 

ribs (
𝐸𝑟𝑖𝑏1

𝐸𝑟𝑖𝑏2 
) and the number of different buckling modes, L/R = 2 

Critical buckling load  (𝑁𝑐𝑟) *  107 

n =3 n = 2 n = 1 

𝐸𝑟𝑖𝑏1/𝐸𝑟𝑖𝑏2 Difference 

(%) 
MRTSDT FEM 

Difference 

(%) 
MRTSDT FEM 

Difference 

(%) 
MRTSDT FEM 

2.57 0.1591 0.1633 1.65 0.7861 0.7993 2.34 4.4238 4.53 1 

5.22 11.42 12.05 4.97 8.02 8.44 5.43 7.13 7.54 2 

8.07 9.11 9.91 9.23 5.21 5.74 10.54 4.41 4.93 3 

12.91 1.82 2.09 11.39 1.71 1.93 12.57 1.53 1.75 4 

13.86 0.87 1.01 13.86 0.87 1.01 15.53 0.87 1.03 10 

   

Mode 

shape 

 



 

Panahiha  et al. / Mechanics of Advanced Composite Structures 8 (2021) 455-466 

465 

Table 6. Comparison of critical buckling load values with the results of the finite element model (Abaqus) for different thickness ratios (h/R) 
and the number of different buckling modes 

Critical buckling load  (𝑁𝑐𝑟) *  107 

n = 3 n = 2 n = 1 

ℎ/𝑅 Difference 

(%) 
RTSDT MRTSDT FEM 

Difference 

(%) 
RTSDT MRTSDT FEM 

Difference 

(%) 
RTSDT MRTSDT FEM 

0 0.105 0.105 0.105 0 0.585 0.585 0.585 0 0.726 0.726 0.726 0.001 

0 1.073 1.075 1.075 0 5.90 5.90 5.90 0 7.23 7.23 7.23 0.01 

7.90 11.64 11.89 12.91 0.003 63.69 63.90 63.92 0.005 68.50 68.57 68.61 0.1 

8.73 68.25 53.93 59.09 4.80 342.44 351.00 368.7 6.61 219.89 223.5 239.3 0.5 

10.88 1238.8 1132.7 1271.1 7.68 40.81 92.05 99.71 7.98 66.48 38.47 41.81 1 

   

Mode 

shape 

One of the differences between the present theory 
and Reddy’s theory is that in the present theory, the 
mass and stiffness matrices are symmetric, but in 
Reddy’s theory, the stiffness matrix is not completely 
symmetric. 

As the h/R ratio increases, the critical buckling 
load increases, and the difference between the pre-
sent theory and the finite element results also in-
creases. 

In the case of grid shells, it should be noted that 
by increasing the ratio of the cavity dimension to the 
dimensions of the whole shell, whether in single-cav-
ity or multi-cavity mode, the present theory and fi-
nite element solution find more difference, indicating 
the higher accuracy of the present theory for inte-
grated shells. 
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