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each method is 9.66%, 10.63% and 10.9% respectively. Also from the view point of 
optimization time, Jaya optimization algorithm has relatively less CPU time than the other two 
algorithms, which in fact, reduces computational costs in complicated computations. Finally, 
due to the good performance of Jaya optimization algorithm in comparison with other 
considered algorithms, the performance of the heat exchangers is evaluated for using Ag, TiO2 
and Al2O3 nanofluids of 0.5% to 5 vol.% by this algorithm. A performance evaluation factor 
(PE) is introduced as the criterion for simultaneous investigation of thermal and hydraulic 
performance of nanofluids. The results show that silver nanofluid, among other ones has 
better performance. 
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1. Introduction 

The optimal solution, in other words, the 
optimization, is actually the best answer 
according to the limitations. Optimization can be 
defined as mathematical planning in economics 
and management refers to choosing the best 
member of a set of achievable members. In the 
simplest form, it is attempted to systematically 
select data from an accessible set and calculate 
the value of a real function and determine its 
maximum and minimum values. Based on the 
above definition, optimization can be applied in 
various applications. One of the widely used 
equipment in various industries is the heat 
exchanger which is applied to provide heat 
transfer between two or more fluids at different 
temperatures. Heat exchangers are widely used 
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in industries such as power plants, refineries, 
petrochemicals, nuclear, food industries, air 
conditioning, manufacturing processes, etc. 
Among the different types of heat exchangers, the 
shell & tube heat exchangers are widely used in 
industry, (Figure 1). This wide application can be 
justified by its versatility, strength, reliability and 
usability over a wide range of operating 
temperatures and pressures. On the other hand, 
due to the demand for higher capacity heat 
exchangers and at the same time lower weight 
and size and lower fuel consumption due to 
increased fuel costs, designers have been able to 
optimize heat exchangers for their intended 
purposes. In most cases, heat exchangers with the 
highest efficiency and lowest costs (including 
initial and operating costs) are desired. Since heat 
exchanger optimization is very important in 
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terms of performance, finding a suitable method 
for optimization is very important. In most 
engineering issues including design of heat 
exchangers, many parameters are involved with 
nonlinear relationships. The combination of 
these relationships gives rise to more complex 
functions that the usual mathematical solving 
methods to optimize such functions are either 
very difficult or in some cases impossible.  

Sadeghzadeh et al. [1] optimized a shell & tube 
heat exchanger by single objective algorithms of 
genetic and particle swarm although based on the 
obtained results, they found particle swarm 
better than genetic algorithm. 

Rao et al. [2] introduced the Jaya multi-
objective optimization algorithm and then 
examined its details. According to the results, this 
algorithm has a high convergence rate than other 
algorithms. They also examined various 
applications of this algorithm for example in the 
machining process. 

Valipour et al. [3] first used the Big Bang multi-
objective optimization algorithm. They also used 
the Bell-Delaware method to estimate the heat 
transfer coefficient. Finally, by considering the 
two objective functions of cost and efficiency and 
Comparison of the results with the multi-
objective genetic optimization algorithm, they 
concluded that the results of the Big Bang 
algorithm are better and more effective than the 
genetic algorithm. 

Sadeghzadeh et al. [4] considered a shell & 
tube heat exchanger with fin. They also used the 
Delaware method to estimate the heat transfer 
coefficient. They examined the objective 
functions with the multi-objective and single-
objective genetic algorithms that merged the 
answers and compared the results of both 
approaches. 

John et al. [5] investigated a matrix heat 
exchanger with multi-objective and single-
objective genetic optimization algorithm for 
optimizing the surface of heat exchanger, which 
eventually obtained the promising results. 

 

Figure 1. Schematic of shell and tube heat exchanger 

Turgut [6] investigated the thermal design of a 
plate frame heat exchangers based on Global Best 
Algorithm. He employed some basic perturbation 
methods to achieve optimum solution and more 
focused on exploitation of the promising 
solutions rather than exploring of the unvisited 
paths of the search domain. He considered eight 
decision variables for the heat exchanger and 
applied them to sensitivity testing to examin the 
impact of each. 

Taghilou et al. [7] investigated a double-pipe 
heat exchanger using Brent optimization 
algorithm and reported that in all conditions the 
generated entropy is reduced that leads to 
reduced pump power consumption and 
construction cost of heat exchanger. 

Christian et al. [8] introduced and investigated 
the topology optimization model for heat transfer 
issues and especially heat exchangers and 
reported that this model is a suitable model for 
heat exchanger optimization based on the results. 

Ghorbani et al. [9] used a genetic algorithm to 
optimize the heat exchanger. They reported a 
15% increase in heat exchanger efficiency and a 
significant decrease in pressure drop as a result 
of optimization. 

Hajabdollahi et al. [10] examines the effects of 
a tube fitted with twisted tape on the optimal 
design of a fin-and-tube heat exchanger. They 
optimized heat exchanger with pressure drop 
and effectiveness as objective functions and then 
found a marginal point for effectiveness and the 
margin value occurred at higher effectiveness. 

Zhao et al. [11] considered the effect of heat 
transfer coefficient and pressure drop in order to 
investigate the parameters affecting the heat 
exchanger and finally presented a model which 
can be considered as a variable heat transfer 
coefficient which increases the accuracy of 
optimization. 

Najafi et al. [12] optimized a multi-objective 
plate heat exchanger using genetic algorithm. 
They observed that an increase in pressure drop 
would increase pump costs operational costs in 
turn. On the other hand, any attempt to reduce 
the pressure drop will reduce the overall heat 
transfer which results in an increase in the heat 
transfer level. Therefore, finding a new 
generation of coolants with high potential 
capacities of heat transfer seems effective. 

Shoheib et al. [13] investigated the effect of the 
tube material on thermal stress. Finally, based on 
the analyzed materials, copper had the lowest 
thermal stress and steel had the highest safety. 

Balamurugan et al. [14] Investigated the effect 
of different parameters on the performance of the 
shell & tube heat exchanger. 
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In references [14-15] can be found more 
research on the optimization of heat exchangers. 

Nanofluids are new class of dilute suspensions 
that consist of a base fluid with nanosized 
particles (1–100 nm) suspended within [19]. 
Applied nano particles can be commonly a metal 
or metal oxide that increase the overall thermal 
conductivity of the fluid. Water and ethylene 
glycol are the most common base fluids in 
preparation of nanofluids. 

Nanofluids were first developed around 1995, 
with the specific aim of increasing thermal 
transport of conventional heat transfer fluids, 
which have now evolved into a promising 
nanotechnology-based thermo-fluids and energy 
area [19]. Nanofluids facilitate better heat 
transfer compared with a pure fluid due to their 
improved thermos-physical properties in the 
presence of nanoparticles. Also, because of the 
dynamic behavior of nanoparticles suspended in 
the base fluid along with the Brownian motions, 
the heat transfer coefficient of these fluids is 
higher than their base fluids [19]. Therefore, 
nanofluids can be a good choice to be applied as a 
coolant in many thermal objectives like heat 
exchangers and become a new generation of 
coolants which can be engineered in 
thermophysical properties. There are some 
researches in the literature devoted to 
investigation of nanofluids in heat exchangers. 

Wael et al. [20] studied numerically the 
turbulent heat transfer and pressure drop of 
nanofluid in a coiled tube-in-tube heat exchanger. 
They reported that by increasing the volume 
concentration of nanofluid, the heat transfer 
coefficient increased, which in turn reduced the 
size of the heat exchanger.  

Aliabadi [21] analyzed the heat transfer and 
flow characteristics of the sinusoidal-corrugated 
channel with Al2O3-water nanofluid by a 2-D 
numerical simulation. One of the most important 
results presented by him is that the nanofluid 
offers the higher values of PEC (Performance 
Evaluation Criteria) compared to the base fluid, 
and the higher values of PEC are obtained for the 
nanofluids with the larger volume concentration 
of Al2O3 nanoparticles. 

There are few optimization studies, in the 
literature, for heat exchangers with nanofluids 
which mostly assess thermal performance. 
Although due to applying different algorithms for 
optimization, different results are obtained. In 
the present study the thermal and hydraulic 
performances of a shell and tube heat exchanger 
for two different operating conditions are 
optimized by three popular multi-objective 
genetic, particle swarm and jaya optimization 
algorithms. The most effective algorithm is then 

applied to optimize the performance of the heat 
exchanger for various nanofluids based on the 
introduced PEC factor. The PEC factor, in fact, can 
evaluate thermal and hydraulic performance of 
the heat exchanger simultaneously. The novelty 
of the purpose is optimized designing a nanofluid 
driven shell and tube heat exchanger with three 
different optimization algorithms (Genetic, 
Particle Swarm and Jaya optimization 
algorithms) and Comparison of the performance 
of each algorithm in design improvement. These 
algorithms have not been ever investigated for 
nanofluid performance to integrate hydro-
thermal behavior together with the design 
optimization.  

2. Optimization algorithms 

Optimization algorithms are divided into two 
categories of exact and approximate algorithms. 
Exact algorithms are able to find the optimal 
solution accurately but are not efficient in the 
case of complicated optimization problems and 
their execution time increases exponentially with 
the dimensions of the issues. Approximation 
algorithms are able to find good (near optimal) 
solutions in short time for difficult optimization 
problems. The approximate algorithms are also 
divided into three categories: heuristic and meta-
heuristic and hyper-heuristic. In computer 
science, artificial intelligence and mathematical 
optimization, a technical heuristic algorithm is 
designed to solve a problem more quickly or to 
find an approximate solution when classical 
methods are too slow or fail to find the exact 
solution. 

2.1. Genetic algorithm 

The genetic algorithm, proposed based on 
Darwin’s theory, is a widely used optimization 
method. This theory states that inferior creatures 
pass away while superior creatures remain. In 
this optimization algorithms search procedure 
are inspired by natural selection. Collections of 
design variables are codified by fixed/variable-
length sequences, just similar to chromosomes or 
individuals in biologic systems. Similar to what is 
naturally seen, each chromosome contains 
several design variables, known as genes and 
shows one solution point in the search space. 
Hereditary algorithms are repetitive processes 
with several repetition stages called generation. 
The corresponding set of solutions is called 
population The algorithm begins with seeding, 
and in this regard, the first population is 
randomly/selectively selected among 
possibilities in the search space. Directive 
searching toward optimum points in the genetic 
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algorithm is based on statistical methods. In the 
process of natural selection, the fitness of this 
generation for the next generation is the basis of 
population selection The new population, which 
is usually more fit, replaces the previous one and 
the cycle continues. The search is deemed 
completed as it achieves the maximum intended 
generation or a convergent result is obtained or 
the stop criterion is met. The flowchart of the GA 
is given in Figure 2. 

 

Figure 2. Flowchart of MOGA. [22] 

2.2. Particle swarm algorithm 

First introduced by Eberhat and Kennedy in 
1995, the particle swarm optimization (PSO) 
algorithmimitates the way fish and birds swarm 
search for food. Each particle is in fact a solution 
to a problem. PSO distincts from other 
optimization methods (like GA) due to 
performance simplicity and higher velocity. 
Particles in PSO are responsible to find a global 
optimum point in a search space. This mimics 
how birds (particles) use whole set information 
to determine their orientation. Accordingly, the 
collective location of the swarm and the best 

individual location of particles per time are 
calculated, and the new search orientation 
consists of the two orientations and the previous 
one [1]. 

In a search space of D dimension, if the best 
individual location of a particle is shown by 𝑃1

⃗⃗  ⃗ =
𝑐1(𝑃𝑖1

⃗⃗⃗⃗  ⃗, 𝑃𝑖1
⃗⃗⃗⃗  ⃗, … , 𝑃𝑖𝐷

⃗⃗ ⃗⃗  ⃗) and the best location of the 
overall particle by 𝑔 = 𝑐1(𝑔1, 𝑔2, … , 𝑔𝐷), The best 
location in the vicinity of each particle is 
introduced by 𝑛1⃗⃗⃗⃗ = 𝑐1(𝑛𝑖1⃗⃗ ⃗⃗  ⃗, 𝑛𝑖1⃗⃗ ⃗⃗  ⃗, … , 𝑛𝑖𝐷⃗⃗⃗⃗⃗⃗ ). 
Displacement of particles after determination 
their velocity is then can be calculated by [1]: 

𝑥 (𝑡) = 𝑥 (𝑡 − 1) + 𝑣 (𝑡) (1) 

Where 

𝑣 (𝑡) = 𝑣 (𝑡 − 1) + 𝐹 (𝑡 − 1) (2) 

The force applied to the particle is simulated 
by the best individual particle location and the 
best particle collective location as two springs 
attached to the particle. The first spring is driven 
to the best individual experience and the second 
one to the best swarm experience [1]: 

𝐹 𝑖−1 = 𝑐1(�⃗� 𝑖−1 − 𝑥 𝑖−1) + 𝑐2(𝑔 𝑖−1 − 𝑥 𝑖−1) (3) 

Here, c1 and c2 accounts for Hook spring 
coefficients or acceleration coefficients that are 
usually set on value 2. The particle velocity is 
finally calculated at dimension d and the next 
repetition is as follows [1]: 

𝑣𝑖𝑑(𝑡) = 𝜔 𝑣𝑖𝑑(𝑡 − 1) 

             +𝑐1 𝑟𝑎𝑛𝑑1 (�⃗� 𝑖−1(𝑡 − 1) − 𝑥 𝑖−1(𝑡 − 1)) 

             +𝑐2 𝑟𝑎𝑛𝑑2(�⃗� 𝑖−1(𝑡 − 1) − 𝑥 𝑖−1(𝑡 − 1)) 

(4) 

Random numbers 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are in the 
range 0–1. The term ω accelerates convergence 
at the local optimum, although it is not as useful 
for very high values.[1] A PSO flow chart is 
demonstrated in Figure 3. 

2.3. Multi objective Jaya algorithm 

In the Jaya algorithm P the upper and lower 
bounds of the process variables are employed to 
generate initial solution randomly. Thereafter, 
variables of each solution is stochastically 
updated using Eq. (5). Here f is the objective 
function with ‘d’ number of design variables. The 
objective function value, corresponding to the 
best solution is shown by f_best and that 
corresponding to the worst solution is shown by 
f_worst [2]. 

𝐴(𝑖 + 1, 𝑗, 𝑘) = 𝐴(𝑖, 𝑗, 𝑘) 

                        +𝑟(𝑖, 𝑗, 1)(𝐴(𝑖, 𝑗, 𝑏) − |𝐴(𝑖, 𝑗, 𝑘)|) 

                       −𝑟(𝑖, 𝑗, 2)(𝐴(𝑖, 𝑗, 𝑤) − |𝐴(𝑖, 𝑗, 𝑘)|) 

(5) 
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Where b and w accounts for the index of the 
best and worst solutions among the population. 
i,j,k are the index of iteration, variable, and 
candidate solution. A(i,j,k) means the jth variable 
of kth candidate solution in ith iteration. r(i,j,1) 
and r(i,j,2) are numbers generated randomly in 
the range of [0,1]. The random numbers r(i,j,1) 
and r(i,j,2) act as scaling factors and have good 
diversity. The principle objective of the Jaya 
algorithm is to improve the fitness of each 
candidate solution in the population. Therefore, 
the Jaya algorithm, in principle, by updating the 
values of the variables, forces the magnitude of 
the objective function of each solution towards 
the best solution. The updated (new) solutions 
are then compared with the corresponding old 
solutions and only the solutions with better 
objective function value are considered for the 
next generation.[2]  

Multi-objective Jaya Optimization algorithmis 
a multi-objective version of the single- objective 
Jaya optimization algorithm that is used to 
investigate multi-objective topics. The main 
equation of updating solutions in the multi-
objective Jaya algorithm based on Eq. (5) is such 
as single-objective version. In the multi-objective 
version of this algorithm, non-dominated sorting 
and crowding distance calculation mechanisms is 
used. The crowding-distance (CD) operator is an 
introduced operator which is used for calculation 
density of solutions in the search space. this 
operator has been used in different multi-
objective optimization algorithms. In single-
objective optimization it is easy to select the best 
solution and obtain the optimal solution based on 
the objective function value. But in multi-
objective optimization it is difficult to choose the 
worst and best solution from the collection of 
solutions based on answers. In the MO1-Jaya 
algorithm, the role of finding and choosing the 
best and worst solutions is done by Comparison 
of the rank assigned to the solutions based on the 
non-dominance concept and the crowding 
distance value. At first a population is randomly 
generated with NP2 number of solutions and then 
this initial population is sorted and ranked based 
on the non-dominance concept. The solution with 
the highest rank (rank=1) is chosen as the best 
solution and the solution with the lowest rank is 
chosen as the worst solution. In case, when there 
are several solutions with the same rank, the 
solution is chosen as the best solution with the 
highest crowding distance and vice versa. This 
method is actually to ensure the choice of best 
solution in the search space. After choosing the 

 
1 Multi objective 

best and the worst solution, the solutions are 
updated by using Eq. (1). After updating the 
solutions, the set of updated solutions (new 
solutions) is added to initial population and make 
a set of 2NP solutions. These new solutions are 
again sorted and ranked based on the non-
dominance concept and the crowding distance 
value for each solution is computed. Now based 
on new ranking and crowding-distance, good 
solutions are chosen [2]. Figure 4 shows the 
flowchart of MO-Jaya. 

 

Figure 3. Flowchart of MOPSO [23]. 

 

 

Figure 4. Flowchart of MO-Jaya [2]. 

2 Number of solution 
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Each of these algorithms has advantages and 
disadvantages. For example, in the genetic 
algorithm, due to the competition of answers and 
the selection of the best from the population, I 
will most likely reach the global optimal point. It 
is also easy to implement, but the most important 
problem of this algorithm is its high 
computational cost. Of course, compared to some 
algorithms, the genetic algorithm does not have 
much computational cost due to its metaheuristic 
nature.   Also the particle swarm algorithm has 
advantages such as high convergence speed, 
better flexibility against local optimal problem, 
cooperation and information sharing between 
particles and ease of implementation and 
execution, and in contrast has disadvantages such 
as early convergence, local optimization and 
Decreasing population diversity. 

The Jaya algorithm is also one of the most 
innovative algorithms used for many problems 
that has a high speed of convergence.  Genetic 
algorithms and particle swarm already have  
been used to optimize heat exchangers, and we 
intend to use the genetic algorithm, particle 
swarm, and Jaya in heat exchanger and ultimately 
nanofluid optimization for comparison. 

For comparising this algorithms, we used a 
economic model for estimating the total cost of 
heat exchanger. This economic model includes 
operating costs and investment costs. Actually to 
compare algorithms with each other, we optimize 
the cost function as important parameter for 
deciding to reduce it by coding the cost function 
in MATLAB software. 

3. Mathematical modeling 

3.1. Shell & tube heat exchanger 

The following equation is used to calculate the 
heat transfer area (A) of heat exchanger [24]: 

𝐴 =
𝑄

𝑈𝐹∆𝑇𝑙𝑚

 (6) 

In Eq. (6) 𝑈𝑜is the overall heat transfer 
coefficient of  heat exchanger, ∆T_lm is the log-
mean temperature difference and F is correction 
factor for the number of tube passes. 

The outer overall heat transfer coefficient 
(Neglecting the thermal resistance of the wall) is 
calculated as follows [22]: 

𝑈𝑜 = [
1

ℎ𝑜

+ 𝑅𝑓,𝑜 +
𝑑𝑜

𝑑𝑖

(𝑅𝑖,𝑓 +
1

ℎ𝑖

)]−1 (7) 

𝑑𝑖 = 0.8𝑑𝑜  (8) 

where 𝑑𝑖 , 𝑑𝑜, 𝑅𝑖,𝑓 , 𝑅𝑜,𝑓 , ℎ𝑖  and ℎ𝑜 are inside and 

outside tube diameters (m), tube- and shell-side 
fouling resistances (m2. K/W), and tube and shell-

side heat transfer coefficients (
𝑊

𝑚2.  𝐾
), 

respectively. 
Based on LMTD (logarithmic average of the 

temperature difference) method the log-mean 
temperature difference for a shell and tube heat 
exchanger can be calculated as follows [2]: 

∆𝑇𝑙𝑚 =
(𝑇ℎ1 − 𝑡𝑐2) − (𝑇ℎ2 − 𝑡𝑐1)

𝐿𝑛
𝑇ℎ1−𝑡𝑐2

𝑇ℎ2−𝑡𝑐1

 (9) 

The correction factor F is defined as follows 
[20]: 

Where 

𝐹 =
(√1 + 𝑅2 𝐿𝑛 (

1−𝑃

1−𝑅𝑃
))

(𝑅 − 1)𝐿𝑛(
2−𝑃((𝑅+1)−√1+𝑅2)

2−𝑃((𝑅+1)+√1+𝑅2)
)

 (10) 

Where 

𝑅 =
𝑇ℎ1 − 𝑇ℎ2

𝑡𝑐2 − 𝑡𝑐1
 (11) 

𝑃 =
𝑡𝑐2 − 𝑡𝑐1
𝑇ℎ1 − 𝑇ℎ2

 (12) 

3.1.1. Tube side 

The tube-side heat transfer coefficient ℎ𝑖  

(
𝑊

𝑚2.  𝐾
),, based on Delaware method can be 

determined as follows [25-27]: 

𝑖𝑓 (
𝑅𝑒𝑡 ∗ 𝑃𝑟𝑡

𝐿
)
1

3. (
𝜇

𝜇𝑤

)0.14 > 2 

(13) 
ℎ𝑖 = (

𝑘𝑡

𝑑𝑖

) 0.027(𝑅𝑒𝑡
0.8)𝑃𝑟𝑡

0.4 (
𝜇

𝜇𝑤

)
0.14

 

        𝑓𝑜𝑟 𝑅𝑒𝑡 > 104 

ℎ𝑖 = (
𝑘𝑡

𝑑𝑖

) 1.86(
𝑅𝑒𝑡𝑑𝑖𝑃𝑟𝑡

𝐿
)
1

3 (
𝜇

𝜇𝑤

)
0.14

 

        𝑓𝑜𝑟 𝑅𝑒𝑡 < 2100 

(14) 

Otherwise if  (
𝑅𝑒𝑡∗𝑃𝑟𝑡

𝐿
)
1

3 (
𝜇

𝜇𝑤
)0.14 < 2)  

ℎ𝑖 = 3.66
𝑘𝑡

𝑑𝑖

 (15) 

Here, 𝑘𝑡 ,𝑃𝑟𝑡 , 𝜇 and 𝜇𝑤 are the thermal 
conduction coefficient of fluid inside the tube 
(W/m. K), the tube-side Prandtl number, the 
viscosity and fluid viscosity (Pa.s) evaluated at 
the average temperature of the tube wall. 

Also, the tube side Reynolds number 𝑅𝑒𝑡  is 
calculated as follows [25]: 

𝑅𝑒𝑡 =
�̇�𝑡𝑑𝑖

𝜇𝑡𝐴𝑜𝑡

 (16) 

In Eq. (16) 𝑚𝑡̇  is the tube side mass flow rate 
(kg/s) and A_ot is tube-side flow cross sectional 
area (m2) per tube pass, expressible as [27]: 
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𝐴𝑜𝑡 =
𝜋𝑑𝑖

2𝑁𝑡

4𝑛𝑝

 (17) 

The number of heat exchanger tubes is 
estimated by [28] : 

𝑁𝑡 = 𝑘1(
𝐷𝑡𝑜𝑙

𝑑𝑜

)𝑛1 (18) 

Also, Dotl is the tube bundle outer diameter and 
the coefficient values K1 and n1 are determined 
based on the flow arrangement and number of 
passes from Table 1. [29]: 

Table 1. Values of coefficients K1 and n1 
for Pt = 1.25 do [1]. 

Number of 
passes 

Triangular pitch 
Square and 

rotated square 

 𝐾1 𝑛1 𝐾1 𝑛1 

1 0.319 2.142 0.215 2.207 

2 0.249 2.207 0.156 2.291 

3 0.175 2.285 0.158 2.263 

The inside tube pressure drop ∆p_t (Pa) base 
on Delaware method can be calculated as follows 
[26]: 

∆𝑝𝑡 =
𝜗𝑡

2
(
𝑓𝑡𝐿

𝑑𝑖

+ 𝑦) 𝑛𝑝 (19) 

here, y is a constant value, Numerous values have 
been reported, y can be 4 or 2.5. Also, ft is the drag 
friction factor for turbulent flow, which can be 
calculated by following equation [29]: 

𝑓𝑡 = 0.046(𝑅𝑒𝑡)
−0.25 (20) 

3.1.2. Shell side 

Also, for calculating the shell-side heat transfer 
coefficient Delaware method suggested following 
equations [30]: 

ℎ𝑜 = ℎ𝑖𝑑𝑗𝑐𝑗𝑙𝑗𝑏𝑗𝑠𝑗𝑟 (21) 

ℎ𝑖𝑑 = 𝑗𝑖𝑑𝐶𝑝 (
�̇�𝑠

𝐴𝑜,𝑐𝑟

) (
𝑘𝑠

𝐶𝑝𝜇𝑠

)
2

3(
𝜇𝑠

𝜇𝑠,𝑤

)0.14 (22) 

𝑗𝑖𝑑 = 𝑎1(
1.33

𝑝𝑡

𝑑𝑜

)𝑎(𝑅𝑒𝑠)
𝑎2 (23) 

𝑏 =
𝑎3

1 + (0.14𝑅𝑒𝑠
𝑎4)

 (24) 

𝑝𝑡

𝑑𝑜

= 1.25 (25) 

𝐴𝑜,𝑐𝑟 = 𝐿𝑏,𝑐[𝑑𝑠 − 𝐷𝑜𝑡𝑙 + 2
𝐷𝑐𝑡𝑙

𝑥𝑙

(𝑝𝑡 − 𝑑𝑜) (26) 

𝐷𝑐𝑡𝑙 = 𝐷𝑜𝑡𝑙 − 𝑑𝑜 (27) 

with a good approximation 𝑗𝑐𝑗𝑙𝑗𝑏𝑗𝑠𝑗𝑟 = 0.6 . 
To determine the shell-side pressure drop the 

Delaware method is used [29]: 

∆𝑝𝑠 = [(𝑁𝑏 − 1)∆𝑝𝑏,𝑖𝑑𝑅𝑏 + 𝑁𝑏∆𝑝𝑤,𝑖𝑑]𝑅𝑙  

        +2∆𝑝𝑏,𝑖𝑑 (1 +
𝑁𝑟,𝑐𝑤

𝑁𝑟,𝑐𝑐

)𝑅𝑏𝑅𝑠 
(28) 

here, 𝑁𝑟;𝑐𝑤  is the number of effective tube rows 
crossed during flow through one window zone in 
a segmentally baffled shell-and-tube heat 
exchanger, 𝑁𝑟;𝑐𝑐  is the number of effective tube 
rows crossed during flow through one cross flow 
section and ∆𝑝𝑏;𝑖𝑑 is the pressure drop for liquid 
flow in an ideal cross flow between two baffles, 
and is expressible as follows [29]: 

∆𝑝𝑏,𝑖𝑑 = 4𝑓𝑖𝑑
𝐺𝑠

2

2𝜌𝑠

(
𝜇𝑠,𝑤

𝜇𝑠

)0.14𝑁𝑟,𝑐𝑐  (29) 

In Eq. (29), 𝑓𝑖𝑑  is the friction factor for flow 
through an ideal tube bank, which can be 
determined as follows [29]: 

𝑓𝑖𝑑 = 𝑏1(
1.33

𝑝𝑡

𝑑𝑜

)𝑏(𝑅𝑒𝑠)
𝑏2  (30) 

and 

𝑏 =
𝑏3

1 + (0.14𝑅𝑒𝑠
𝑏4)

 (31) 

Values for coefficient b1, b2, b3 and b4 are 
showed in Table 2. The pressure drop associated 
with an ideal window section (∆𝑝𝑤,𝑖𝑑) is obtained 
by [29]: 

∆𝑝𝑤,𝑖𝑑 = (2 + 0.6𝑁𝑟,𝑐𝑤)
𝐺𝑠

2

2𝜌𝑠

 (32) 

Also 𝑅𝑏 is between 0.5 to 0.8 and 𝑅𝑙  is between 
0.4 to 0.5. 

3.2. Cost function 

In this investigation, in order to compare the 
algorithms, we use the total cost as the main 
objective function. The total cost includes the 
investment cost and the operating cost  with 
taking the pumping cost in to consideration [30]: 

𝐶 = 𝐶𝑖𝑛 + 𝐶𝑜𝑝 (33) 

The operating cost 𝐶𝑜𝑝 (€) and the investment 

𝐶𝑖𝑛  (€) for the shell and tube heat exchanger with 
stainless steel tube can be determined 
respectively as follows [31]: 

𝐶𝑖𝑛 = 8000 + 59.2𝐴0.91 (34) 

𝐶𝑜𝑝 = ∑
𝐶𝑜

(1 + 𝜆)𝑘
   

𝑛𝑦

𝑘=1

 (35) 
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Table 2. Colburn factor Jid coefficients and ideal friction factor fid [29]. 

Layout 
angle(°) 

Reynolds 
number 

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 

30 105 − 104 0.321 -0.388 1.450 0.519 0.372 -0.123 7.00 0.500 

 104 − 103 0321 -0.388 - - 0.486 -0.152 - - 

 103 − 102 0.593 -0.477 - - 4.57 -0.476 - - 

 102 − 10 1.360 -0.657 - - 45.100 -0.973 - - 

 <10 1.400 -0.667 - - 48.000 -1.00 - - 

45 105 − 104 0.370 -0.369 1.930 0.500 0.303 -0.126 6.59 0.520 

 104 − 103 0.370 -0.369 - - 0.333 -0.136 - - 

 103 − 102 0.730 -0.500 - - 3.500 -0.476 - - 

 102 − 10 0.498 -0.656 - - 26.200 -0.913 - - 

 <10 1.550 -0.667 - - 32.00 -1.000 - - 

90 105 − 104 0.370 -0.395 1.187 0.370 0.391 -0.148 6.30 0.378 

 104 − 103 0.107 -0.266 - - 0.0815 -0.022 - - 

 103 − 102 0.408 -0.460 - - 6.0900 -0.602 - - 

 102 − 10 0.9 -0.631 - - 32.1000 -0.963 - - 

 <10 0.97 -0.667 - - 35.000 -1.000 - - 

 
Such that, 𝐶𝑜 is the annual operational 

cost(€/year), 𝑛𝑦 is the equipment life (year), and 
𝑘 is the annual inflation rate. The total operating 
cost is dependent on the pumping power, which 
overcomes the pressure drop for both the shell 
and tube side flows [31]: 

𝐶𝑜 = 𝑝. 𝑘𝑒𝑙 . 𝜏 (36) 

𝑝 = (
𝑚𝑡̇ ∆𝑝𝑡

𝜌𝑡

+
𝑚𝑠̇ ∆𝑝𝑠

𝜌𝑠

)
1

𝜂
 (37) 

In Eq. (37), 𝑘𝑒𝑙  is the unit price of electrical 
energy (€/kW h), 𝑃 is the pumping power (W), 𝜏 
is the hours of operation per year and 𝜂 is the 
pump efficiency (–). 

3.3. Nanofluids 

Due to the presence of nanoparticles in the 
base fluid, some thermo-physical properties of 
the fluid become subject to change [32]. There 
have been several equations proposed for 
modeling and calculation of the thermophysical 
properties of nanofluids. In the present 
simulation, the density of nanofluid (𝜌𝑛𝑓) is 
obtained from the following equation [33]: 

𝜌𝑛𝑓 = ∅𝜌𝑛𝑝 + (1 − ∅)𝜌𝑏𝑓 (38) 

where 𝜌𝑏𝑓 and 𝜌𝑛𝑓 are the mass densities of the 
based fluid and the solid nanoparticles, 
respectively. 

The specific heat of nanofluid is also calculated 
from the following equation [33]: 

𝐶𝑝,𝑛𝑓 = ∅𝐶𝑝,𝑛𝑝 + (1 − ∅)𝐶𝑝,𝑏𝑓 (39) 

where 𝐶𝑝,𝑏𝑓 and 𝐶𝑝,𝑏𝑓 are the specific heat of the 
based fluid and the solid nanoparticles, 
respectively. 

To determine the conduction coefficient of the 
nanofluid, the equation of Zhao [32] is employed. 
In this model, in addition to Brownian motion, 
effects of nanoparticle clustering on volume 
fraction and conductivity is comprehensively 
considered. The other strength of this model is 
considering effects of formed nanolayer around 
the nanoparticles and Kapitza resistance on the 
nanofluid conductivity. Equation (40) expresses 
the final form of the Zhao model for conductivity 
[32]. 

𝑘𝑒𝑓𝑓 = 
 

𝑘𝑝𝑒(1 + 2𝜒) + 2𝑘𝑓 + 2[𝑘𝑝𝑒(1 − 𝜒) − 𝑘𝑓]𝜙𝑓𝑟

𝑘𝑝𝑒(1 + 2𝜒) + 2𝑘𝑓 − [𝑘𝑝𝑒(1 − 𝜒) − 𝑘𝑓]𝜙𝑓𝑟

𝑘𝑓 

+𝑘𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛    (40) 

where kpe, 𝜒, ϕfr, and kBrownian respectively 
accounts for thermal conduction due to 
nanolayer formation, nondimensional interfacial 
thermal resistance, modified particle volume 
fraction due to nanoparticles agglomeration, and 
the additional thermal conductivity due to the 
Brownian motion, which are calculated by Eqs. 
40a to 40e. 
𝑘𝑝𝑒 = 

[(1 + 𝛽)3(1 + 2𝛾) + 2(1 − 𝛾)]𝛾

(1 + 𝛽)3(1 + 2𝛾) − (1 − 𝛾)
𝑘𝑝 

(40a) 

𝜒 = 2𝑅𝑘𝑘𝑙/𝑑𝑝 (40b) 
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𝜙𝑓𝑟 = 𝜙(1 + 𝛽)3 (
𝑑𝑓𝑟

𝑑𝑝
⁄ )

3−𝐷𝑓𝑟

 (40c) 

𝑘𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 = 𝐴0

𝑑𝑓

𝑑𝑝

𝑘𝑓𝑅𝑒𝑝
𝐴1𝑃𝑟0.3333𝜙𝑓𝑟 (40d) 

where Rep is the nanoparticle Reynolds number 
and defined as: 

𝑅𝑒𝑝 =
𝜌𝑛𝑓

𝜇𝑛𝑓
√

18𝑘𝐵𝑇

𝜋𝜌𝑝𝑑𝑝

 (40e) 

When nanoparticles are added to the fluid, 
along with the proved increase in heat transfer, 
the flow pressure drop increases too. As much as 
the first effect is desirable to improve the heat 
exchanger efficiency, the second effect is 
undesirable. In this regard to have a good 
evaluation on effects of nanofluids on overall 
performance of the considered heat exchanger a 
factor of performance evaluation criteria (PEC) is 
introduced to assess both effects simultaneously. 
The PEC is defined as [20]: 

𝑃𝐸𝐶 =

𝑁𝑢𝑛,𝑓

𝑁𝑢𝑤

(
𝑓𝑛,𝑓

𝑓𝑤
)1/3

 (41) 

Where: 

𝑓 =
2∆𝑝𝑑ℎ

𝜌𝑣2𝐿
 (42) 

The correlation of Maiga et al. [34] is applied 
for calculation of the Nusselt number. 

𝑁𝑢𝑛.𝑓 = 0.085𝑅𝑒𝑛𝑓
0.71𝑝𝑟𝑛𝑓

0.35 (43) 

4. Modeling 

In this research, due to involving various 
interdependent parameters on the performance 
of the heat exchanger, three different multi-
objective algorithms with two different operation 
conditions are applied to optimize the heat 

exchanger design by coding the objective 
functions and correlations in MATLAB 2014R. At 
this step the working fluid of the heat exchanger 
is supposed to be pure and the performance of 
three different multi-objective optimization 
algorithms of Genetic, Particle Swarm and Jaya 
are compared together. The optimized heat 
exchanger, obtained from this stage, is then 
considered with various nanofluids as its 
working fluid and another optimization 
procedure is performed to find the best nanofluid 
(and vol. concentration) which lead to the 
optimum thermal and hydraulic performance.  

The latter optimization is accomplished by the 
algorithm which showed the best performance in 
the first step. Silver, Titanium dioxide and 
Aluminum oxide water-based nanofluids of 0.5-5 
vol.% are considered as the tube-side working 
fluid. The main criterion for evaluation of thermal 
and hydraulic performance is the PEC factor. 

The first case study involves a heat exchanger 
which is supposed to be transferred between 
methanol and sea water, two tube-side passes, 
single shell-side pass and a trianglular pitch 
layout [1]. The second case study involves a heat 
exchanger between two fluids (distilled water 
and raw water) with two tube-side passes, a 
triangular pitch arrangement and single shell-
side pass. The specifications of these two case 
studies are demonstrated in Table 3. 

Three objective functions are the overall heat 
transfer coefficient, the shell side pressure drop 
and the total cost. The selected decision variables 
include tube diameter, central baffles spacing and 
shell diameter. Lower and higher bounds for 
optimization decision variables for a given 
objective are given in Table 4. In both cases, the 
equipment life is taken to 𝑛𝑦  =10( year); the 

inflation rate k = 10%; the unit price of electricity 
𝑘𝑒𝑙  = 0.12 (€/kW h) and the working hours 𝜏 = 
7000 (h/year). Also, the baffle cut is taken to be 
25% here. 

Table 3. Inlet and outlet conditions and physical properties of fluids on the inside shell and tube [1]. 

 

Fouling 
resistance 
(W/m2. K) 

Thermal 
conductivity 
(W/m. K) 

Viscosity 
(Pa. s) 

Specific 
heat 
(J/kg. K) 

Density 
(kg/s) 

Outlet 
temp 
(0C) 

Inlet 
temp 
(0C) 

Mass 
flow 
(kg/s) 

 

        Case 1 

0.00033 0.19 0.00034 2840 750 40 95 27.8 Shell side: methanol 

0.00020 0.59 0.00080 4200 995 40 25 68.9 Tube side: sea water 

        Case2 

0.00017 0.62 0.00008 4180 995 29.4 33.9 22.07 Shell side: distilled water 

0.00017 0.62 0.00092 4180 999 26.7 23.9 35.31 Tube side: raw water 
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Table 4. Lower bound and upper bound for  
design parameters [1]. 

Upper 
value 

Lower 
value 

Parameter 

0.051 0.01 Tubes outside diameter (m) 

1.5 0.1 Shell diameter (m) 

0.5 0.05 Central baffle spacing (m) 

Also the thermos-physical properties of 
𝐴𝑔, 𝑇𝑖𝑜2 and 𝐴𝑙2𝑜3 nanoparticles are also shown 
in Table 5. 

Table 5. Thermo-physical properties of 𝐴𝑔, 𝑇𝑖𝑜2  
and 𝐴𝑙2𝑜3 nanoparticles [35]. 

Nanoparticle 
𝝆𝒏𝒑 

(kg/m3) 

𝑪𝒑,𝒏𝒑 

(J/kg. K) 

𝒌𝒏𝒑 

(W/m. K) 

Ag (Silver) 10490 238.64 429 

TiO2 (Titanium 
dioxide) 

4230 690 8.3 

Al2O3(Aluminiu
m dioxide) 

3950 785 30 

5. Validation 

In order to ensure the accuracy of the objective 
functions in codes, The obtained results based on 
Table 3 without optimizing are firstly compared 
with those reported in [1,33] that  shown in Table 
6 are set similar accordingly. The total cost 
function as the main function and  the final result, 
According to the reported total cost which is 
64480 (euro) and calculated total cost which is 
62276 (euro) that has an error of approximately 
3.5%. That is an acceptable deviation and can be 
seen in Table 6. 

Table 6. Comparison between values in reference [1,36] 
 and simulation results. 

Mean 
verage 
erro(%) 

Present 
results 

Refrence 
[1,36]  

Parameter 

0 0.894 0.894 ds(m) 

17 3.98 4.83 L(m) 

0 0.02 0.02 do(m) 

0 0.025 0.025 Pt(m) 

2.7 
934(467-
2Pass) 

918 Nt(m) 

0 0.356 0.356 Lbc(m) 

0.17 5.69 5.7 prt 

0.046 14932 14925 Ret 

7.29 3534 3812 hi(W/m2. K) 

3.64 6479 6251 ∆𝑝𝑡(𝑝𝑎) 

10.39 32070 35789 ∆𝑝𝑠(pa) 

0.35 5.0821 5.1 prs 

0.48 18292 18381 Res 

29.24 2033 1573 ho(W/m2. K) 

3.79 710 738 Uo(W/m2. K) 

3.043 237 230 A(m2) 

3.41 62276 64480 Ctot (Euro) 

6. Results and discussion 

As mentioned earlier, we optimized the three 
objective functions by three decision variables 
for a heat exchanger with two different 
conditions. 

For the first case study, the optimization 
results for the multi-objective Genetic, Particle 
Swarm and Jaya optimization algorithms can be 
seen in Figures 5 and 6. According to Figure 5, the 
results do not differ much from one another. 

It can also be found from the figure that as the 
heat transfer coefficient increases, the costs 
decrease. Surface elevation also has a range that 
is determined by the constraints. In other words, 
not all the points specified in the optimization 
graphs can be used. 

It can also be observed from Figure 6 that the 
optimization results of the Particle Swarm at a 
constant pressure drop showed better results 
than the Genetic algorithm. And the jaya 
algorithm results seems better than the Particle 
Swarm. It can also be seen that the optimization 
in the approximate range of 10 (kPa) to 40 (kPa) 
is economical due to the increasing cost. 

 

Figure 5. Comparison chart of three algorithms in terms of 
cost-overall heat transfer coefficient for case study 1. 

 

Figure 6. Comparison chart of three algorithms in terms of 
cost-pressure drop for case study 1. 
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Table 7 shows the results of each algorithm in 
overall heat transfer coefficient 710 (W/m2.k) 
and total pressure drop inside of the tube and 
shell. 

Table 7. Comparison between three optimization algorithms 
 and reported results in table 6. 

 
Present 
results 

MO-
GENETIC 

MOPSO MO-Jaya 

UO=710 
(W/m2. K) 

62276 (€) 61164 (€) 60852 (€) 60725 (€) 

Δptotal= 
38549(pa) 

62276 (€) 56788 (€) 56290 (€) 56145 (€) 

Based on the results, on average the Genetic 
algorithm improved by 9.66% compared to the 
present results, while the Particle Swarm 
algorithm improved by 10.63% compared to the 
present results and the Jaya algorithm improved 
by 10.9 compared to the genetic algorithm. 

The optimization results for the second case 
study can also be seen in Figures 7 and 8. 

Finally, due to the good performance of Jaya 
algorithm compared to the other two algorithms, 
this algorithm  is applied to investigate and 
optimize the 𝐴𝑔, 𝑇𝑖𝑂2 and 𝐴𝑙2𝑂3 nanofluids of 
various concentrations. Variation of the PEC 
factor for different Reynolds (for case 1) is 
demonstrated for various vol. concentration of 
Ag, TiO2 and Al2O3 nanofluids in Figure 9-11. 

 

Figure 7. Comparison chart of three algorithms in terms of 
 cost-overall heat transfer coefficient for case study 2. 

 

Figure 8. Comparison chart of three algorithms in terms of 
 cost-pressure drop for case study 2. 

 

Figure 9. Comparison the results of multi objective 
optimization for silver (Ag) nanofluid in 0.5%-5% volume 

concentration based on PEC factor for case 1. 

  
Figure 10. Comparison the results of multi objective 

optimization for titanium dioxide (TiO2) nanofluid in 0.5%-
5% volume concentration based on PEC factor for case 1. 

 

Figure 11. Comparison the results of multi objective 
optimization for aluminum oxide(Al2O3) nanofluid in 0.5%-

5% volume concentration based on PEC factor for case 1. 

 

Figure 12. Comparison the results of multi objective 
optimization for Ag, TiO2 and Al2O3 at 5% volume 

concentration for case 1. 
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In Figure 12, Variation of PEC for 5 vol. 
concentration of all considered nanofluids are 
shown. 

Nanofluids as the new generation of coolants 
are proved to increase both heat transfer and the 
flow pressure drop. As much as the first effect is 
desirable to improve the heat exchanger 
efficiency, the second effect is undesirable. In this 
regard the trend of PEC factor is very effective in 
optimal thermal and hydraulic management of 
the heat exchanger.  

By optimizing and then analyzing the results of 
heat exchanger according to the figures 7- 9, It is 
found that by increasing the nanofluid volume 
concentration in the constant Reynolds number, 
the PEC factor decreases, which means that the 
pressure drop decreases with increasing 
nanofluid volume concentration. Based on the 
results, the change in the Reynolds numbers at 
high Reynolds (for case 1 above 30000 and for 
case 2 above 15000) has no effect on the PEC 
factor, and at low Reynolds numbers the change 
in the Reynolds has significant effect on the PEC 
factor. Also, when the flow pressure drop is 
decision parameter, we can use the optimal point 
with PEC greater than one and when the flow 
pressure drop is not decision parameter, we can 
use the optimal point with PEC less than one. 
According to the figure 10 Silver nanofluid has 
more optimal points above PEC=1 and greater 
PEC value Comparison of to the titanium dioxide 
and aluminum oxide. Also according to figure 10,  
5 vol% of silver nanofluid with Reynolds number 
5000 for case 1 provides 5% higher PEC in 
comparison with pure water. While TiO2 and 
Al2O3 reduces PECs in comparison with pure 
water by about 19% and 21% respectively.  The 
values of PEC factor for case 1 at various volume 
concentration and Reynolds number 5000 are 
demonstrated in Table 8. 

Table 8. Increase/decrease percent of PEC factor for 
nanofluids at Reynolds number 5000 in comparison with 

pure water. 

Nanofluid 𝑨𝒈 𝑻𝒊𝒐𝟐 𝑨𝒍𝟐𝒐𝟑 

5% vol +5% -19% -21% 

4% vol +8% -11% -13% 

3% vol +18% +1.9% +15% 

2% vol +30% +15% +36% 

1% vol +48% +37% +49% 

0.5% vol +63% +56% +50% 

The same results for case 2 are also shown in 
Figures 13-16. 

 

Figure 13. Comparison the results of multi objective 
optimization for silver (Ag) nanofluid in 0.5%-5% volume 

concentration based on PEC factor for case 2. 

 

Figure 14. Comparison the results of multi objective 
optimization for titanium dioxide (TiO2) nanofluid in 0.5%-

5% volume concentration based on PEC factor for case 2. 

 

Figure 15. Comparison the results of multi objective 
optimization for aluminum oxide(Al2O3) nanofluid in 0.5%-

5% volume concentration based on PEC factor for case 2. 

 

Figure 16. Comparison the results of multi objective 
optimization for Ag, TiO2 and Al2O3 at 5% volume 

concentration for case 2. 
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According to the figures 13-16 for second case 
study, the PEC is less than one (PEC <1). Actually, 
in the second case study, nanofluids increase 
pressure drop more than heat transfer which is 
as a result of lower temperature difference and 
less increase in heat transfer Comparison of the 
increase in pressure drop Comparison of with the 
first case study. 

Conclusion 

Economic issues have been an integral part of 
the industry. Economic constraints have always 
prevented many industrial activities. On the 
other hand, the initial costs, including the cost of 
construction and the necessary accessories such 
as pumps and so on, and operational costs 
including maintenance costs, fuel costs and so on, 
are the most important and influential 
parameters in industries for the selection and use 
of heat exchangers. In this study, a shell and tube 
heat exchanger was optimized by three 
optimization algorithms to compare and achieve 
better results in the multi-objective form. In any 
case the cost was one of the functions. In the 
presented charts, all points were optimal points, 
so according to the constraints some special 
points should have been chosen. These 
limitations include cost, length of heat exchanger, 
and shell diameter and so on. Also, the range of 
cost changes is not significant according to 
changes in pressure drop or heat transfer 
coefficient. In most of the points, there is not 
much difference between the three optimization 
algorithms, but in the application points, based 
on the results of the algorithm performance, the 
Genetic algorithm, the Particle Swarm algorithm 
and the Jaya algorithm has improved the present 
results by 9.66%, 10.63% and 10.9 % 
respectively. Also in terms of optimization time, 
Jaya optimization algorithm had relatively less 
time than the other two algorithms, which in fact, 
reduces computational costs in complex 
computations; that's a pretty big advantage on 
complex issues. 

Finally, due to the good results of Jaya 
optimization algorithm compared to the other 
two algorithms, it has been employed to optimize 
the nanofluids in designing the heat exchanger 
based on PEC factor. The PEC coefficient is an 
effective criterion for simultaneous assessment 
of heat transfer and pressure drop. Actually, for 
the PEC factors more than one the increase in 
heat transfer coefficient by nanofluid is more 
than the corresponding pressure drop 
enhancement. By optimizing and analyzing the 
results, it was found that by increasing the 
nanofluid volume concentration in the constant 

Reynolds number, the PEC factor decreases, 
which means that the pressure drop increasises 
with increasing nanofluid volume concentration 
and the increase in pressure drop is greater than 
the increase in heat transfer coefficient. Based on 
the results, the change in the Reynolds numbers 
at low numbers has a greater effect on the PEC 
factor, and at high Reynolds numbers (for case 1 
above 30000 and for case 2 above 15000) the 
change in the nanofluid volume concentration 
has no effect on the PEC factor. Also, when the 
flow pressure drop is a decision parameter, the 
optimal point with PEC greater than one can be 
chosen and when the flow pressure drop is not a 
decision parameter, the optimal point with PEC 
less than one is chosen. In fact, the nanofluid was 
optimized in heat exchanger and based on the 
results we should choose volume concentration 
and nanofluid based on conditions and geometry 
which means simultaneous optimization of 
nanofluid and heat exchanger according to 
conditions and limitations. Also it was observed 
that silver nanofluid has more optimal points 
above PEC=1 and greater PEC value Comparison 
of to the titanium dioxide and aluminium oxide. 
And finally at a constant volume concentration of 
5% and Reynolds number 5000, the obtained PEC 
of case 1 in comparison with pure water, was 5% 
higher, 19% lower and 21% lower for Ag, TiO2 
and Al2O3 nanofluids respectively. 

Nomenclature 

Ao,cr 
flow area at or near the shell 
centerline for one cross flow 
section (m2) 

Ao,sb 
shell-to-baffle leakage flow area 
(m2) 

Cin total investment cost (€) 

Co annual operating cost (€/year) 

Cop total operating cost (€) 

cp 
specific heat at constant pressure 
(J/kg. K) 

Ctotal 

dh 
total cost (€) 
Hydraulic diameter (m) 

di tube side inside diameter (m) 

do tube side outside diameter (m) 

Dotl tube bundle outer diameter (m) 

ds shell diameter (m) 

F 
correction factor for the number 
of tube passes (–) 

hi 
tube side heat transfer coefficient 
(W/m2. K) 

ho 
Shell side heat transfer coefficient 
(W/m2. K) 

𝜆 annual discount rate (%) 

J 
correction factor for the shell side 
heat transfer 
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k thermal conductivity (W/m. K) 

kel 
price of electrical energy ($/kW 
h) 

L tube length (m) 

Lbc central baffles spacing (m) 

�̇� mass flow rate (kg/s) 

Nb number of baffles (–) 

np number of tube passes (–) 

Ns 
number of shells connected in 
series 

Nt number of tubes (–) 

ny equipment life (year) 

P 
PEC 

pumping power (W) 
performance factor of nanofluids 

Pr Prandtl number (–) 

Pt tube pitch (m) 

Q heat transfer rate (W) 

Re Reynolds number (–) 

Ri,f 
fouling resistance shell side (m2. 
K/W) 

Ro,f 
fouling resistance shell side (m2. 
K/W) 

Rb pass correction factor 

Rl 

Rs 

 

leakage correction factor 
correction factor entrance and 
exit section 

S heat transfer surface area (m2) 

T temperature(°C) 

U 
overall heat transfer coefficient 
(W/m2. K) 

𝑣 velocity(m/s) 

Xl 
transverse(perpendicular to the 
flow) tube pitch 

Greek 
symbols 

 

𝜏 
hours of operation per year 
(h/year) 

∆𝑝 pressure drop (Pa) 

𝜇 dynamic viscosity (Pa. s) 

𝜌 density (kg/m3) 

𝜂 pump efficiency (–) 

∆𝑇𝑙𝑚  log-mean temperature difference 

∅ volume concentration 

Subscripts  

bf base fluid 

nf nanofluid 

np nanoparticle 

MO Multi objective 

i inner 

o Outer 

s shell side 

t tube side 

w tube wall 
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