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Abstract

This paper aims to measure the effect of the volatility on the daily closing price for the (Iraqi dinar
against US dollar) from (21 July 2011) until (21 July 2021) using the models of asymmetric general
autoregressive conditional heterogeneity (APGARCH and AVGARCH). The parameter estimated
by Maximum Likelihood Estimation method and the error term assumed two distributional (Gen-
eral error distribution and Student’s t distribution), the results showed that the APGARCH(1,2)
with error term distributed (Student’s t) distribution is the best model for the return series of the
(IQ/USD) exchange rate to get the lowest value according to the information criteria for determining
ranks (AIC, BIC) in addition to the presence of the asymmetric effect of the leverage, and this is
evidence that negative shocks affect volatility more than positive shocks (the impact of the positive
shocks is less than the impact of the negative shocks).
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1. Introduction

The topic of modeling the volatility of financial returns has received a great deal of interest from
researchers , Many investors accept relatively low returns in order to avoid investments with high
risks, , The appropriate modeling of the volatility of financial returns is able to lead to obtaining ac-
curate predictions of volatility, so it was very important to develop suitable models for the volatility
of financial returns that It takes into account the asymmetry of volatility (that is, the volatility are
in a positive and negative direction), in addition to the thickness of the tails of the non- Gaussian
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distribution . one of the most prominent of these models for capturing changes is the asymmetric
(GARCH) models. In this study we using two of these models on the exchange rates of the local
currency (the Iraqi dinar against the US dollar) for the period from (22/7/2011) until (22/7/2021)
due to the deterioration and instability that it witnessed Currency value During the study period
and through the stages of analysis of the returns series (diagnosis, estimation, determination of the
rank, examination of suitability) to the selection of the appropriate model, which gives more ac-
curate results in prediction. Time series occupies wide areas in our lives, especially the economic
fields, specifically the financial ones. Hence, interest began in studying financial time series, which
are often characterized by the feature of instability or volatility, meaning that there are periods of
time fluctuations followed by periods of relative calm. In order to address this, it was necessary to
use statistical models that take into account these fluctuations and try to explain them, and these
models are non-linear (ARCH) models, which are known as autoregressive models conditioned by
the heterogeneity of variance, which were proposed by the researcher (Robert. Engle, 1982)[8] in A
study on the estimation of inflation variance in the United Kingdom to fill in the shortfall of the
ARIMA linear models,This model is built on the basis of the autoregressive representation of the
conditional variance, that is, the size of the variance of the current error term is considered dependent
on the representations of the square error limits of the previous periods, and it has been relied on the
hypothesis of the normal distribution of errors. In 1986 the researcher (Bollerslev) [2] proposed the
generalized nonlinear ARCH model or the conditional autoregressive model of generalized variance
heterogeneity (GARCH for short). Where he applied these models using the (t-student) distribu-
tion. The researchers continued to apply these models using distributions other than the normal
distribution, including the researcher (Fereland, 2006), who applied these models using the (Poisson)
distribution, and we also mention (Zhu & Fokianos, 2011) who employed the (Negative Binomial)
distribution. Despite the importance of these models, they were subjected to many criticisms by some
economists such as (Nelson, 1991)[16] and (Cao & Tsay, 1992), especially with regard to determining
the relationship between the random error square and the conditional variance. This relationship is
achieved only in cases where the changes of the phenomenon Studied in the same direction and the
same size of impact, but in cases characterized by fluctuations in opposite directions, these models
cannot take into account these fluctuations, and all these criticisms led to the emergence of many
other models from GARCH that take into account the various positive and negative effects of shocks,
including Asymmetric Generalized Autoregressive Conditional Heterogeneity Models and its acronym
(Asymmetric GARCH), which was the beginning of transformation in the field of applied economic
measurement.

This paper attempt to study the characteristics exchange rate of volatility of the daily data for
(Iraqi dinar against US dollar ) for the period (21/7/2011) until (21/7/2021) by studying (AVGARCH
& APGARCH) models. the error term assumed tow distributions (Student-t distribution and General
error distribution) .

2. Material and methods of analysis

2.1. Data for analysis

The research data represent the daily closing price of the (IQ/USD ) index for the period from
21/7/2011 until 21/7/2021 ,That’s about (3439) views . after it was transferred to the return series
through the next formula :

zt = ln (pt)− ln (pt−1) (2.1)

Where zt is the return series , pt is the price of the current day and pt−1 is the price of the previous
day.
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2.2. Unit root test: Philips Peron test [17]

Approved test to determine whether the series in Equation (2.1) stationary or it has a unit root,
through the following formula :

t∗p̂ =
√
k
p̂− 1

σp̂
+

T (k − 1)σp̂√
k

(2.2)

and the hypotheses are given as the follows:

Ho : p = 0 (2.3)

H1 : p < 0 (2.4)

Where k = σt

s2t
, σt, s

2
t is the estimation of short-term and long-term variance respectively, T is the

sample size. the null hypotheses was accept if P value > α (α = 0.05) .

2.3. Jarque - Bera test [9]

This test depends on calculating the difference between the coefficients of skewness and kurtosis
for the time series, and its results are considered supportive of them. The null hypothesis was accept
if the error distributed normally. The statistic is :

JK =
N −K

6

(
S2 +

1

4
(K − 3)2

)
∼ x2α(2) (2.5)

Where k and S are kurtosis and skewness coefficient respectively, and the hypothesis are given as the
follows :

H0 :Normality (2.6)

H1 :non Normality (2.7)

2.4. Ljung-Box test [13]

It is used to test the autocorrelation error in the return series , The statistic was given by :

Q(m) = n (n+ 2)
m∑
k=1

p̂2k
n− k

∼ x2(m−p) (2.8)

Where n is the size of series , k is the number of time lags , p̂2k is the residual autocorrelation and
the hypothesis is :

H0 : p1 = p2 = . . . pk . . . . = pm = 0 ∀k = 1, 2, 3, . . . ,m (2.9)

H1 : pk ̸= 0 for some value of k (2.10)

We accept H0 and the residual are no serial correlations if P value greater than α significant .
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2.5. ARCH test [11]

We use this test to test the ARCH effect in the series ,and the statistic of this test are :

ARCHtest = T × R̂2 ∼ x2
p (2.11)

Where T is the total number of observation given by :

T = n− lag (2.12)

and R̂
2
based on Regression with the formula :

R̂2 =
SSR

SST
(2.13)

The arch test hypothesis is :

H0 =αi = 0 No ARCH effect (2.14)

H0 =αi ̸= 0 ARCH effect i = 1, 2, 3 . . . , q (2.15)

2.6. Asymmetric Power GARCH (APGARCH) [10]

This model was developed by Ding & Granger (1993) when they added the power parameter
instead of the square to allow to see the effect of the leverage (negative shocks) ,The conditional
variance equation is :

εt = σtzt ; σδ
t = ω +

p∑
i=1

αi (|εt−i| − γiεt−i)
δ +

q∑
j=1

βjσ
δ
t−j (2.16)

where (εt−i) is an identical independent series follows Normal distribution with zero mean and One
variance , (δ) is the leverage power and (γi) is the leverage effect and its value is 1 > γi < −1 . when
this value is equal to zero then the positive and the negative shocks is the same effect.

2.7. Asymmetric Absolute Value GARCH (AVGARCH) [1]

Taylor (1986) developed this model . as a tool for correlating the news impact curve with the
conditional volatility of the shocks and their impact on the conditional standard deviation within
the framework of an absolute value model. The conditional variance equation is:

εt = σtzt ; σt
2 = ω +

p∑
i=1

αi (|εt + b| − c (εt + b))2 +

q∑
j=1

βjσ
2
t−1 (2.17)

where (b) is the parameter of asymmetry in the small shocks which allows a shift in the impact curve
during rotation, and indicate to the effected of the random shock in the past period on the random
shock in this period, c is the rotation parameter which allows rotation during the shift and indicated
to the large shocks and εt−1 is identical independent series distributed Normal with zero mean and
One variance.
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2.8. Distribution assumptions of error term and estimation [6]

The volatility estimated in this paper depends on APGARCH and AVGARCH models with the
lower rank (p = 1, q = 1, p = 1, q = 2, p = 2, q = 1, p = 2, q = 2) assuming three distributions of
random error ( Normal , Students- t , General error distribution ) and The models were estimated
using Maximum Likelihood Estimation method .the mathematical formula is :

L(θ) =
n∑

t=1

Jt(θ) (2.18)

log(Lθ) = −1

2

T∑
t−1

ln(2π) + lnσt +
(ε2t )

σt

(2.19)

i – The log likelihood with Normal distribution is :

Jt (θ) = −1

2
log (2π)− 1

2
log

(
σ2
t

)
− 1

2

(
ε2t
σ2
t

)
ii –The Log Likelihood with General error distribution is

L (θ) = n

[
log

(
v

λv

)
−

(
1 +

1

v

)
log (2)− logΓ

(
1

v

)
−1

2

n∑
t=1

log
(
σt

2
)
− 1

2

n∑
t=1

σ−v
t

∣∣∣∣ εtλv

∣∣∣∣v
]

(2.20)

where v < 2 is the shape parameter controls the tail behavior
iii -The Log Likelihood with Student’s-t distribution is :

L (θ) =n

[
log Γ

(
v + 1

2

)
− log Γ

(v
2

)
− 1

2
log π (v − 2)

]
−1

2

n∑
t=1

log
(
σ2
t

)
+ (v + 1) log

[
1 +

z2t
σ2
t (v − 2)

]]
(2.21)

where v > 2 the tail behavior based on it.

3. Result and discussion

3.1. The data

Figure 1 represent series of daily closing price for (IQ/USD) from 21/7/2011 to 21/7/2021.

3.2. Descriptive Statistics

The statistical results in Table 1 indicate that there is a difference in the lowest and highest
exchange rates for IQ/USD Return Series . The standard deviation values were close to zero, which
indicates a low level of dispersion returns at the exchange rate. In addition, it has high kurtosis
values in the positive direction , this indicates that the volatility increase in the positive direction .

3.3. Unit root test

We use Philips Peron test to investigate the stationary properties of the log return series . the
result in the Table 2 show that all of the P value are less than the level of significance (α = 0.05)
and this indicates that the return series for exchange rates is stationary , and therefore rejects the
null hypothesis that there is a unit root problem .
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Figure 1: Daily closing price for (IQ/USD) Figure 2: Daily return series for (IQ/USD)

Table 1: Descriptive Statistics

Descriptive Statistics
42631 Jarque- Bera
2.2e-16 Prob.
0.005 Std.Dev
0.157 Skeweness
20.253 Kurtosis
0.000 Mean
-0.003 Min
0.000 Median
0.041 Max

Table 2: Unit root test- Philips Peron test

ARCH-LM test
Lags P value Chi squared–Statistics
5 2.2e-16 630.27
15 2.2e-16 919.85
20 2.2e-16 958.35
25 2.2e-16 991.78
30 2.2e-16 1024

Table 3: ARCH-LM test for return series of (IQ/USD) exchange rate

Test Type of model Test statistics P value

Philips Peron
No drift no trend -3667 0.01
With drift no trend -3665 0.01
With drift and trend -3665 0.01

3.4. Testing for ARCH effects

The result of using ARCH-LM test in the Table 3 show that the P value is less than 0.05 . This
indicates that there is a serial correlation in the return series residual and thus the existence of an
ARCH effect in the return series residual.
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3.5. Estimation result

The Tables 4, 5 shows the result estimation for AVGARCH and APGARCH models assuming
three distributions of the error term (Normal , Students- t , General error distribution ) for return
series of IQ/USD or return series of turn series table exchange rate.

Table 4: estimation result for AVGARCH model
Distribution Order

Coefficient of AVGARCH
ω σ α1 α2 β1 β2 c1 c2 b1 b2 v

Normal

(1,1) 0 0 0.331 – 0.786 – 0.570 - -1.225 - -
P value 1e-06 0e+00 0e+00 - 0e+00 - 0e+00 - 0e+00 - -
(1,2) 0 0 0.453 – 0.055 0.643 0.526 - -1.112 - -

P value 0.00018 0.000 0.000 – 0.000 0.00 0.000 – 0.00 – –
(2,1) 0 0 0.270 0.102 0.417 – 0.182 0.608 -1.069 1.806 –

P value 0.03475 0.0000 0.00000 0.00000 0.00000 - 0.00000 0.0000 0.00000 0.0000 -
(2,2) 0 0 0.233 0.100 0.421 0 0.053 0.744 -0.984 1.791 -

p value 0.04025 0 0 0 0 1 0.01766 0 0 0 -

GED

(1,1) 0 0 0.050 - 0.9 - 0.02 - 0.05 - 2
p value 0.44382* 0 0 0 0 - 0 - 0 -0
(1,2) 0 0 0.05 - 0.450 0.450 0.450 - 0.05 - 2

p value 0 0.5173* 0 - 0 - 0 - 0 - 0
(2,1) 0 0 0.025 0.025 0.9 - 0.010 0.010 0.025 0.025 2

p value 0 0.6017* 0 0 0 - 0 0 0 0 0
(2,2) 0 0 0.025 0.025 0.450 0.450 0.010 0.010 0.025 0.025 2

p value 0 0.589* 0 0 0 0 0 0 0 0 0

Student t

(1,1) 0 0 0.599 - 0.158 - -0.284 - 0.468 - 2.140
p value 0.98362* 0.9730* 0 - 0 - 0 - 0 - 0
(1,2) 0 0 0.7 - 0.136 0.087 -0.510 - 0.571 - 2.168

p value 0.98671* 0.9827* 0 - 0 0 0 - 0 - 0
(2,1) 0 0 0.795 0.006 0.221 -0.373 0.175 0.045 -9.374 - 2.121

p value 0.9909* 0.9645* 0 0 0 0 0 0.00001 0.01157 - 0
(2,2) 0 0 0.958 0.006 0.204 0.072 -0.186 -0.464 0 5.337 2.128

p value 0.9905* 0.9639* 0 0 0 0.00273 0 0 0.8563* 0 0

*Indicates of significance at level 0.05.
From the Table 4, all the parameter of AVGARCH for Normal distribution are significant, for General
error distribution we note all the parameter are significant except the parameter ω in the rank (1,1)
and the parameter σ in the ranks [(1, 2) , (2, 1) , (2, 2)] , for the Student t note that all parameter are
significant except ω and σ for all ranks and (b1) in the order (2,2) , finally, the asymmetric effect
appears clearly in all distributions and ranks .

Table 5: estimation result for APGARCH model
Distribution Order

Coefficient
ω σ α1 α2 β1 β2 γ1 γ2 δ v

Normal

(1,1) 0 0 0.66 – 0.916 – -0.193 - 2.297 -
P value 0.9626* 0.9959* 0 - 0 - 0.00004 - 0 -
(1,2) 0 0 0.107 – 0.357 0.510 -0.116 - 2.272 -

P value 0.8937* 0.9530* 0 – 0 0 0.00046 – 0 –
(2,1) 0 0 0.042 0.018 - 0.905 -0.163 0.862 2.232 -

P value0.3923* 0.9802* 0 0 - 0 0 0 0 -
(2,2) 0 0 0.060 0.035 0.361 0.507 -0.239 0.567 2.208 -

p value 0.00812 0.9971* 0 0 0 0 0.00003 0 0 -

GED

(1,1) 0 0 0.050 - 0.9 - 0.05 - 2 2
p value 0 0.4901* 0 - 0 - 0 - 0 0
(1,2) 0 0 0.05 - 0.450 0.450 0.05 - 2 2

p value 0 0.5618* 0 - 0 0 0 - 0 0
(2,1) 0 0 0.025 0.025 0.9 - 0.025 0.025 2 2

p value 0 0.5779* 0 0 0 - 0 0 0 0
(2,2) 0 0 0.025 0.025 0.450 0.450 0.025 0.025 2 2

p value 0 0.5964* 0 0 0 0 0 0 0 0

Student t

(1,1) 0 0 0.593 - 0.413 - -0.360 -0.360 0.957 2.193
p value 0.9679* 0.9992* 0 - 0 - 0 0 0 0
(1,2) 0 0 0.778 - 0.114 0.099 -0.182 -0.182 0.919 2.173

p value 0.98671* 0.9827* 0 - 0 0 0 0 0 0
(2,1) 0 0 0.617 0.038 0.366 - -0.346 0.326 1.038 2.132

p value 0.9909* 0.9645* 0 0.000038 0 - 0 0.2999* 0 0
(2,2) 0 0 0.680 0.040 0.138 0.140 -0.233 0.226 0.999 2.149

p value 0.9905* 0.9639* 0 0 0.00001 0 0 0..00195 0 0

* Indicates of significance at level 0.05
From the Table 5, all the parameters of APGARCH model are significant for Normal distribution

except the parameters ω and σ are not significant, in addition to the appearance of the leverage
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effect , for General error distribution we also noticed that the Presence of leverage effect and all
the parameters was significant except the parameters σ, finally for the Student t distribution all the
parameters significant except the parameters ω and σ in the all ranks , In addition to the parameter
γ2 in the rank (2,1) it’s also not significant .

3.6. Selecting the best model [4]

The best model is chosen to be predicted based on (Akaike , BIC , Drapers) information criteria
and the logarithm of the function of the Maximum Likelihood , as the best rank corresponds to the
lowest value among the criteria and the largest value for the Log Likelihood. the results in the Table
6 shows that the best model is APGARCH with rank (1,2) as it has obtained the lowest value for
the information criteria (AIC,BIC) and the largest value for the Log Likelihood based on (Student t
distribution ), followed by AVGARCH with rank (2,2) according to (DIC) information criteria and
the Log Likelihood based on Student- t too.

Table 6: information criteria to select the best model for return series of (IQ/USD) exchange rate
AIC BIC DIC LLH AIC BIC DIC LLH AIC BIC DIC LLH

AVGARCH

(1,1) -9.565 -9.555 -20.582 16439.5 -7.070 -7.058 -19.923 12154.08 -11.492 -11.479 -24.345 19750.18
(1,2) -9.610 -9.598 -22.463 16517.81 -6.995 -6.981 -21.684 12025.8 -11.541 -11.527 -26.230 19836.28
(2,1) -9.651 -9.635 -26.176 16589.49 -7.196 -7.178 -25.557 12373.15 -11.668 -11.651 -30.029 20056.4
(2,2) -9.650 -9.632 -28.011 16588.56 -6.835 -6.815 -27.032 11753.03 -11.730 -11.710 -31.927 20162.51

APGARCH

(1,1) -9.569 -9.558 -20.585 16444.89 -7.157 -7.147 -20.012 12306.99 -11.618 -11.606 -24.471 19967.16
(1,2) -9.593 -9.580 -22.445 16486.93 -6.208 -6.194 -20.897 10674.18 -11.770 -11.756 -26.459 20229.54
(2,1) -9.562 -9.547 -24.250 16434.99 -7.155 -7.139 -23.680 12301.41 -11.687 -11.671 -28.212 20086.94
(2,2) -9.585 -9.569 -26.110 16476.02 -6.206 -6.188 -24.567 12306.99 -11.637 -11.619 -29.998 20002.2

3.7. Diagnostic checking

Diagnostic tests for the models are based on standard residual of the return series. Table 7 shows
that all P value more than 0.05 and that’s mean there’s no autocorrelation in the standard residual
of the return series for (IQ/USD) exchange rate .

Table 7: Ljung- Box test for the best models
Model AVGARCH APGARCH
Lags P value Test statistics P value Test statistics
5 0.9999998 0.01707289 0.9999998 0.007313824
15 1 0.02198543 1 0.0220046
20 1 0.02899410 1 0.02921324
25 1 0.03480457 1 0.03573311
30 1 0.04175330 1 0.04297038

Table 8 shows the ARCH (L M) test ,we note that P value greater than 0.05 that’s refers to there
is no heterogeneity in the standard residual of the return series for (IQ/USD) exchange rate .

Table 8: ARCH (LM) test for the ARCH effect to the best model
Model AVGARCH APGARCH
Lags P value Test statistics P value Test statistics
5 1 0.007311309 1 0.010268
15 1 0.022118 1 0.022137
20 1 0.030673 1 0.029549
25 1 0.03519 1 0.036143
30 1 0.042313 1 0.043573
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3.8. Forecasting

For the forecasting in the period of the (IQ/USD) exchange rate we employ the dynamic method
of APGARCH (1,1) and AVGARCH (2,2) with Students t distribution using statistic forecast ( MSE,
MAE, RMSE ). The best model has the lowest value of the test values.

Table 9: statistic forecast for best model
Models MSE MAE RMSE
AVGARCH (2,2) 5.767507e-10 2.76847e-06 2.400813e-05
APGARCH (1,2) 2.022716e-10 1.555608e-06 1.421987e-05

Table 9 show that APGARCH (1,2) with students t distribution has the lowest value in the all
tests , which indicates the preference of the model APGARCH(1,2) over the model AVGARCH (2,2).

4. Conclusion

This study focuses on the modeling for the volatility in the return series of the exchange rate for
the Iraqi dinar against US dollar, and it concluded that the return series not following the normal
distribution, the model APGARCH (1,2) with error term Students’ t distribution is the best model
as it obtained the lowest values according to the information criteria (AIC & BIC ) and the greatest
value of the (MLE), followed by the AVGARCH (2,2) according to (DIC) information criteria .The
presence of the effect of financial leverage has also appeared and that’s mean the stock price effected
by the negative shocks more than positive shocks, this indicates the existence of the asymmetric
effect and that volatility are affected by negative shocks more than positive shocks (the impact of
the positive shocks is less than the impact of the negative shocks).
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[12] D. Li, S. Ling and J.M. Zaköıan, Asymptotic inference in multiple-threshold double autoregressive models, J.

Econometrics 189(2) (2015) 415–427.
[13] N.G. Ljung and G. Box, On the measure of lack of fit in time series models, Econometrica 65(2) (1978) 297–303.



3038 Abdulla, Alwan

[14] U.R.A.L. Mert, Generalized asymmetric power arch modeling of national stock market returns, Sosyal Ekonomik
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