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Abstract— Optimal Reactive Power Dispatch (ORPD) is an 

essential subject in the economic operation of power systems. This 

issue is generally an optimization constrained problem satisfying 

the dominant control parameters. Due to the non-linear nature of 

the ORPD problem, solutions include several optima, and 

deterministic methods may lead to poor performance. On the other 

hand, the diversity and stochastic nature of electrical loads, arising 

from renewable energy penetration in the power system create 

significant challenges in solving this problem. Therefore, stochastic 

methods are required to find the appropriate solutions. In this 

paper, the Monte Carlo Simulation (MCS) is used to model the 

uncertainty of loads. Static modeling methods implement the type 

of load modeling. The polynomial ZIP method is applied to solve 

the ORPD problem for the first time. Optimizing the control 

parameters by applying the Grey Wolf Optimization (GWO) and 

based on the IEEE 30-bus standard as a general model is 

performed. Due to this, in the proposed method, the minimum 

voltage level will be 0.4 per unit less than the other methods. Also, 

the rate of system losses is improved by 7.61% compared to the 

base-case network, but compared to the other methods, regardless 

of the load model, it has a 10.76% higher loss rate. The simulation 

results show that the load models have a significant effect on the 

ORPD problem, and this concept is completely and directly 

transferred to the operation of the power system, and power 

system stability, accordingly. 

 

Index Terms— Optimal Reactive Power Dispatch (ORPD), 

Uncertainty, Load Model, Monte Carlo Simulation (MCS), Grey 

Wolf Optimization (GWO), Power Losses. 

I.  INTRODUCTION 

owadays, by developing different trends in power systems, 

shifting and reconstruction of market mechanisms in the 

power industry, the importance of auxiliary services such as 

reactive power service is increasing more and more. The power 

system operator should optimally provide the reactive power 

service to establish the system's security. This is mainly due to 

the fact that the reactive power is an essential auxiliary service 

that makes possible the scheduled generation of electrical 

power. Generally, the appropriate distribution of reactive power 

among its supplier can significantly impact the security and 

efficiency of the power network [1-5]. 

The ORPD problem affects the optimal operation of the 

power system, and it is an essential issue in power system 

studies [2, 3]. The precise solution of this problem leads to 
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optimal usage of reactive power compensation problem in order 

to achieve the problem objectives such as loss reduction, 

minimizing the investment cost (costs of purchase, installing, 

and maintenance of new sources of reactive power), voltage 

profile smoothing, and maximizing the voltage stability margin 

in the normal operating state or after being exposed to an un-

normal condition [1-6]. The most important constraints and 

parameters requiring control and regulation in this problem are: 

load constraints: includes active and reactive power distribution 

equations also known as load distribution equations; and 

operational constraints: including the reactive output power of 

generators and synchronous compensators, transformer on-load 

tap changers, and the capacity of parallel capacitors. 

This problem has a non-linear mixed-integer optimization 

structure [4-8]. Any form of variations in relevant variables 

might affect the network voltage level, the reactive power of 

generators, and electrical losses. Hence, it is required that 

variables be limited to minimize the power losses [4-8]. Based 

on the no convexity nature of the ORPD problem, deterministic 

and traditional algorithms cannot be applied to solve it. 
In power system studies, applying a precise model of the 

loads, to find realistic results is essential. The precision and 

complexity of the load model are determined by considering the 

horizon of system studies and the relevant technical constraints. 

Generally, the simplified constant power model is used to fully 

model the load. Linearization methods to consider the non-

linear variations of load are not acceptable. For this reason, and 

to model the diversity and span of loads due to uncertainty, 

presenting a comprehensive model is difficult. Hence, multiple 

methods, including static and dynamic modeling [9, 10] are 

suggested. Also, several CIGRE reports have addressed the load 

remodeling in [11]. One of this research team's main challenges 

was determining the desirable load model for the diverse static 

and dynamic studies. A questionnaire was made for this purpose 

and was sent to 160 operating units in more than 50 countries of 

five continents. According to the presented reports, considering 

the importance of load modeling, the ZIP model is used as the 

static, and the motor load is used as the dynamic load in most 

locations of the world. Presenting an inappropriate model for 

load, causes the difference between the simulation results and 

the measured results. Considering the addition of electronic and 
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non-linear loads into the modern power systems, revealed the 

importance of accurate load modeling. 

The load modeling is an essential concept in power systems 

planning, and as the literature review shows, enough attention 

is not paid to it in the ORPD problem. The current paper 

investigates the effect of static voltage-dependent load models, 

including constant impedance, current, and power, on the 

ORPD problem. The ZIP model is also used to consider 

different load modes and their impacts, to determine the best 

control parameters in solving the ORPD problem. Also, due to 

the variety of loads in power systems, different load categories, 

namely constant impedance, current, and power, considering 

their uncertainty, have been used. In this study, the frequency-

dependent load model is neglected due to the complexity of the 

problem. Different load models have been investigated using 

the MCS method to clarify the effectiveness of different control 

variables more accurately. 

 

II.  PROBLEM FORMULATION 

A.  The ORPD problem formulation 

Considering that minimizing the real power loss in the 

distribution system is a crucial objective, the objective function 

of ORPD problem is expressed as equation (1) [1-5]. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃𝐿𝑜𝑠𝑠 = ∑ 𝐺𝑘(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠𝛿𝑖𝑗)

𝑁𝑙

𝑘=1

 (1) 

 

Gk is the conductance of line k between i and j buses. Nl is 

the number of distribution lines, Vi is the voltage at the i bus, 

and 𝛿𝑖𝑗  is the angle difference between the i and j buses. 

Minimizing the objective function (1) depends on the 

satisfaction of constraints (equality and inequality constraints). 

The equality constraints are the active and reactive power 

equalities (2) and (3): 

 

𝑃𝐺𝑖
− 𝑃𝐷𝑖

− 𝑉𝑖 ∑𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝛿𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝛿𝑖𝑗) = 0

𝑁𝐵

𝑗=1

  (2) 

𝑄𝐺𝑖
− 𝑄𝐷𝑖

− 𝑉𝑖 ∑𝑉𝑗(𝐺𝑖𝑗𝑠𝑖𝑛𝛿𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠𝛿𝑖𝑗) = 0

𝑁𝐵

𝑗=1

  (3) 

 

These two constraints are the equality of the reactive and 

active powers in load modeling as ZIP polynomial in equations 

(4) and (5). 

 

𝑃𝐺𝑖
− 𝑃𝐷𝑖

(𝑍𝑝 (
𝑉

𝑉0
)
2

+ 𝐼𝑝 (
𝑉

𝑉0
) + 𝑃𝑝)

− 𝑉𝑖 ∑𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝛿𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝛿𝑖𝑗)

𝑁𝐵

𝑗=1

= 0 

(4) 

𝑄𝐺𝑖
− 𝑄𝐷𝑖

(𝑍𝑞 (
𝑉

𝑉0
)
2

+ 𝐼𝑞 (
𝑉

𝑉0
) + 𝑃𝑞)

− 𝑉𝑖 ∑𝑉𝑗(𝐺𝑖𝑗𝑠𝑖𝑛𝛿𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠𝛿𝑖𝑗)

𝑁𝐵

𝑗=1

= 0 

(5) 

 

In the above-mentioned equations, NB is the number of 

system buses, 𝑃𝐺𝑖
 and 𝑄𝐺𝑖

 are the active and reactive powers 

generated in bus i, 𝑃𝐷𝑖
 and 𝑄𝐷𝑖

 are the active and reactive 

powers consumed in bus i, 𝐺𝑖𝑗 and 𝐵𝑖𝑗  are the real and imaginary 

parts of the admittance matrix of buses i and j, respectively. 

Inequality constraints are included the limitations expressed 

in equation (6) to (12): 

 

𝑃𝐺𝑠𝑙𝑎𝑐𝑘

𝑚𝑖𝑛 ≤ 𝑃𝐺𝑠𝑙𝑎𝑐𝑘
≤ 𝑃𝐺𝑠𝑙𝑎𝑐𝑘

𝑚𝑎𝑥  
 

   (6) 

𝑄𝐺𝑖

𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖
≤ 𝑄𝐺𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ 𝑁𝐺 
 

   (7) 

𝑉𝐺𝑖

𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖
≤ 𝑉𝐺𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ 𝑁𝐺 
 

   (8) 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ 𝑁𝑇 
 

   (9) 

𝑄𝐶𝑖

𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖
≤ 𝑄𝐶𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ 𝑁𝐶 
 

 (10) 

𝑉𝐿𝑖

𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖
≤ 𝑉𝐿𝑖

𝑚𝑎𝑥, ∀𝑖 ∈ 𝑁𝑄 
 

 (11) 

|𝑆𝑙𝑖| ≤ 𝑆𝑙𝑖
𝑚𝑎𝑥, ∀𝑖 ∈ 𝑁𝑙 (12) 

 

NG, NT, NC, and NQ represent the number of generators, 

transformers, reactive power compensation sources and load 

buses, respectively.  𝑃𝐺𝑠𝑙𝑎𝑐𝑘
, 𝑃𝐺𝑠𝑙𝑎𝑐𝑘

𝑚𝑎𝑥 , and 𝑃𝐺𝑠𝑙𝑎𝑐𝑘

𝑚𝑖𝑛  define the 

active power, the maximum and minimum active powers of the 

slack generator,  𝑄𝐺𝑖
, 𝑄𝐺𝑖

𝑚𝑎𝑥 and 𝑄𝐺𝑖

𝑚𝑖𝑛 respectively represent the 

amount of reactive power, the maximum and minimum reactive 

powers of the generator, V𝐺𝑖
،𝑉𝐺𝑖

𝑚𝑎𝑥and 𝑉𝐺𝑖

𝑚𝑖𝑛 describe the 

amount of generator voltage, maximum and minimum generator 

voltages, Ti, 𝑇𝑖
𝑚𝑎𝑥and 𝑇i

𝑚𝑖𝑛 present the amount of transformer 

tap-changer, the maximum and minimum transformer tap 

settings, 𝑄𝐶𝑖
، 𝑄𝐶𝑖

𝑚𝑎𝑥and 𝑄𝐶𝑖

𝑚𝑖𝑛  define the capacitance, the 

maximum and minimum capacity of the capacitor, 𝑉𝐿𝑖
, 𝑉𝐿𝑖

𝑚𝑎𝑥 

and 𝑉𝐿𝑖

𝑚𝑖𝑛 describe the load voltage, maximum and minimum 

load magnitude voltages, 𝑆𝑙𝑖
 and 𝑆𝑙𝑖

𝑚𝑎𝑥 are also indicate the 

capacity of the transmission line and its maximum transmission 

capacity. 

 

B.  Optimization algorithm 

In this paper, the GWO is used as the optimization algorithm, 

which is a nature-inspired algorithm based on the hierarchical 

modeling and social behavior of wolves when hunting [16]. 

This algorithm is also based on the initial population. In 

implementing this algorithm, four types of grey wolves 

including α, β, δ, and ω are used to simulate the leadership 

hierarchy in which three main steps of hunting (the food search, 
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surrounding it, and attack) is applied. In this hierarchy: 

 The leading wolves of the pack are known as α; 

 The β wolves help α ones in decision making and are also 

likely to replace them; 

 The δ wolves are inferior to β ones and have a lower 

contribution in the decision-making process; 

 Finally, the ω wolves are the lowest in the hierarchy with 

the lowest rights compared to the other members and have 

no contribution to decision-making. 

The optimization process is performed based on the moves 

of α, β, δ wolves. An α wolf is assumed as the main leader of 

the algorithm. A β and a δ wolf also contribute, and the other 

wolves are considered as their followers. 

Modeling the hunting and surrounding trend is as equations 

(13) and (14): 

 

(13) �⃗⃗� = |𝐶 . 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| 
(14) 𝑋 (𝑡 + 1) = 𝑋 𝑝(𝑡) − 𝐴 . �⃗⃗�  

 

In which C and A are vectors of the coefficients, 𝑋𝑝 is the 

location vector of the hunt, 𝑋 is the location vector of every 

wolf, and t is the number of iterations. Vectors A and C are 

calculated as: 

 

(15) 𝐴 = 2𝑎 . 𝑟 − 𝑎  
(16) 𝐶 = 2𝑟 2 

 

Components of a reduce from 2 to 0 linearly during 

consecutive iterations. 𝑟 and 2𝑟 are stochastic vectors in the 

space of [0,1]. 

The α and β wolves estimate the prey location and the other 

wolves update their location stochastically around the prey. 

When the wolves surround the prey, the attack commences 

with the leadership of the α wolf. Modeling this process is done 

by reducing the 𝑎 vector. Since A is a stochastic vector 

within[−2𝑎, 2𝑎], a coefficient vector reduces as the 𝑎 does. If 

|A| < 1, the α wolf approaches the prey and so do the others. If 

|A| > 1, the α wolf gets away from the prey and the other 

wolves. The GWO algorithm requires all wolves to update their 

location based on the population of α, β, and δ wolves. 

 

C.  Load modeling 

C.1. modeling the load uncertainty with the MCS method 

As the loads in power systems are uncertain, their accurate 

modeling for different operational conditions is very difficult 

and somewhat impossible. Using the probability distribution 

function can be considered as one of the most common methods 

for uncertainty modeling [4, 17]. But only using this method can 

not provide a suitable model of load. Therefore, using different 

techniques based on pdf, such as MCS seems necessary. MCS 

obtains more accurate results by relying on repeated sampling 

(for example, 10000 iterations). In this method, a sample of the 

expected model will be created in each iteration that represents 

a possible quantity for it in the future. With the mentioned 

purpose, in this study, to increase the accuracy in load modeling, 

the uncertainty of electric charges has been modeled using 

Gaussian and MCS normal distribution functions together. 

The probability function of this distribution has two 

parameters, one of which is the mean value (μ) and the other is 

the standard deviation (σ) of the load as shown in figure (1).  

 
Fig. 1.  The normal Gaussian distribution probability function. 

These parameters are calculated with equations (17) and 

(18). Assuming the average and standard deviation of the 

Probability Density Function (PDF) as 𝜇𝐷 and 𝜎𝐷, and by using 

equation (19), the probability of the load is obtained from at 

least 1000 iterations in the MCS method. 

 

(17) 𝜇𝐷 =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 

(18) 𝜎𝐷 = √
1

𝑁
∑(𝑥𝑖 − 𝜇𝐷)2
𝑁

𝑖=1

 

(19) 𝑃𝐷 = 𝑓(𝑥|𝜇𝐷, 𝜎𝐷) =
1

𝜎𝐷√2𝜋
𝑒

−(𝑥−𝜇𝐷)2

2𝜎𝐷
2

 

 

C.2. Load model 

In power system analysis, the system load is usually assumed 

as a mixture of domestic and industrial loads, as follows [4]: 

Induction motors form 55% to 77% of the entire load; 

Synchronous motors form 5% to 15% of the entire load; and 

Lighting and heating form 20% to 30% of the entire load. 

Constant current, impedance, and power and considering the 

dependence of power on voltage [6, 12]. In the case of a constant 

impedance load, the dependence of power on voltage is as of a 

grade 2 function; in case of a constant current, it is linear; and 

in case of constant power, there is no dependence on voltage. 

The ZIP model (equations (20) and (21)) is a polynomial model: 

Hence, the static features of the load can be classified into 

 

(20) 𝑃 = 𝑃0 (𝑍𝑝 (
𝑉

𝑉0
)
2
+ 𝐼𝑝 (

𝑉

𝑉0
) + 𝑃𝑝)   

(21) 𝑄 = 𝑄0 (𝑍𝑞 (
𝑉

𝑉0
)
2
+ 𝐼𝑞 (

𝑉

𝑉0
) + 𝑃𝑞)   

 

In which 𝑃0, 𝑄0, and 𝑉0 are the initial values of the studied 

system (rated conditions) and 𝑍𝑝, 𝐼𝑝, 𝑃𝑝, 𝑍𝑞, 𝐼𝑞 , and 𝑃𝑞  

coefficients are the parameters of the model. But to separately 

express each constant current, voltage, or power load model, we 

use (22) and (23) equations that demonstrate the dependence of 

power on voltage in the form of an exponential function [6, 7]. 
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(22) 𝑃 = 𝑃0 (
𝑉

𝑉0
)
𝛼

 

(23) 𝑄 = 𝑄0 (
𝑉

𝑉0
)
𝛽

 

𝛼 and 𝛽, are equal to the sensitivity coefficients of the active 

and reactive loads to voltage fluctuations in the operating point 

of the system (𝑃0, 𝑄0, and 𝑉0), and they are equal to 0, 1, or 2, 

in different load models. 

III.  THE PROPOSED ALGORITHM 

In figure (2), the flowchart of the proposed algorithm is 

given. In the optimization process, the program is done in 10000 

iterations both in the external loop and for load modeling in 

order to calculate the active power loss. In each iteration of the 

external loop (each MCS iteration), simulation and optimization 

of parameters of the ORPD problem are performed by creating 

a different load model by the MCS of the internal loop of the 

algorithm (the left side part). Eventually, estimation of the 

optimized parameters in the entire iterations of MCS is 

calculated and presented as the final parameters. 

Figure (2) presents the flowchart of the proposed method, in 

which, at first, the minimum and maximum values of each 

parameter in the ZIP model are obtained for 𝑍𝑝 ،𝐼𝑝 ،𝑃𝑝 ،𝑍𝑞 ،𝐼𝑞 , 

𝑎𝑛𝑑 𝑃𝑞 from the values presented in TABLE VI [13]. To 

calculate the coefficients of α and β in the static model, taking 

into account 𝑉 = (𝑉 𝑉0
⁄ ), and removing the common factors of 

𝑃0 and 𝑄0 in relations (20), and (21) for each combined load 

coefficient obtained in the reference [15], 13 values for 𝛼 and 𝛽 

used in formulas (22) and (23) concerning relations (24) and 

(25) result. These values are obtained for 10-step changes in 

voltage with 0.01 steps, from 0.95 to 1.05 per unit. The 

minimum and maximum values for α and β will be obtained by 

considering their average. 
 

(24) 𝛼 =
𝑙𝑜𝑔(𝑍𝑝(𝑉)2 + 𝐼𝑝(𝑉) + 𝑃𝑝)

𝑙𝑜𝑔(𝑉)  
 

(25) 𝛽 =
𝑙𝑜𝑔(𝑍𝑞(𝑉)2 + 𝐼𝑞(𝑉) + 𝑃𝑞)

𝑙𝑜𝑔(𝑉)  
 

 

Then, in each iteration of the MCS method, some 

probabilistic load models for the static and the ZIP models are 

placed in the obtained intervals to consider different load 

modes. In all probabilistic models, the constraints of 𝑍𝑞 + 𝐼𝑞 +

𝑃𝑞 = 1 and 𝑍𝑝 + 𝐼𝑝 + 𝑃𝑝 = 1 should be fully observed. 

 

A. The studied standard network 

The studied network is an IEEE 30-bus standard test system 

[10, 13 and 14]. This system consists of 6 power plants, 4 

transformers, 41 transmission lines, and 3 capacitive banks. The 

active and reactive power generated in this system are 

respectively 298.23 MW and 139.1 MVAR; the active and 

reactive power consumption are respectively 238.4 MW and 

126.2 MVAR; and the active power loss is 5.832 MW. 

Limitations of the control parameters of this system are 

introduced in TABLE I [4, 12]. 

 
Fig. 2.  Flowchart of the proposed method 

 

 

TABLE I 
Control Limitation of the Control Parameters of the System [8-10]. 

max

GV
(pu) 

min

GV
(pu) 

max

PQV

(pu) 

min

PQV

(pu) 

max

kT
(pu) 

min

kT
(pu) 

max

CQ
(Mvar) 

min

CQ
(Mvar) 

1.10 0.95 1.10 0.95 1.10 0.90 36 0 
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IV.  SIMULATION AND NUMERICAL RESULTS 

B. Numerical results 

As mentioned previously, the mission of ORPD in power 

systems is to detect control variables in order to minimize the 

objective function (25) (active power loss) considering the 

constraints mentioned in equations (30) to (36) of the system. In 

TABLE II, the optimum values of control parameters of 

different algorithms mentioned in references for constant power 

load are addressed. In TABLE III, the proposed algorithms' 

optimum values of control parameters are presented. In this 

table, the impact of three types of loads (constant impedance, 

current, and power) and combined using MCS-GWO 

(considering the uncertainty of load) and GWO (without 

considering the uncertainty of load) on the results of solving the 

reactive power optimum distribution is presented. The 

presented values for coefficients of the load model in TABLE 

III are expressed by averaging of load coefficients presented in 

[15]. 

 

C. Analysis of results 

Considering the results, it can be concluded that: 

 The voltage of generators: re-modeling the load of the 

power system greatly affects the precision of results of load 

dispatch. Inaccuracy in modeling will bring unauthentic 

and unreliable results. In case the load models used in the 

power system are not of enough precision, the results of the 

simulation will be different from the real response of the 

network. This will affect the analysis of the power system. 

Using the static model of ZIP and increasing the precision 

in load modeling causes the voltage magnitude generated 

in each generator to reduce by 0.05 pu on average. This 

issue is demonstrated in figure (3). 

 The size of capacitors: more precise modeling of load to 

constant power load ratio in the previous studies has caused 

the reactive power received by the initial capacitors of the 

system (close to the generators) to drop; a matter which is 

demonstrated in figure (4). This is because the voltage of 

busses in the presence of these capacitors is in the 

acceptable range which is shown in figure (5). 

 

 Tap-changers of the transformers: in this regard, 

according to figure (6) it can be concluded that unlike the 

two latter cases mentioned, tap-changers of the 

transformers have increased when compared to the constant 

power model. This is due to the low cost of operation and 

using the system's capacity, which imposes fewer 

challenges. 

 Loss: considering the results depicted in TABLE III and 

figure (7), it can be concluded that almost in both 

mentioned methods the loss fluctuation trend has been 

uniform in comparison to the load model; meaning that the 

constant power model and the constant current one have the 

maximum losses. Since a more precise load model is 

considered, the system loss is slightly increased. 

 

 

TABLE II 

Best Results of Control Variables and Power Loss of the IEEE 30-Bus Standard Test System for the Constant Power Model (α and β=0) 
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A
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VG1 (pu) 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 

VG2 (pu) 1.1000 1.0947 1.0946 1.0946 1.0949 1.0945 1.0945 1.0928 1.0931 1.0927 

VG5 (pu) 1.0747 1.0755 1.0753 1.0754 1.0707 1.0751 1.0753 1.0754 1.0741 1.0756 

VG8 (pu) 1.0867 1.0774 1.0773 1.0774 1.0730 1.0770 1.0773 1.0780 1.0779 1.0772 

VG11 (pu) 1.1000 1.1000 1.1000 1.0999 1.0650 1.0949 1.1000 1.0915 1.0913 1.1000 

VG13 (pu) 1.1000 1.1000 1.1000 1.1.000 1.0961 1.1000 1.1000 1.0994 1.0998 1.1000 

T6-9 (pu) 0.99 1.08 1.08 1.08 1.05 0.98 1.06 1.03 1.03 1.10 

T6-10 (pu) 1.05 0.90 0.90 0.90 0.90 1.03 0.92 1.01 1.01 0.90 

T4-12 (pu) 0.99 0.96 0.96 0.96 1.00 0.96 0.95 0.99 1.01 0.96 

T28-27 (pu) 0.96 0.96 0.96 0.96 0.97 0.96 0.96 0.98 0.97 0.96 

QC3 (MVar) 9.00 7.00 7.00 7.00 1.00 8.00 8.00 8.00 8.00 10.00 

QC10 (MVar) 30.00 25.00 25.00 25.00 26.00 31.00 26.00 34.00 26.00 35.00 

QC24 (MVar) 8.00 10.00 10.00 10.00 12.00 10.00 10.00 12.00 11.00 12.00 

Ploss (MW) 4.9135 4.8394 4.8394 4.8396 4.8215 4.8995 4.8672 4.8937 4.8701 4.8646 

* The reason for incompatibility of the final result (loss) of this table with the main references is the probable incompatibility of the studied 

network in terms of load dispatch. For match the network and the final result, the optimum parameters presented in this table should be set as 

the network data to present the loss results. 
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TABLE III 
Best Results of Controlling Variables and IEEE 30-Bus Standard Test System Losses in Proposed Methods 

Variables 
 

GWO 
 

MCS-GWO 
 Zp=0.98 

Zq=6.32 

    Ip=-1.19 

Iq=-10.43 

Pp=1.21 

Pq=5.11 

α and β 0 1 2 0 1 2 
 

 GWO (ZIP) MCS-GWO (ZIP) 

VG1 (pu)  1.1000 1.0989 1.0133  1.0997 1.0877 0.9963  1.0483 1.0471 

VG2 (pu)  1.0560 1.0482 0.9676  1.0766 1.0562 0.9687  1.0199 1.0255 

VG5 (pu)  1.0728 1.0683 0.9910  1.0775 1.0564 0.9659  1.0166 1.0216 

VG8 (pu)  1.1000 1.0988 1.0053  1.0900 1.0773 0.9728  1.0418 1.0406 

VG11 (pu)  1.1000 0.9674 0.9550  1.0762 0.9878 0.9682  0.9937 1.0142 

VG13 (pu)  1.1000 0.9501 0.9500  1.0875 0.9650 0.9517  1.0333 1.0247 

T6-9 (pu)  1.02 1.06 1.10  1.00 1.08 1.06  0.93 0.98 

T6-10 (pu)  0.90 1.09 1.05  0.98 1.05 1.05  0.98 0.97 

T4-12 (pu)  1.04 1.10 1.10  1.05 1.09 1.09  1.05 1.02 

T28-27 (pu)  0.98 1.08 1.05  0.99 1.08 1.08  0.97 0.95 

QC3 (MVar)  33.54 16.81 7.33  16.11 16.75 16.54  9.16 17.17 

QC10 (MVar)  25.58 13.13 2.45  15.80 16.21 16.53  22.57 17.18 

QC24 (MVar)  5.65 10.75 11.70   16.15 16.75 16.25  24.22 17.33 

Ploss (MW)  4.7573 4.6305 4.0697  4.8000 4.7233 4.0543  5.2648 5.3880 

 

 

 
Fig. 3.  Voltage’s magnitude of the generators in different algorithms 

 

 

 

 
Fig. 4.  Scales of the capacitors in different algorithms 

 

 
Fig. 5.  Voltages buses of the IEEE 30-bus standard test system 

 

 

 

 
Fig. 6.  Position of tap changers of transformers in different algorithms 
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Fig.7. Power losses in different algorithms 

V.  CONCLUSION 

Generally, with ever-increasing non-linear and complex 

loads, accurate load modeling in power system analysis is 

becoming more and more crucial in terms of the precision of 

the load dispatch results. Any inaccuracy in load modeling 

leads to unauthentic and unreliable results. Whenever the 

applied load models in the power system are not of enough 

precision, the simulation results will be different from the 

realistic response of the network. Most of the power system 

operation studies are based on applying the static load model, 

but in this paper, unlike the researches in the field of ORPD 

problem, the load model is considered as the alternative to the 

constant power model. Because the mission of ORPD in the 

power system is to specify the control variables to minimize the 

objective function (mainly active power losses) considering the 

limitations of the power system. In this paper, the ORPD 

problem in the power systems is studied to achieve the 

minimum generated active power losses considering the impact 

of the load model. Furthermore, to model the load type, the 

static modeling method (constant impedance, current, and 

power); and to model the uncertainties of loads to study the 

impressibility of control variables in every state and investigate 

the impacts of these models on the objective function, for the 

first time, the MCS method is implemented. The simulation 

results performed with the MCS-GWO optimization algorithm 

suggest that the load model has a crucial role in results. As 

observed, control parameters fluctuate with the load model. The 

results also suggest that precise load recognition and modeling, 

affect specifying the control parameters of the ORPD problem 

greatly. 
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