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Abstract

Recently, the study on weak Galerkin (WG) methods with or without stabilizer parameters have received much
attention. The WG methods are a discontinuous extension of the standard finite element methods in which classical
differential operators are approximated on functions with discontinuity. A stabilizer term in the WG formulation is
used to guarantee convergence and stability of the discontinuous approximations for a model problem. By removing
this parameter, we can reduce the complexity of programming on this numerical method. Our goal in this paper
is to introduce a new stabilizer-free WG (SFWG) method to solve the Poisson equation in which we use a new
combination of WG elements. Numerical experiments indicate that our SFWG scheme is faster and more economical
than the standard WG scheme. Errors and convergence rates on two types of mesh are presented for each of the
considered methods, which show that our numerical scheme has O(h2) convergence rate while another method has
O(h) convergence rate in the energy norm and the L2-norm.
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1 Introduction

In this work, we focus to seeks an unknown function u = u(x) for the Poisson equation which is satisfying,

−∆u = f, in Ω ⊂ R2, (1.1)

u = 0, on ∂Ω, (1.2)

where ∆u denotes the Laplacian operator of the function u and Ω is a polygonal domain in R2 with boundary ∂Ω.

The Poisson equation has wide applications in many areas such as modeling various problems in mechanics and
physics. Evaluation and analysis of numerical approximations of mathematical models has been one of the topics of
interest for researchers in recent years. In order to achieve this goal, many numerical methods have been studied.
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Numerical methods that provide discontinuous approximations of PDEs are one of the methods considered in this
field, such as local discontinuous Galerkin (DG) methods [2, 6, 5], hybridizable DG methods[8, 4] and WG methods
[12, 13, 14, 10]. One of the obvious disadvantages of these discontinuous approximation tools is the use of different
parameters in their Galerkin formulations to enforce weak continuity across element boundaries due to the nature of
the discontinuity of the solutions. The presence of stabilizing parameters in the finite element formulation will increase
the complexity of the implementation.

Recently, WG methods on PDEs have been investigated [3, 7, 15, 9]. The most obvious feature of this numerical
method is the presence of weak functions and weak partial derivatives of them. For each element T , a weak function
v is a piecewise function in the form v = {v0, vb}, where we consider the first and second components as the interior
and edges value of v on T , respectively.

The standard WG method for the problem (1.1)-(1.2) has the following form

(∇wuh,∇wv) + s(uh, v) = (f, v), (1.3)

where ∇w is a weak version of ∇ and s(·, ·) is a stabilizer term that has the following usual form

s(uh, v) =
∑
T∈Th

hrT ⟨Qbu0 − ub, Qbv0 − vb⟩∂T , (1.4)

where by choosing r = ∞, we will have s(uh, v) = 0 [18].

The study of WG methods without any stabilizer parameters on PDEs has received much attention recently. The
main attitude of this numerical tool is to increase the degree of approximation space for ∇w. By increasing the degree
of weak gradient space, the additional degrees of freedom will not be defined. In [17], the optimal order of convergence
for SFWG method by choosing (Pk(T ), Pk(e), [Pj(T )]

d) elements for j > k ≥ 1 and d = 2, 3 on polytopal meshes
has been investigated. After that, Ye and Zhang [19] improved the convergence rates presented in [17] and achieved
superconvergence on polytopal mesh. In [1], A lowest-order SFWG scheme on triangular meshes for the solution of
(1.1)-(1.2) is proposed where (P0(T ), P1(e), [P1(T )]

2) elements is used.

In this paper, we focus on the standard WG method (1.3) for seeking WG finite element solution uh = {u0, ub}
and propose a lowest-degree possible WG scheme on rectangular and triangular meshes where a new combination
(P0(T ), P0(e), [P1(T )]

2) of elements will be used. For r = ∞ and 0, we compare our new SFWG scheme with the
standard WG scheme (with stabilizer parameter). Some numerical examples are tested which show that our new
scheme is faster and more efficient than the standard WG method.

The rest of this paper is organized as follows. In Section 2, we introduce the WG spaces and the weak differential
operator to present our new scheme. The process of obtaining the error equation and some important inequalities is
discussed in Section 3. The theoretical results related to the L2 error estimates for our SFWG finite element method
are established in Section 4. Several numerical examples are presented in Section 5 to confirm the presented theoretical
results in Section 3 and Section 4. Section 6 is devoted to Conclusions of this paper.

2 SFWG schemes

Suppose that T be an element of the partition Th created of Ω ⊂ R2. For each element T ∈ Th, let h = maxT∈Th
hT

be the mesh size of Th where hT is the diameter of each element T . For each element T ∈ Th, we define the WG space
and its subspace as follows:

Vh = {v = {v0, vb} ∈ P0(T )× P0(e), e ∈ ∂T, Th = {T}} ,

and
V 0
h = {v : v ∈ Vh, vb|e = 0, e ∈ ∂Ω ∩ ∂T} .

For each T ∈ Th, we define the L2-projections as follows:

Q0 : L2(T ) → P0(T ), (2.1)

Qb : L
2(e) → P0(e), (2.2)

Qh : [L2(T )]2 → [P1(T )]
2. (2.3)
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By combining the L2-projections Q0 and Qb, we define another L2-projection onto Vh which is defined as Qh =
{Q0, Qb}.

On each element T and for any ϕ = {ϕ0, ϕb} ∈ Vh, the weak gradient ∇w ∈ [P1(T )]
2 is defined as follows:

(∇wϕ, τ )T = −(ϕ0,∇ · τ )T + ⟨ϕb, τ · n⟩∂T , ∀τ ∈ [P1(T )]
2, (2.4)

where n is the unit outward normal vector of ∂T .

Throughout this paper, we applied these notations for simplicity

(ϕ, ψ)Th
=
∑
T∈Th

(ϕ, ψ)T =
∑
T∈Th

∫
T

ϕ · ψdx,

⟨ϕ, ψ⟩∂Th
=
∑
T∈Th

⟨ϕ, ψ⟩∂T =
∑
T∈Th

∫
∂T

ϕ · ψds.

2.1 The lowest-degree SFWG

By finding uh = {u0, ub} ∈ V 0
h , a numerical approximation for (1.1)-(1.2) can be obtained such that

(∇wuh,∇wv) = (f, v0), ∀v = {v0, vb} ∈ V 0
h . (2.5)

An energy norm according to our SFWG scheme is defined as

|||v|||2 = (∇wv,∇wv)Th
,

and H1 semi-norm on Vh is defined as

∥v∥21,h =
∑
T∈Th

∥∇v0∥2T +
∑
T∈Th

h−1
T ∥v0 − vb∥2∂T .

It can be easily checked that ∥ · ∥1,h defines a norm on V 0
h . Below, we indicate the equivalence of the two norms

∥ · ∥1,h and ||| · |||.

Lemma 2.1. Let v = {v0, vb} ∈ Vh. There exist two constants C1 and C2 such that

C1∥v∥1,h ≤ |||v||| ≤ C2∥v∥1,h.

Proof . We provide only details of proof |||v||| ≤ C2∥v∥1,h. We can referred to [16] for the next part.
From (2.4) and integration by parts, we have

(∇wv, τ )T = −(v0,∇ · τ )T + ⟨vb, τ · n⟩∂T
= (∇v0, τ )T − ⟨v0 − vb, τ · n⟩∂T , ∀τ ∈ [P1(T )]

2. (2.6)

It follows from the trace inequality and the inverse inequality that

(∇wv, τ )T ≤ ∥∇v0∥T ∥τ∥T + ∥v0 − vb∥∂T ∥τ∥∂T
≤ ∥∇v0∥T ∥τ∥T + Ch

−1/2
T ∥v0 − vb∥∂T ∥τ∥T . (2.7)

By letting τ = ∇wv in the above inequality, we can get the desired result. □

3 Error Equation

In the following, we will provide the basic lemmas to achieve the error equation. At first, we introduce the crucial
property of ∇w and ∇ by the definition of L2-projections.
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Lemma 3.1. For each T ∈ Th and ϕ ∈ H1(Ω), we have

Qh(∇ϕ) = ∇wQhϕ. (3.1)

Proof . From definition (2.4), the property of L2-projections and integration by parts, we can write

(∇wQhϕ, τ )T = −(Q0ϕ,∇ · τ )T + ⟨Qbϕ, τ · n⟩∂T
= −(ϕ,∇ · τ )T + ⟨ϕ, τ · n⟩∂T
= (∇ϕ, τ )T + ⟨ϕ− ϕ, τ · n⟩∂T
= (Qh∇ϕ, τ )T .

The desired property (3.1) has been proven. □

Lemma 3.2. Let ϕ ∈ H1(Ω). For τ ∈ [P1(T )]
2 the following equation holds

(∇wQhϕ, τ )T = (Qh∇ϕ, τ )T − (ϕ−Qhϕ,∇ · τ )T + ⟨ϕ−Qhϕ, τ · n⟩∂T . (3.2)

Proof . It follows from (2.4), (2.1), (2.2), (2.3) and integration by parts that

(∇wQhϕ, τ )T = −(Q0ϕ,∇ · τ )T + ⟨Qbϕ, τ · n⟩∂T
= −(Qhϕ,∇ · τ )T − (ϕ−Qhϕ,∇ · τ )T + ⟨ϕ, τ · n⟩∂T
= (Qh∇ϕ, τ )T − (ϕ−Qhϕ,∇ · τ )T + ⟨ϕ−Qhϕ, τ · n⟩∂T .

The desired result is visible. □

Lemma 3.3. For all v = {v0, vb} ∈ V 0
h and the solution u of (1.1)-(1.2), we have

−(∆u, v0)T = (∇wQhu,∇wv)T + I1(u, v)− I2(u, v)− I3(u, v), (3.3)

where 
I1(u, v) = (u−Qhu,∇ · ∇wv)T ,

I2(u, v) = ⟨u−Qhu,∇wv · n⟩∂T ,
I3(u, v) = ⟨(∇u−Qh∇u) · n, v0 − vb⟩∂T .

Proof . Since
∑

T∈Th
⟨∇u · n, vb⟩∂T = 0, using integration by parts, we have

−(∆u, v0)T = (∇u,∇v0)T − ⟨v0 − vb,∇u · n⟩∂T . (3.4)

Letting τ = ∇wv in (3.2), we get

(∇u,∇v0)T = (Qh∇u,∇v0)T
= −(v0,∇ · (Qh∇u))T + ⟨v0,Qh∇u · n⟩∂T
= (∇wv,Qh∇u)T + ⟨v0 − vb,Qh∇u · n⟩∂T
= (∇wQhu,∇wv)T + (u−Qhu,∇ · ∇wv)T − ⟨u−Qhu,∇wv · n⟩∂T
+ ⟨v0 − vb,Qh∇u · n⟩∂T . (3.5)

By combining (3.4) and (3.5), we can get

−(∆u, v0)T = (∇wQhu,∇wv)T + (u−Qhu,∇ · ∇wv)T

− ⟨u−Qhu,∇wv · n⟩∂T − ⟨(∇u−Qh∇u) · n, v0 − vb⟩∂T .

The desired result is achieved. □

In the next lemma, we provide the error equation for the error function eh = {e0, eb} = Qhu− uh.
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Lemma 3.4. Let eh = {e0, eb} = Qhu − uh be the error between the L2-projection of the exact solution u and the
SFWG solution uh. Then the following error equation holds

(∇weh,∇wv)Th
= −I1(u, v) + I2(u, v) + I3(u, v). (3.6)

Proof . By testing (1.1) by the first component v0 of v = {v0, vb} ∈ V 0
h , we have

−(∆u, v0)T = (f, v0).

From Lemma 3.3 we have

(∇wQhu,∇wv)T = (f, v0)− I1(u, v) + I2(u, v) + I3(u, v). (3.7)

Subtracting (2.5) from (3.7) and summing over T ∈ Th yields the desired result. □

In the following, we will provide error estimates for our SFWG scheme.

Lemma 3.5. Assume that u ∈ H2+i
0 (Ω), for i = 0, 1, be the exact solution of (1.1)-(1.2). Then for all v ∈ V 0

h ,

|I1(u, v)| ≤ Ch1+i∥u∥2+i|||v|||, (3.8)

|I2(u, v)| ≤ Ch1+i∥u∥2+i|||v|||, (3.9)

|I3(u, v)| ≤ Ch1+i∥u∥2+i|||v|||, i = 0, 1. (3.10)

Proof . It follows from the Cauchy-Schwarz inequality and the inverse inequality that

|I1(u, v)| =

∣∣∣∣∣ ∑
T∈Th

(u−Qhu,∇ · ∇wv)T

∣∣∣∣∣
≤ C

∑
T∈Th

∥u−Qhu∥T ∥∇ · ∇wv∥T

≤ C

(∑
T∈Th

∥u−Qhu∥2T

)1/2

·

(∑
T∈Th

∥∇ · ∇wv∥2T

)1/2

≤ Ch1+i∥u∥2+i|||v|||, i = 0, 1.

Similarly, from the trace inequality, we have

|I2(u, v)| ≤
∑
T∈Th

|⟨u−Qhu,∇wv · n⟩∂T |

≤ C

(∑
T∈Th

h−1
T ∥u−Qhu∥2∂T

)1/2

·

(∑
T∈Th

hT ∥∇wv∥2∂T

)1/2

≤ Ch1+i∥u∥2+i,

and for the third inequality, we can write

|I3(u, v)| ≤
∑
T∈Th

|⟨(∇u−Qh∇u) · n, v0 − vb⟩∂T |

≤ C

(∑
T∈Th

hT ∥∇u−Qh∇u∥2∂T

)1/2

·

(∑
T∈Th

h−1
T ∥v0 − vb∥2∂T

)1/2

≤ Ch1+i∥u∥2+i|||v|||, i = 0, 1.

□
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Theorem 3.6. Let uh = {u0, ub} ∈ Vh and u ∈ H2+i
0 (Ω) for i = 0, 1 be the SFWG solution of (2.5) and the exact

solution of (1.1)-(1.2), respectively. Then, there exists a constant C such that

|||Qhu− uh||| ≤ Ch1+i∥u∥2+i, i = 0, 1, (3.11)

|||u− uh||| ≤ C∥u∥2. (3.12)

Proof . Taking v = eh in the error equation (3.6), we obtain

|||eh|||2 = (∇weh,∇weh)Th
≤ |I1(u, eh)|+ |I2(u, eh)|+ |I3(u, eh)|.

From the provided estimates in Lemma 3.5, we have

|||Qhu− uh||| = |||eh||| ≤ Ch1+i∥u∥2+i, i = 0, 1.

We follow the idea of (2.7) by taking v = u−Qhu and using the trace inequality, to get

|||u−Qhu||| ≤ Ch∥u∥2, (3.13)

which, together with triangle inequality, (3.12) follows. □

4 L2-Error Estimate

Based on a duality argument, we will provide a L2-error estimate for SFWG scheme (2.5). For this reason, the
duality problem is considered to seeks Ψ ∈ H2

0 as follows:

∆Ψ = e0, in Ω. (4.1)

Also, we consider the H2-regularity for (4.1) as

∥Ψ∥2 ≤ C∥e0∥. (4.2)

Theorem 4.1. With H2-regularity (4.2), assume that uh = {u0, ub} ∈ Vh and u ∈ H2+i
0 for i = 0, 1 be the solutions

of (2.5) and (1.1)-(1.2), respectively. Then, there exists a constant C such that

∥Q0u− u0∥ ≤ Ch1+i∥u∥2+i, i = 0, 1, (4.3)

∥u− u0∥ ≤ C∥u∥2. (4.4)

Proof . Taking u = Ψ and v = eh in (3.3), we will have

−(∆Ψ, e0)T = (∇wQhΨ,∇weh)T + I1(Ψ, eh)− I2(Ψ, eh)− I3(Ψ, eh). (4.5)

Testing (4.1) by the first component e0 of the error function eh = {e0, eb}, we have

∥e0∥2 = −(∆Ψ, e0). (4.6)

Summing over T ∈ Th and then substituting (4.5) into (4.6) gives

∥e0∥2 = (∇wQhΨ,∇weh)Th
+ I1(Ψ, eh)− I2(Ψ, eh)− I3(Ψ, eh).

Using the error equation (3.6), we can write

∥e0∥2 =− I1(u,QhΨ) + I2(u,QhΨ) + I3(u,QhΨ)

+ I1(Ψ, eh)− I2(Ψ, eh)− I3(Ψ, eh). (4.7)
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In the next step, we will provide the estimate of the six terms on the right hand side of (4.7). Using the Cauchy-Schwarz
inequality and the inverse inequality, we have

|I1(u,QhΨ)| ≤
∑
T∈Th

|(u−Qhu,∇ · ∇wQhΨ)T |

≤ C

(∑
T∈Th

∥u−Qhu∥2T

)1/2

·

(∑
T∈Th

∥∇ ·Qh∇Ψ∥2T

)1/2

≤ C

(∑
T∈Th

h−2
T ∥u−Qhu∥2T

)1/2

·

(∑
T∈Th

h2T ∥∇ · (Qh∇Ψ−∇Ψ)∥2T

)1/2

+ C

(∑
T∈Th

h−2
T ∥u−Qhu∥2T

)1/2

·

(∑
T∈Th

h2T ∥∇ · ∇Ψ∥2T

)1/2

≤ Ch1+i∥u∥2+i∥Ψ∥2, i = 0, 1. (4.8)

For the second term, from the trace inequality, we get

|I2(u,QhΨ)| ≤
∑
T∈Th

|⟨u−Qhu,∇wQhΨ · n⟩∂T |

≤
∑
T∈Th

|⟨u−Qhu, (Qh∇Ψ−∇Ψ) · n⟩∂T |

+
∑
T∈Th

|⟨u−Qhu,∇Ψ · n⟩∂T |

≤ C

(∑
T∈Th

h−1
T ∥u−Qhu∥2∂T

)1/2

·

(∑
T∈Th

hT ∥Qh∇Ψ−∇Ψ∥2∂T

)1/2

+ C

(∑
T∈Th

∥u−Qhu∥2∂T

)1/2

·

(∑
T∈Th

∥∇Ψ∥2∂T

)1/2

≤ Ch1+i∥u∥2+i∥Ψ∥2, i = 0, 1. (4.9)

Similarly, from the definition of Qb, we can write

|I3(u,QhΨ)| ≤
∑
T∈Th

|⟨(∇u−Qh∇u) · n, Q0Ψ−QbΨ⟩∂T |

≤
∑
T∈Th

|⟨(∇u−Qh∇u) · n, Q0Ψ−Ψ⟩∂T |

+
∑
T∈Th

|⟨(∇u−Qh∇u) · n,Ψ−QbΨ⟩∂T |

≤ C

(∑
T∈Th

hT ∥∇u−Qh∇u∥2∂T

)1/2

·

(∑
T∈Th

h−1
T ∥Q0Ψ−Ψ∥2∂T

)1/2

≤ Ch1+i∥u∥2+i∥Ψ∥1,

which clearly, we have
|I3(u,QhΨ)| ≤ Ch1+i∥u∥2+i∥Ψ∥2, i = 0, 1. (4.10)

The estimate (3.8) and (3.11) give

|I1(Ψ, eh)| ≤
∑
T∈Th

|(Ψ−QhΨ,∇ · ∇weh)T |

≤ Ch1+i∥u∥2+i∥Ψ∥2, (4.11)
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and from the estimates (3.9), (3.10) and (3.11), we have

|I2(Ψ, eh)| ≤
∑
T∈Th

|⟨Ψ−QhΨ,∇weh · n⟩∂T |

≤ Ch1+i∥u∥2+i∥Ψ∥2, (4.12)

and

|I3(Ψ, eh)| ≤
∑
T∈Th

|⟨(∇Ψ−Qh∇Ψ) · n, e0 − eb⟩∂T |

≤ Ch1+i∥u∥2+i∥Ψ∥2, i = 0, 1. (4.13)

Combining (4.7) with the estimates (4.8)-(4.13), we will have

∥e0∥2 ≤ Ch1+i∥u∥2+i∥Ψ∥2, i = 0, 1.

In the last step, from the H2-regularity (4.2) and then dividing ∥e0∥, we have the following desired error estimate

∥Q0u− u0∥ ≤ Ch1+i∥u∥2+i, i = 0, 1.

Using the triangle inequality, we get

∥u− u0∥ ≤ ∥u−Q0u∥+ ∥Q0u− u0∥ ≤ C∥u∥2.

□

5 Numerical Tests

Our goal in this section is to evaluate the flexibility and efficiency of our SFWG scheme (2.5). Based on the lowest-
degree possible (P0(T ), P0(e), [P1(T )]

2) elements, we will compare our new SFWG method with the standard WG
method in which we consider the stabilizer parameter (1.4) with r = 0 . The comparison process will show that the new
SFWGmethod is faster and more economical than the standard WGmethod (1.3). We denote eh = {e0, eb} = Qhu−uh
and ϵh = {ϵ0, ϵb} = u−uh be the error functions. Our numerical calculations are supported by MATLAB R2017a and
performed on a Laptop computer with 8.0 GB memory and Intel(R) CPU @ 2.13 GHz. To achieve our goal in this
section, we consider the following basic steps:

� Create a uniform rectangular and triangular mesh on the desired domain Ω = [0, 1]2,

� The exact solutions u1, u2 ∈ H2(Ω) ∪H2
0 (Ω) to the problem (1.1)-(1.2) are chosen as follows:

u1(x, y) = sin(πx) sin(πy),

u2(x, y) = (1 + x2) sin(πy),

where the source term f(x, y) and the boundary conditions are accessible accordingly,

� For different values of the parameter h, we consider only the WG scheme (1.3) with r = 0,∞ on rectangular
mesh. Also, we apply the SFWG scheme (2.5) on triangular mesh.

Based on the exact solutions u1 and u2, the numerical outcome are reported in Tables 1-4. In Table 1 and Table
3, the errors and convergence rates for with or without lowest-degree possible (P0(T ), P0(e), [P1(T )]

2) WG elements
on a rectangular mesh are presented which indicate that our SFWG method (2.5) has O(h2) convergence rate in
both energy norm and L2-norm while the standard WG method (with stabilizer parameter) has a convergence rate
of O(h) in the same norms. The numerical results in these two tables show that our method is more efficient. Also,
we investigated our method on a triangular mesh that the corresponding numerical results in Tables 2 and 4 confirm
the theory discussed in the previous sections. Our SFWG solutions (discontinuous solutions) and the exact solutions
on rectangular and triangular meshes are plotted for u1 in Figures 2 and 3 which show the accuracy of the proposed
method. In Figure 1, we compare the computation times (in seconds) between the SFWG method (2.5) and the
standard WG method related to Table 1. As the number of elements increases, the computational time increases and
the SFWG finite element method (2.5) is faster and more efficient than the standard WG method.
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Figure 1: Comparison of computation times between the SFWG (blue color) and the WG (red color) methods.

Table 1: Errors and convergence rates on rectangular mesh for u1.

r 1/h |||eh||| Rate ∥e0∥ Rate
2 3.8801e− 01 − 7.1953e− 02 −
4 1.0969e− 01 1.82 2.3636e− 02 1.61

∞ 8 2.8263e− 02 1.96 6.2942e− 03 1.90
16 7.1191e− 03 1.99 1.5981e− 03 1.98
32 1.7831e− 03 2.00 4.0108e− 04 1.99
64 4.4599e− 04 2.00 1.0037e− 04 2.00
2 7.5523e− 01 − 1.2836e− 01 −
4 3.5278e− 01 1.10 7.2032e− 02 0.83

0 8 1.6049e− 01 1.13 3.4716e− 02 1.05
16 7.5163e− 02 1.09 1.6621e− 02 1.06
32 3.6185e− 02 1.05 8.0769e− 03 1.04
64 1.7729e− 02 1.03 3.9743e− 03 1.02

Table 2: Errors and convergence rates of the SFWG method on triangular mesh for u1.

1/h |||ϵh||| Rate ∥ϵ0∥ Rate
2 2.0829 − 2.8285e− 01 −
4 2.0021 0.06 2.7581e− 01 0.04
8 1.9777 0.02 2.7453e− 01 0.007
16 1.9713 0.005 2.7428e− 01 0.001
32 1.9696 0.001 2.7422e− 01 0.0003
64 1.9692 0.0003 2.7421e− 01 0.0001

In the last step, we adopted the exact solution from [11] as follows:

u3(r, θ) = r1/2 sin(
θ

2
),

where r =
√
x2 + y2 and θ = arctan( yx ). The singularity in the chosen solution u3 ∈ H1+1/2(Ω) will confer different

rates of convergence. Table 5 indicates that the two considered methods have the convergence of rates O(h1/2) and
O(h3/2) in the relevant norms on rectangular mesh.
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Figure 2: Numerical solutions based on u1 on rectangular mesh with h = 1/64.

Figure 3: Numerical solutions based on u1 on triangular mesh with h = 1/64.

6 Conclusion

In this paper, we proposed a new SFWG finite element method to solve the Poisson equations in which we
used the lowest-degree possible (P0(T ), P0(e), [P1(T )]

2) WG elements. Several numerical examples on two types of
meshes indicated that our new method is more efficient than the standard WG finite element method (with stabilizer
parameter). The numerical outcomes showed the accuracy of the claim made in the theoretical analysis section. By
comparing the computational time between the two considered methods, it is shown that our numerical scheme is
faster than the standard WG finite element method. Our next project is to extend theoretical and numerical analysis
on higher dimensions of space.
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