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Abstract

This paper is devoted to the study of some properties of multiwavelet Bessel sequences in Sobolev spaces over local
fields of positive characteristics.

Keywords: Fourier transform, Bessel Sequence, Sobolev Space
2020 MSC: 42C15, 42C40, 42C30

1 Introduction

The wavelet transform is a simple mathematical tool that cuts up data or functions into different frequency components,
and then studies each components with a resolution matched to its scale. The main feature of the wavelet transform
is to hierarchically decompose general functions, as a signal or a process, into a set of approximation functions with
different scales. One of the important factor behind the stable decomposition of a signal for analysis or transmission is
related to the type of representation used for its spanning set (representation system). A careful choice of the spanning
set enables us to solve a variety of analysis tasks. During the last two decades, many researchers have contributed in
the designing and time-frequency analysis of these representation systems for the various spaces, namely, finite and
infinite abelian groups, Euclidean spaces, locally compact abelian groups.

On the other hand, there is a substantial body of work that has been concerned with the construction of wavelets
and frames on local fields. For example, R. L. Benedetto and J. J. Benedetto [5] developed a wavelet theory for
local fields and related groups. They did not develop the multiresolution analysis (MRA) approach, their method is
based on the theory of wavelet sets and only allows the construction of wavelet functions whose Fourier transforms are
characteristic functions of some sets. Ahmad and his collaborators in the series of papers investigated frame theory
on local fields and obtained various interesting results [4, 3, 2, 11, 12, 13, 14].

The paper is structured as follows. In section 2, we discuss the preliminaries on local fields, definition of Sobolov
spaces and also discuss some auxiliary results about Bessel sequences. In Section 3, we provide the complete charac-
terization of multiwavelet Bessel wavelet sequences in Sobolev spaces over local fields.
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2 Fourier Analysis on Non-Archemedian Fields

A local field K is a locally compact, non-discrete and totally disconnected field. If it is of characteristic zero, then
it is a field of p-adic numbers Qp or its finite extension. If K is of positive characteristic, then K is a field of formal
Laurent series over a finite field GF (pc). If c = 1, it is a p-series field, while for c ̸= 1, it is an algebraic extension of
degree c of a p-series field. Let K be a fixed local field with the ring of integers D = {x ∈ K : |x| ≤ 1}. Since K+ is
a locally compact abelian group, we choose a Haar measure dx for K+. The field K is locally compact, non-trivial,
totally disconnected and complete topological field endowed with non–Archimedean norm | · | : K → R+ satisfying

(a) |x| = 0 if and only if x = 0;

(b) |x y| = |x||y| for all x, y ∈ K;

(c) |x+ y| ≤ max {|x|, |y|} for all x, y ∈ K.

Property (c) is called the ultrametric inequality. Let B = {x ∈ K : |x| < 1} be the prime ideal of the ring of
integers D in K. Then, the residue space D/B is isomorphic to a finite field GF (q), where q = pc for some prime p
and c ∈ N. Since K is totally disconnected and B is both prime and principal ideal, so there exist a prime element
p of K such that B = ⟨p⟩ = pD. Let D∗ = D \B = {x ∈ K : |x| = 1}. Clearly, D∗ is a group of units in K∗ and if
x ̸= 0, then can write x = pny, y ∈ D∗. Moreover, if U = {am : m = 0, 1, . . . , q − 1} denotes the fixed full set of coset
representatives of B in D, then every element x ∈ K can be expressed uniquely as x =

∑∞
ℓ=k cℓ p

ℓ with cℓ ∈ U . Recall
that B is compact and open, so each fractional ideal Bk = pkD =

{
x ∈ K : |x| < q−k

}
is also compact and open and

is a subgroup of K+. We use the notation in Taibleson’s book [15]. In the rest of this paper, we use the symbols N,N0

and Z to denote the sets of natural, non-negative integers and integers, respectively.

Let χ be a fixed character on K+ that is trivial on D but non-trivial on B−1. Therefore, χ is constant on cosets
of D so if y ∈ Bk, then χy(x) = χ(y, x), x ∈ K. Suppose that χu is any character on K+, then the restriction χu|D
is a character on D. Moreover, as characters on D, χu = χv if and only if u − v ∈ D. Hence, if {u(n) : n ∈ N0} is a
complete list of distinct coset representative of D in K+, then, as it was proved in [15], the set

{
χu(n) : n ∈ N0

}
of

distinct characters on D is a complete orthonormal system on D.

We now impose a natural order on the sequence {u(n)}∞n=0. We have D/B ∼= GF (q) where GF (q) is a c-

dimensional vector space over the field GF (p). We choose a set {1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D∗ such that span{ζj}c−1
j=0

∼=
GF (q). For n ∈ N0 satisfying

0 ≤ n < q, n = a0 + a1p+ · · ·+ ac−1p
c−1, 0 ≤ ak < p, and k = 0, 1, . . . , c− 1,

we define
u(n) = (a0 + a1ζ1 + · · ·+ ac−1ζc−1) p

−1. (2.1)

Also, for n = b0 + b1q + b2q
2 + · · ·+ bsq

s, n ∈ N0, 0 ≤ bk < q, k = 0, 1, 2, . . . , s, we set

u(n) = u(b0) + u(b1)p
−1 + · · ·+ u(bs)p

−s. (2.2)

This defines u(n) for all n ∈ N0. In general, it is not true that u(m+n) = u(m)+u(n). But, if r, k ∈ N0 and 0 ≤
s < qk, then u(rqk + s) = u(r)p−k + u(s). Further, it is also easy to verify that u(n) = 0 if and only if n = 0 and
{u(ℓ) + u(k) : k ∈ N0} = {u(k) : k ∈ N0} for a fixed ℓ ∈ N0. Hereafter we use the notation χn = χu(n), n ≥ 0.

Let the local field K be of characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1 be as above. We define a character χ on K
as follows:

χ(ζµp
−j) =

{
exp(2πi/p), µ = 0 and j = 1

1 µ = 1 · · · c− 1 or j ̸= 1
(2.3)

2.1 Fourier Transforms on Local Fields

The Fourier transform of f ∈ L1(K) is denoted by f̂(ξ) and defined by

F
{
f(x)

}
= f̂(ξ) =

∫
K

f(x)χξ(x) dx. (2.4)

It is noted that

f̂(ξ) =

∫
K

f(x)χξ(x)dx =

∫
K

f(x)χ(−ξx) dx.
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The properties of Fourier transforms on local field K are much similar to those of on the classical field R. In
fact, the Fourier transform on local fields of positive characteristic have the following properties:

� The map f → f̂ is a bounded linear transformation of L1(K) into L∞(K), and
∥∥f̂∥∥∞ ≤

∥∥f∥∥
1
.

� If f ∈ L1(K), then f̂ is uniformly continuous.

� If f ∈ L1(K) ∩ L2(K), then
∥∥f̂∥∥

2
=

∥∥f∥∥
2
.

The Fourier transform of a function f ∈ L2(K) is defined by

f̂(ξ) = lim
k→∞

f̂k(ξ) = lim
k→∞

∫
|x|≤qk

f(x)χξ(x) dx, (2.5)

where fk = f Φ−k and Φk is the characteristic function of Bk. Furthermore, if f ∈ L2(D), then we define the Fourier
coefficients of f as

f̂
(
u(n)

)
=

∫
D

f(x)χu(n)(x) dx. (2.6)

The series
∑

n∈N0
f̂
(
u(n)

)
χu(n)(x) is called the Fourier series of f . From the standard L2-theory for compact

abelian groups, we conclude that the Fourier series of f converges to f in L2(D) and Parseval’s identity holds:∥∥f∥∥2
2
=

∫
D

∣∣f(x)∣∣2dx =
∑
n∈N0

∣∣∣f̂(u(n))∣∣∣2 . (2.7)

For s ∈ K, the Sobolev space Hs(K) consists of all distributions f such that

∥f∥2Hs(K) =

∫
K
|f̂(ζ)|2(1 + ∥ζ∥22)sdζ <∞,

where ∥.∥2 denotes the Euclidean norm on K. It is noted that, Hs(K) is a separable Hilbert space under the definition
of the inner product

⟨f, g⟩Hs(K) =

∫
K
f̂(ζ)ĝ(ζ)(1 + ∥ζ∥22)dζ, f, g ∈ Hs(K).

Obviously, H(K) = L2(K) and Hs1 ⊆ Hs2(K) iff s1 ≥ s2. Furthermore, for every g ∈ H−s(K),

⟨f, g⟩ =
∫
K
f̂(ζ)ĝ(ζ)dζ, f ∈ Hs(K)

gives a continuous functional on Hs(K).

For f, g : K → C, we define

[f, g]t(ξ) =
∑
k∈N0

f(ξ + u(k))g(ξ + u(k))(1 + ∥.+ u(k)∥22)t, t ∈ K.

By Γp a full set of qN0/N0, i.e a set of representatives of distinct cosets of qN0/N0. We write

fj,k(ξ) = q
jd
2 f(pjξ − u(k)) and fsj,k(ξ) = q−jsfj,k(ξ) = qj(

d
2−s)f(pjξ − u(k))

for a distribution f, j ∈ Z, k ∈ N0 and s ∈ K.
Given r ∈ N, let φ = (φ1, φ2, ..., φr)

T ∈ (Hs(K))r be an M -refinable function vector satisfying the refinement
equation, i.e., there exists an r × r order matrix â, called refinement mask symbol such that

φ̂(pξ) = âl(ξ)φ̂(ξ) a.e K. (2.8)

Given L ∈ N, wavelet function vectors ψl = (ψl
1, ψ

l
2, ..., ψ

l
r)

T with l = 1, 2, 3, ..., L are defined by

ψ̂(pξ) = b̂l(ξ)φ̂(ξ) l = 1, 2, ..., L (2.9)
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where b̂l(ξ) = (̂bln,m(ξ))rn,m with l = 1, 2, ..., L being a sequence of r × r order matrices of N0-periodic measurable
functions on K called wavelet masks symbol. Define a multi-wavelet system

Ws(φ;ψ1, ψ2, ..., ψl) = {φn;0,k : n = 1, 2, ..., r; k ∈ N0}∪

{ψl,s
n;j,k : n = 1, 2, ..., r; j ∈ N0, k ∈ N0, l = 1, 2, ..., L}. (2.10)

Ws(φ;ψ1, ψ2, ...ψL) is called a multi-wavelet Bessel sequence (MWBS) in Hs(K) if there exists B > 0 such that

r∑
n=1

∑
k∈N0

|⟨f, φn;0,k⟩HsK|2 +
r∑

n=1

L∑
l=1

∞∑
j=0

∑
k∈N0

|⟨f, ψl,s
n;j,k⟩Hs(K)|2 ≤ B∥f∥2Hs(K), ∀ f ∈ Hs(K),

where B is called a bessel bound; it is called a multi-wavelet frame (MWF) in Hs(K) if there exist 0 < A ≤ B < ∞
such that

A∥f∥Hs(K) ≤
r∑

n=1

∑
k∈N0

|⟨f, φn;0,k⟩HsK|2 +
r∑

n=1

L∑
l=1

∞∑
j=0

∑
k∈N0

|⟨f, ψl,s
n;j,k⟩Hs(K)|2

≤ B∥f∥2Hs(K), ∀ f ∈ Hs(K),
where A and B are called frame bounds.

3 Multi Wavelet Bessel Sequences in Sobolev Spaces over Local Fields

In this section, we provide some necessary lemmas which are used for later. By a standard argument, we have

Lemma 3.1. Let s ∈ K, define λ by

λ̂f(ξ) = (1 + ∥.∥22)s/2f̂(ξ)

for f ∈ Hs(K) or L2(K). Then λ is a unitary operator both from Hs(K) onto L2(K) and L2(K) onto H−s(K)

Lemma 3.2. Let s ∈ K and Ws(φ;ψ1, ψ2, ..., ψL) is a MWBS in Hs(K) with Bessel bound B if and only if

r∑
n=1

∑
k∈N0

|⟨f, φn;0,k⟩|2 +
r∑

n=1

L∑
ℓ=1

∞∑
j=0

∑
k∈N0

|⟨f, ψℓ,s
n;j,k⟩|

2 ≤ B∥f∥2H−s(K) for f ∈ H−s(K). (3.1)

Proof. By Lemma 3.1, we know that Ws(φ;ψ1, ψ2, ..., ψL) is a MWBS in Hs(K) with Bessel bound B if and only if

r∑
n=1

∑
k∈N0

|⟨f, λφn;0,k⟩|2 +
r∑

n=1

L∑
ℓ=1

∞∑
j=0

∑
k∈N0

|⟨f, λψℓ,s
n;j,k⟩|

2 ≤ B∥f∥2H−s(K) for f ∈ L2(K) (3.2)

Since λ is a unitary operator, we have

⟨f, λφn;0,k⟩ = ⟨λf, φn;0,k and ⟨f, λψℓ,s
n;j,k = ⟨λf, ψℓ,s

n;j,k⟩,

and
∥f∥2L2(K) = ∥λf∥H−s(K).

It follows that (12) is equivalent to

r∑
n=1

∑
k∈N0

|⟨f, λφn
0,k⟩|2 +

r∑
n=1

L∑
ℓ=1

∞∑
j=0

∑
k∈N0

|⟨f, λψℓ,s
n;j,k⟩|

2 ≤ B∥λf∥2H−s(K) for f ∈ L2(K). (3.3)

This leads to the Lemma since λ is a unitary operator from L2(K) to H−s(K) by Lemma 3.1. □

Lemma 3.3. Let 0 ̸= s ∈ K and φ = (φ1, φ2, ..., φr)
T ∈ (Hs(K))r. If [φ̂n, φ̂n]t ∈ L∞(K) for some t > s with

n = 1, 2, ..., r, then
r∑

n=1

∑
k∈N0

|⟨g, φn;0,k⟩|2 ≤
r∑

n=1

∥[φ̂n, φ̂n]s∥L∞(K)∥g∥2H−s(K) (3.4)

for g ∈ H−s(K).
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Proof . Since for any n ∈ {1, 2, ..., r} φn ∈ Hs(K) and g ∈ H−s(K), we have ĝφ̂n ∈ L2(K). Applying the Plancheral
theorem and the Parseval identity, by a simple computation we have∑

k∈N0

|⟨g, φn(ξ − u(k))⟩|2 =
∑
k∈N0

∣∣∣∣∫
K
ĝ(ξ)φ̂(ξ)χk(ξ)dξ

∣∣∣∣2

=
∑
k∈N0

∣∣∣∣∣ ∑
k′∈N0

∫
D

ĝ(ξ + u(k′))φ̂(ξ + u(k′))χk(ξ)dξ

∣∣∣∣∣
2

=

∫
D

∣∣∣∣∣∑
k∈N0

ĝ(ξ + u(k′))φ̂(ξ + u(k′))dξ

∣∣∣∣∣
2

=

∫
D

|[ĝ, φ̂n]o(ξ)|2dξ (3.5)

By the Cauchy Schwarz’s inequality, we have |[ĝ, φ̂n]0(ξ)|2 ≤ [ĝ, ĝ]−s(ξ)[φ̂, φ̂]s(ξ) for almost every ξ ∈ K. Since t > s
and [φ̂, φ̂]t ∈ L∞(K), it follows that

[φ̂, φ̂]s(ξ) ≤ [φ̂, φ̂]t(ξ).

Therefore, [φ̂, φ̂]s ∈ L∞(K) and thus we deduce from (3.5) that

r∑
n=1

∑
k∈N0

|⟨g, φn(ξ − u(k))⟩|2 ≤
r∑

n=1

∫
D

[ĝ, ĝ]−s(ξ)[φ̂, φ̂]s(ξ)dξ

≤
r∑

n=1

∥[φ̂n, φ̂n]s∥L∞(K)

∫
D

[ĝ, ĝ]−s(ξ)dξ

=

r∑
n=1

∥[φ̂n, φ̂n]s∥L∞(K)

∫
K
|ĝ(ξ)|2(1 + ∥ξ∥22)−sdξ

=

r∑
n=1

∥[φ̂n, φ̂n]s∥L∞(K)∥g∥2H−s(K). (3.6)

□

Lemma 3.4. Let 0 ̸= s < t, and b̂ℓ(ξ) =
(
b̂ℓn,m(ξ)

)r

n,m=1
, ℓ = 1, 2, ..., L be a sequence of r× r order matrices of

N0-periodic measurable functions on K, define

△s,t(ξ) =

∞∑
j=0

q−2js(1 + ∥ξ∥22)s
L∑

ℓ=1

r∑
n=1

r∑
m=1

|̂bℓn,m(p−j−1ξ)|2(1 + ∥p−j−1∥22)−t, ξ ∈ K.

If there exists a non-negative number α > −s and a positive constant C such that

L∑
ℓ=1

r∑
n=1

r∑
m=1

|̂bℓn,m(.)|2 ≤ Cmin(1, ∥.∥2α2 ), a.e on K (3.7)

then △s,t ∈ L∞(K).

Proof . Let us consider the two cases s > 0 and s < 0 separately. Suppose s > 0. Since t > s, by Lemma 3.3, we
have

△s,t(ξ) ≤
∞∑
j=0

q−2js(1 + o21∥ξ∥22)s
L∑

ℓ=1

r∑
n=1

r∑
m=1

|̂bℓn,m(p−j−1)|2(1 + q−2j−2o22∥ξ∥2)−t. (3.8)

By lemma 3.3, there exists a positive constant C ′ such that

Bs,t(ξ) =

∞∑
j=0

q−2js(1 + o21∥ξ∥2)s(1 + q−2j−2o22∥ξ∥2)−t ≤ Ct, ∀ ξ K. (3.9)
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This implies that △s,t(ξ) ≤ C ′C, ∀ξ ∈ K, i.e., △s,t ∈ L∞(K). Suppose s < 0. without loss of generality, we assume
that s < t < 0. By Lemma 3.3, we have

△s,t(ξ) ≤
∞∑
j=0

q−2js(1 + o22∥ξ∥22)s
L∑

ℓ=1

r∑
n=1

r∑
m=1

|̂bℓn,m(p−j−1)|2(1 + q−2j−2o21∥ξ∥2)−t.

=: ⊖s,t(ξ) (3.10)

For o1∥ξ∥ ≤ 1 and j ≥ 0, we have

(1 + q−2j−2o21∥ξ∥2)−t ≤ 2−t and (1 + o22∥ξ∥2)s ≤ 1.

Since α ≥ 0, α+ s > 0, by Lemma 3.3. and equation (3.7), we have the following estimate

⊖s,t(ξ) ≤ 2−t
∞∑
j=0

q−2js
∞∑
j=0

q−2js
L∑

ℓ=1

r∑
n=1

r∑
m=1

|̂bℓn,m(p−j−1ξ)2

≤ 2−tC

∞∑
j=0

q−2js∥p−j−1ξ∥2α2

≤ 2−tCq−2α
∞∑
j=0

m−2j(α+s)(o1∥ξ∥)2α

≤ 2−tCq−2α
∞∑
j=0

q−2j(α+s) =
2−tCq−2α

1− q−2(α+s)
<∞. (3.11)

For o1∥ξ∥ > 1, there exists J ∈ N0 such that qJ ≤ o1∥ξ∥ < qJ+1. Then for j = 0, 1, ..., J , we have

(1 + q−2j−2o21∥ξ∥2)−t ≤ (1 + q2(J−j))−t = q−2(J−j)t(q−2(J−j) + 1)−t ≤ 2−tq−2(J−j)t

and
(1 + o22∥ξ∥2)s ≤ (1 + o22o

−2
1 q2J)s ≤ o2s2 o

−2s
1 q2Js.

Write ⊖s,t(ξ) = ⊖1
s,t(ξ) +⊖2

s,t(ξ), where

⊖1
s,t(ξ) =

J∑
j=0

q−2js(1 + o22∥ξ∥2)s
L∑

ℓ=1

r∑
n=1

r∑
m=1

|̂bℓn,m(p−j−1ξ)|2(1 + q−2j−2o21∥ξ∥2)−t,

⊖2
s,t(ξ) =

∞∑
j=J+1

q−2js(1 + o22∥ξ∥2)s
L∑

ℓ=1

r∑
n=1

r∑
m=1

|̂bℓn,m(p−j−1ξ)|2(1 + q−2j−2o21∥ξ∥2)−t.

Then by qJ ≤ o1∥ζ∥ < qJ+1 and J ∈ N0, it follows from s < t < 0 that

⊖1
s,t(ξ) =

J∑
j=0

q−2js(1 + o22∥ξ∥2)s
L∑

ℓ=1

r∑
n=1

r∑
m=1

|̂bℓn,m(p−j−1ξ)|2(1 + q−2j−2o21∥ξ∥2)−t,

≤ Co2s2 o
−2s
1 2−t

J∑
j=0

q−2(J−j)(t−s) ≤ Co2s2 o
−2s
1 2−t

∞∑
j=0

q−2j(t−s)

= o2s2 o
−2s
1 2−t 1

1− q−2(t−s)
<∞. (3.12)

Since qj ≤ o1∥ξ∥ < qJ+1, we have for j ≥ J + 1

(1 + q−2j−2o21∥ξ∥2)−t ≤ (1 + q2(J−j))−t ≤ 2−t
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and
(1 + o22∥ξ∥2)s ≤ (1 + o22o

−2
1 q2J)s ≤ o2s2 o

−2s
1 q2Js.

Since α ≥ 0, α+ s > 0, by Lemma 3.3 and equation (3.7), we have

⊖2
s,t(ξ) =

∞∑
j=J+1

q−2js(1 + o22∥ξ∥2)s
L∑

ℓ=1

r∑
n=1

r∑
m=1

|̂bℓn,m(p−j−1ξ)|2(1 + q−2j−2o21∥ξ∥2)−t.

≤ qto2s2 o
−2s
1 C

∞∑
j=J+1

q−2(j−J)s
L∑

ℓ=1

r∑
n=1

r∑
m=1

|̂bℓn,m(p−j−1ξ)|2

≤ qto2s2 o
−2s
1 C

∞∑
j=J+1

q−2(j−J)s∥p−j−1ξ∥2α2

≤ qto2s2 o
−2s
1 C

∞∑
j=J+1

q−2(j−J)sq−2α(j+1)(o1∥ξ∥)2α

≤ qto2s2 o
−2s
1 C

∞∑
j=J+1

q−2(j−J)(α+s)

= qto2s2 o
−2s
1 C

∞∑
j=1

q−2j(α+s) = qto2s2 o
−2s
1 C

∞∑
j=1

q−2j(α+s)

= qto2s2 o
−2(α+s)
1 C

q−2(α+ s)

1− q−2s
<∞. (3.13)

Therefore, for the case s < 0, we conclude that △s,t ∈ L∞(K). □

Now we proceed to prove the main result of this paper.
Theorem 3.1. Given s ∈ K, let φ = (φ1, φ2, ..., φr)

T ∈ (Hs(K))r be a p-refinable function vector satisfying the

refinable equation , and let b̂ℓ(ξ) = (̂bℓn,m(ξ))rn,m, ℓ = 1, 2, ..., L be a sequence of r × r order matrices of N0-periodic

measurables functions on K, ψℓ = (ψℓ
1, ψ

ℓ
2, ..., ψ

ℓ
r)

T , ℓ = 1, 2, ..., L, be the wavelet function vectors defined by (2.9),
and Ws(φ;ψ1, ψ2, ..., ψL) be the multi-wavelet system defined by (2.10). Assume that

(i) [φ̂n, φ̂n]t ∈ L∞(K) for some t > s with n = 1, 2, ..., r
(ii) There exists a non-negative number α > −s and a positive constant C such that

L∑
ℓ=1

r∑
n=1

r∑
m=1

|̂bℓn,m(ξ)|2 ≤ Cmin(1, ∥ξ∥2α2 ), a.e on K.

Then Ws(φ;ψ1, ψ2, ..., ψL) is a MWBS in Hs(K).

Proof. For the case s = 0, we take 0 < s0 < min{t, α}, then the conditions (i) and (ii) hold for s = s0.
Therefore, the conclusion holds for s=0 if it holds for s = s0. So, in order to finish the proof, we need to prove the
conclusion holds for s ̸= 0.
By Lemma 3.2, it is enough to prove that there exists a positive constant B such that

r∑
n=1

∑
k∈N0

|⟨g, φn;0,k⟩|2 +
r∑

n=1

L∑
ℓ=1

∞∑
j=0

∑
k∈N0

|⟨g, ψℓ,s
n;j,k⟩|

2 ≤ B∥g∥H−s(K) for g ∈ H−s(K). (3.14)

For the first part, by Lemma 3.3, we have

r∑
n=1

∑
k∈N0

|⟨g, φℓ,s
n;0,k⟩|

2 ≤
r∑

n=1

∥[φ̂n, φ̂n]s∥L∞(K)∥g∥2H−s(K) for g ∈ H−s(K). (3.15)

Next, we check the second part. For g ∈ H−s(K), compute∑
k∈N0

|⟨g, ψℓ,s
n;j,k⟩|

2 = q−j(1+2s)
∑
k∈N0

∣∣∣∣∫
K
ĝ(ξ)ψ̂ℓ

n(p
−1ξ)χk(p

−jξ)dξ

∣∣∣∣
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= q−j(1+2s)
∑
k∈N0

∣∣∣∣∣ ∑
k′∈N0

∫
D

ĝ(pj(ξ + u(k′)))ψ̂ℓ
n(ξ + u(k′))χk(ξ)dξ

∣∣∣∣∣
2

= q−j(1+2s)
∑
k∈N0

∣∣∣∣∣ ∑
k′∈N0

∫
D

ĝ(pj(ξ + u(k′)))ψ̂ℓ
n(ξ + u(k′))dξ

∣∣∣∣∣
2

= qj(1−2s)

∫
D

|[ĝ(pjξ), ψ̂ℓ
n(ξ)]0(ξ)|2dξ (3.16)

By definition in (2.9), we can get each component of ψℓ

ψℓ
n(.) =

r∑
m=1

b̂ℓn,m(p−1ξ)φ̂n(p
−1ξ) for n = 1, 2, ..., r and ℓ = 1, 2, ..., L,

and it follows from (3.16) that∑
k∈N0

|⟨g, ψℓ,s
n;j,k⟩|

2

= qJ(d−2s)

∫
D

∣∣∣∣∣∑
k∈N0

r∑
m=1

ĝ(pj(ξ + u(k)))̂bℓn,m(p−1(ζ + u(k)))φ̂n(p−1(ξ + u(k)))

∣∣∣∣∣
2

dξ

= qj(d−2s)

∫
D

∣∣∣∣∣∣
∑
γ∈Γp

r∑
m=1

b̂ℓn,m(p−1ξ + γ)[ĝ(pj+1ξ), φ̂n]0(p
−1ξ + γ)

∣∣∣∣∣∣
2

dξ

≤ q(j+1)d−2s
∑
γ∈Γp

∫
D

∣∣∣∣∣
r∑

m=1

b̂ℓn,m(p−1ξ + γ)[ĝ(pj+1.), φ̂n]0(p
−1ξ + γ)

∣∣∣∣∣
2

dξ

≤ q(j+2)d−2js

∫
D

r∑
m=1

|̂bℓn,m(ξ)|2[ĝ(pj−1.ĝ(pj+1)]−t(ξ)[φ̂n, φ̂n]t(ξ)dξ

≤ q(j+2)d−2js max
1≤n≤r

{∥[φ̂n, φ̂n]t∥L∞(K)}
∫
D

r∑
m=1

|̂bℓn,m(ξ)|2[ĝ(pj+1(ξ)), ĝ(pj+1ξ)]−t(ξ)dξ

≤ q(j+2)d−2js max
1≤n≤r

{∥[φ̂n, φ̂n]t∥L∞(K)}
∫
K

r∑
m=1

|̂bℓn,m(ξ)|2|ĝ(pj+1(ξ))|2(1 + ∥ξ∥22)−tdξ

= qd−2js max
1≤n≤r

{∥[φ̂n, φ̂n]t∥L∞(K)}×

∑
K

r∑
m=1

|̂bn,m(p−j−1ξ)|2|ĝ(ξ)|2|ĝ(ξ)|2(1 + ∥p−j−1ξ∥22)−tdξ (3.17)

Hence, we conclude that
r∑

n=1

L∑
ℓ=1

∞∑
j=0

∑
k∈N0

|⟨g, ψℓ,s
n;j,k⟩|

2 ≤ qd max
1≤n≤r

{∥[φ̂n, φ̂n]t∥L∞(K)}
∫
K
|ĝ(ξ)|2(1 + ∥ξ∥22)−s ×

∞∑
j=0

q−2js(1 + ∥ξ∥22)s
L∑

ℓ=1

r∑
n=1

r∑
m=1

|̂bℓn,m(p−j−1ξ)|2(1 + ∥p−j−1ξ∥22)−tdξ (3.18)
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By Lemma 3.4., we get from (3.18) that

r∑
n=1

L∑
ℓ=1

∞∑
j=0

∑
k∈N0

|⟨g, ψn;j,k⟩|2

≤ qd max
1≤n≤r

{∥[φ̂n, φ̂n]}∥△s,t∥L∞(K)

∫
K
|ĝ(ξ)|2(1 + ∥ξ∥22)−s

= qd max
1≤n≤r

{∥[φ̂n, φ̂n]}∥△s,t∥L∞(K)∥g∥H−s(K).

Consequently, (3.14) holds with

B =

r∑
n=1

∥[φ̂n, φ̂n]s∥L∞(K) + qd max
1≤n≤r

{∥[φ̂n, φ̂n]}∥△s,t∥L∞(K)}∥△s,t∥L∞(K). (3.19)

The proof is completed. □
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