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Abstract

In this paper, we consider a mathematical model that describes the quasi-static process of contact between a piezo-
electric body and a deformable foundation. A nonlinear thermo-electro-viscoelastic constitutive law with long term
memory and damage is used and the contact is described with the normal compliance condition and a version of
Coulomb’s law of friction. We derive variational formulation for the model which is in the form of a system involving
the displacement field, the electric potential field, the temperature field and the damage field, existence and unique-
ness of a weak solution of the problem is proved. The proof is based on arguments of time-dependent variational
inequalities, parabolic inequalities, differential equations and fixed points.
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1 Introduction

Situations of contact between deformable bodies are very common in the industry and everyday life. Contact of
braking pads with wheels, tires with roads, pistons with skirts or complex metal forming processes are just a few
examples. Because of the importance of contact processes in structural and mechanical systems, considerable progress
has been achieved recently in modeling and mathematical analysis and numerical simulations and so, the engineering
literature concerning this topic is rather extensive [3, 16, 9].

The piezoelectricity lie between the coupling of the mechanical and electrical material properties, This coupling,
leads to the appearance of electric field in the presence of a mechanical stress, and conversely in the presence of the
electric potential the mechanical stress is generated. This kind of materials appears usually in the industry as switches
in radiotronics, electroacoustics or measuring equipments. General models for elastic materials with piezoelectric
effects can be found in [2, 19, 20, 21].
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In order to model the effect of temperature in the behaviour of some real bodies like metals, magmas, polymers
and so on, thermo-elastic and thermo-viscoplastic constitutive laws has been studied by mathematicians, physicists
and engineers, see for examples and details [13, 17, 18, 5, 1].

In this paper, we also consider the damage of the material. The effect due to the damage leads to the decrease in
the load carrying capacity of the body, is also included. The effective functioning and safety of a mechanical system
may be deteriorated by this decrease as the material undergoes damage. Because of the importance of this topic,
General novel models for damage were derived in [6, 7] from the virtual power principle. The mathematical analysis of
one-dimensional problems can be found in [8]. Contact problems with damage have been investigated in [25, 11, 12, 23].

Contact problems involving viscoelastic materials with long memory have been studied in [10, 24, 26].

Here we continue this line of research and study a quasistatic contact problem with coulomb friction in thermo-
electro-viscoelasticity with long-term memory body. when the foundation is deformable and conductive.

In Section 2 we present contact model and provide comments on the contact boundary conditions. In Section 3
we list the assumptions on the data and derive the variational formulation. We prove in Section 4 the existence and
uniqueness of the solution.

2 Problem statement

The physical setting is the following, A body occupies the domain Ω ⊂ Rd(d = 2, 3) with outer Lipschitz surface
which is divided into three disjoint measurable parts Γ1, Γ2 and Γ3 on one hand, and a partition of Γ1 ∪ Γ2 into two
open parts Γa and Γb, on the other hand. We assume that meas(Γ1) > 0 and meas(Γa) > 0. Let T > 0 and let [0, T ]
be the time interval of interest. The body is clamped on Γ1 × (0, T ) and the displacement vanishes there. A volume
force of density f0 acts in Ω× (0, T ) and surface tractions of density f2 act on Γ2 × (0, T ). We also assume that the
electrical potential vanishes on Γa × (0, T ) and a surface electric charge of density q2 is prescribed on Γb × (0, T ).
The body may come in contact with a conductive obstacle over the part Γ3, the potential contact surface. A gap g
may exist between the contact surface Γ3 and the foundation, measured along the outward normal vector ν over the
potential contact surface Γ3. We admit a possible external heat source applied in Ω× (0, T ), given by the function ρ.

The classical formulation of the mechanical problem of electro viscoelasticity with long-term memory body with
damage and thermal effects, be stated as follows.

Problem P

Find a displacement field u : Ω × (0, T ) → Rd, a stress field σ : Ω × (0, T ) → Sd, an electric potential field
φ : Ω× (0, T ) → R, a temperature field θ : Ω× (0, T ) → R, an electric displacement field D : Ω× (0, T ) → Rd, and a
damage field α : Ω× (0, T ) → R such that

σ(t) = Aε (u̇(t)) + B (ε (u(t)) , θ(t), α(t))+∫ t

0

M (t− s, ε (u(s)) , θ(s), α(s)) ds− (E)∗E (φ(t))
in Ω× (0, T ), (2.1)

D = Eε(u) +B∇(φ) in Ω× (0, T ), (2.2)

θ̇ − κ0∆θ = Θ(σ, ε (u) , θ, α) + ρ in Ω× (0, T ), (2.3)

α̇− k∆α+ ∂φK(α) ∋ S (ε(u), α) , in Ω× (0, T ), (2.4)

Divσ + f0 = 0 in Ω× (0, T ), (2.5)

divD − q0 = 0 in Ω× (0, T ), (2.6)

u = 0 on Γ1 × (0, T ), (2.7)

σν = f2 on Γ2 × (0, T ), (2.8)

− σν = pν (uν − g) on Γ3 × (0, T ) (2.9)
∥στ∥ ≤ µpν (uν − g)

∥στ∥ < µpν (uν − g) ⇒u̇τ = 0 on Γ3 × (0, T )

∥στ∥ = µpν (uν − g) ⇒ there exists λ ≥ 0

such that στ = −λu̇τ ,

(2.10)
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∂α

∂ν
= 0 on Γ× (0, T ), (2.11)

φ = 0 on Γa × (0, T ), (2.12)

D.ν = q2 on Γb × (0, T ), (2.13)

D · ν = ψ (uν − g)ϕl (φ− φ0) on Γ3 × (0, T ), (2.14)

k0
∂θ

∂ν
+Bθ = 0 on Γ× (0, T ), (2.15)

u(0) = u0, θ(0) = θ0, α(0) = α0, in Ω. (2.16)

First, equations (2.1) and (2.2) represent the thermo-electro-viscoelastic constitutive law with long term-memory
and damage, were A and B are the viscosity and elasticity operators, respectively, and M is the relaxation operator,
where θ represents the absolute temperature and α is the damage field. E(φ) = −∇φ is the electric field, E = (eijk)
represent the third order piesoelectric tensor, E∗ is its transposition.

Equation (2.3) represents the energy conservation where Θ is a nonlinear constitutive function which represents
the heat generated by the work of internal forces and ρ is a given volume heat source

The evolution of the damage field is governed by the inclusion of parabolic type given by the relation (2.4) where
φK(α) denotes the subdifferential of the indicator function of the set K of admissible damage functions defined by
K =

{
α ∈ H1(Ω) | 0 ≤ α ≤ 1 a.e. in Ω}, and S is the mechanical source of the damage

Equations (2.5) and (2.6) represent the equilibrium equations for the stress and electric displacement fields. Equa-
tions (2.7)-(2.8) are the displacement-traction conditions.

Frictional contact conditions of the form (2.9) and (2.10) have been used in various papers [12, 23]. and which
describe the contact on the surface Γ3 , described by the normal compliance function p, such that p(u) = 0 when
u ≤ 0, g is the initial gap and the condition, uν − g ≥ 0 represents the penetration of body in the foundation.

In (2.10) the tangential stress cannot exceed the friction threshold µpν(uν − g). In addition, when the threshold
is not reached, there is no slip ( the tangential velocity vanishes). When this threshold is reached, the body begins to
slide and the tangential stress tends to oppose the tangential movement

The relation (2.11) describes a homogeneous Neumann boundary condition. (2.12) and (2.13) represent the electric
boundary conditions.

Equality (2.14) represents the electrical condition on the potential contact surface, where ϕl is the potential of the
electric foundation. The function ϕl is given by

ϕl(s) =


−l if s < −l,
s if − l ≤ s ≤ l,

l if s > l.

(2.17)

here l is a large positive constant, it may be arbitrarily large, higher than any possible peak voltage in the system.
The function ψ is given bellow. For more details see [15]. (2.15) represent a Fourier boundary condition for the
temperature. Finally, The functions u0, θ0 and α0 in (2.16) are the initial data.

3 Variational formulation and preliminaries

For a weak formulation of the problem, first we introduce some notation. Let d be a positive integer. We denote
by Sd the space of second order symmetric tensors on Rd The inner products and the corresponding norms on Rd and
Sd are given by

u · v = uivi, ∀u,v ∈ Rd and σ · τ = σijτij ∀σ, τ ∈ Sd,
∥u∥ = (u · u) 1

2 , ∀u ∈ Rd and ∥σ∥ = (σ · σ) 1
2 , ∀σ ∈ Sd.

Here and everywhere in this paper the indices i, j, k run from 1 to d. The convention of summation over repeated
indices is used and the index that follows a comma indicates a partial derivative with respect to the corresponding
component of the independent variable.

Let Ω ⊂ Rd be a bounded domain with a regular boundary Γ. we introduce the spaces

H = L2(Ω;Rd), H1 = {u ∈ H | ε(u) ∈ H} = H1(Ω;Rd),
H =

{
σ = (σij) | σij = σji ∈ L2(Ω)

}
= L2(Ω;Sd), H1 = {σ ∈ H | Divσ ∈ H}.
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where ε : H1
(
Ω;Rd

)
→ L2

(
Ω;Sd

)
and Div : H1 → L2

(
Ω;Rd

)
denote the deformation and the divergence operators,

respectively, given by

ε(u) = (εij(u)) , εij(u) =
1

2
(ui,j + uj,i) , Div(σ) = σij,j .

The spaces H, H1, H and H1 are Hilbert spaces equipped with the inner products

(u,v)H =

∫
Ω

uividx ∀u,v ∈ H, (σ, τ )H =

∫
Ω

σijτijdx ∀σ, τ ∈ H,

(u,v)H1 = (u,v)H + (ε(u), ε(v))H, ∀u,v ∈ H1,

(σ, τ )H1 = (σ, τ )H + (Divσ,Div τ )H , σ, τ ∈ H1.

The associated norms in H, H1, H and H1 are denoted by ∥.∥H , ∥.∥H1 , ∥.∥H and ∥.∥H1 respectively.

Given u ∈ H
1
2 (Γ;Rd) we denote by uν and uτ the normal and the tangential components of u on the boundary,

i.e. uν = u.ν and uτ = u − uνν Similarly, for a regular tensor field σ : Γ → Sd we define its normal and tangential
components by σν = σν · ν and στ = σν − σνν, and we recall that the following Green formula holds

(σ, ε(v))H + (Divσ,v)H =

∫
Γ

σν.vda, ∀v ∈ H1.

and for the displacement field we need the closed subspace of H1(Ω)d defined by

V =
{
v ∈ H1(Ω)d | v = 0 on Γ1

}
.

Since meas(Γ1) > 0, Korn’s inequality holds and there exists a constant C0 > 0, that depends only on Ω and Γ1

such that
∥ε(v)∥H ≥ C0∥v∥H1(Ω)d , ∀v ∈ V.

A proof of Korn’s inequality may be found in ([22] ,p.79). On V , we consider the inner product and the associated
norm given by

(u,v)V = (ε(u), ε(v))H, ∥v∥V = ∥ε(v)∥H, u,v ∈ V. (3.1)

It follows that ∥.∥H1(Ω)d and ∥.∥V are equivalent norms on V and therefore (V, ∥.∥V ) is a real Hilbert space.
Moreover, by the Sobolev trace Theorem and (3.1) there exists a constant c0 > 0 depending only on Ω,Γ1 and Γ3 such
that

∥v∥L2(Γ3)
d ≤ c0∥v∥V , ∀v ∈ V. (3.2)

For the electric displacement field we use the Hilbert space

W =
{
D = (Di) | Di ∈ L2(Ω),divD ∈ L2(Ω)

}
,

endowed with the inner product
(D,E)W = (D,E)H + (divD,divE)L2(Ω),

and the associated norm ∥.∥W . The electric potential field is to be found in

W =
{
ξ ∈ H1(Ω), ξ = 0 on Γa

}
.

Since meas(Γa) > 0, the Friedrichs-Poincaré inequality holds

∥∇ζ∥H ≥ cF ∥ζ∥H1(Ω), ∀ζ ∈W, (3.3)

where cF > 0 is a constant which depends only on Ω and Γa. On W we use the inner product

(φ, ξ)W =

∫
Ω

∇φ.∇ξdx, (3.4)
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and ∥.∥W the associated norm. It follows from (3.3) that ∥.∥H1(Ω) and ∥.∥W are equivalent norms on W and therefore
(W, ∥.∥W ) is a real Hilbert space.

Moreover, by the Sobolev trace theorem, there exist a constant c̃0 such that

∥ψ∥L2(Γ3) ≤ c̃0∥ψ∥W , ∀ψ ∈W. (3.5)

Moreover, when D ∈ W is a regular function, the following Green’s type formula holds

(D,∇ζ)H + (divD, ζ)L2(Ω) =

∫
Γ

D · νζda, ∀ζ ∈ H1(Ω). (3.6)

For any real Hilbert space X, we use the classical notation for the spaces Lp(0, T ;X) and W k,p(0, T ;X), where
1 ≤ p ≤ ∞ and k ≥ 1. For T > 0 we denote by C(0, T ;X) and C1(0, T ;X) the space of continuous and continuously
differentiable functions from [0, T ] to X, respectively, with the norms

∥f∥C(0,T ;X) = max
t∈[0,T ]

∥f(t)∥X .

∥f∥C1(0,T ;X) = max
t∈[0,T ]

∥f(t)∥X + max
t∈[0,T ]

∥ḟ(t)∥X .

In the study of the problem P , we consider the following assumptions

The viscosity operator A : Ω× Sd −→ Sd satisfies

(a) There exists LA > 0 such that

∥A(x, ε1)−A(x, ε2)∥ ≤ LA∥ε1 − ε2∥,
for all ε1, ε2 ∈ Sd, a.e x ∈ Ω.

(b) There exists mA > 0 such that

(A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA∥ε1 − ε2∥2,
for all ε1, ε2 ∈ Sd, a.e x ∈ Ω.

(c) The mapping x 7→ A(x, ε) is Lebesgue measurable on Ω,

for any ε ∈ Sd.
(d) The mapping x 7→ A(x,0) ∈ H.

(3.7)

The elasticity operator B : Ω× Sd × R× R −→ Sd satisfies

(a) There exists LB > 0 such that

∥B(x, ε1, θ1, α1)− B(x, ε2, θ2, α2)∥ ≤ LB(∥ε1 − ε2∥+ ∥θ1 − θ2∥
+ ∥α1 − α2∥), for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(b) The mapping x 7→ B(x, ε, θ, α) is Lebesgue measurable on Ω,

for all ε ∈ Sd, θ, α ∈ R.
(c) The mapping x 7→ B(x,0, 0, 0) ∈ H.

(3.8)

The relaxation function M : Ω× (0, T )× Sd × R× R −→ R satisfies

(a) There exists a constant LM > 0 such that

∥M (x, t, ε1, θ1, α1)−M (x, t, ε2, θ2, α2)∥ ≤ LM(∥ε1 − ε2∥+ ∥θ1 − θ2∥
+ ∥α1 − α2∥), for all t ∈ (0, T ), ε1, ε2 ∈ Sd, θ1, θ2, α1, α2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→ M(x, t, ε, θ, α) is Lebesgue measurable on Ω,

for all ε,∈ Sd, t ∈ (0, T ), for all θ, α ∈ R.
(c) The mapping x 7→ M(x, t, ε, θ, α) is continuous in Ω,

for all ε,∈ Sd, t ∈ (0, T ), for all θ, α ∈ R.
(d) The mapping x 7→ M(x, t,0, 0, 0) ∈ H.

(3.9)



210 Hamidat, Aissaoui

The function Θ : Ω× Sd × Sd × R× R −→ R satisfies

(a) There exists a constant LΘ > 0 such that

∥Θ(x,σ1, ε1, θ1, α1)−Θ(x,σ2, ε2, θ2, α2)∥ ≤ LΘ(∥σ1 − σ2∥+ ∥ε1 − ε2∥
+ ∥θ1 − θ2∥+ ∥α1 − α2∥),
for all ε1, ε2,σ1,σ2 ∈ Sd, and θ1, θ2, α1, α2 ∈ R, a.e x ∈ Ω.

(b) For any σ, ε ∈ Sd, and θ, α ∈ R,x 7→ Θ(x,σ, ε, θ, α) is Lebesgue

measurable on Ω.

(c) The mapping x 7→ Θ(x,0,0, 0, 0) ∈ L2(Ω).

(3.10)

The function S : Ω× Sd × R −→ R satisfies

(a) There exists a constant LS > 0 such that

∥S (x, ε1, α1)− S (x, ε2, α2)∥ ≤ LS (∥ε1 − ε2∥+ ∥α1 − α2∥) ,
for all ε1, ε2 ∈ Sd, for all α1, α2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→ S(x, ε, α) is Lebesgue measurable on Ω,

for all ε ∈ Sd, for all α ∈ R.
(c) The mapping x 7→ S(x,0, 0) ∈ L2(Ω).

(3.11)

The surface electrical conductivity function ψ : Γ3 × R → R+ satisfies

(a) There exists Lψ > 0 such that
∥ψ (., u1)− ψ (., u2)∥ ≤ Lψ ∥u1 − u2∥ , for all u1, u2 ∈ R.
(b) There exists Mψ > 0 such that ∥ψ(x, u)∥ ≤Mψ,

for all u ∈ R, a.e. x ∈ Γ3.
(c)x 7→ ψ(x, ) is measurable on Γ3, for all u ∈ R,
(d)x 7→ ψ(x, u) = 0, for all u ≤ 0.

(3.12)

Electric permittivity operator B = (bij) : Ω× Rd → Rd satisfies
(a) B(x, E) = (bij(x)Ej) for all E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(b) bij = bji ∈ L∞(Ω), 1 ≤ i, j ≤ d.

(c) There exists a constant mB > 0 such that

BE.E ≥ mB∥E∥2, for all E = (Ei) ∈ Rd, a.e. in Ω.

(3.13)

The piezoelectric operator E : Ω× Sd → Rd satisfies{
(a) E = (eijk) , eijk ∈ L∞(Ω), 1 ≤ i, j, k ≤ d.

(b) E(x)σ · τ = σ · E∗τ , for all σ ∈ Sd, and all τ ∈ Rd.
(3.14)

The normal compliance function pν : Γ3 × R −→ R+ satisfies
(a) There exists Lν > 0 such that
∥pν (x, u1)− pν (x, u2)∥ ≤ Lν ∥u1 − u2∥

∀u1, u2 ∈ R, a.e. x ∈ Γ3

(d) For any u ∈ R,x 7→ pν(x, u) is measurable on Γ3

(e) x 7→ pν(x, u) = 0, for all u ≤ 0.

(3.15)

We assume that the gap function g the initial potential φ0 the friction coefficient µ, the volume heat source ρ, the
initial data α0, u0 and θ0 the volume of forces f0 and f2 and the charges densities q0, q2, the energy coefficient k0,
the microcrack diffusion coefficient k1 satisfy
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g ∈ L2 (Γ3) , g ≥ 0 a.e. on Γ3, φ0 ∈ L2 (Γ3) , (3.16)

µ ∈ L∞ (Γ3) , µ ≥ 0 a.e. on Γ3, (3.17)

u0 ∈ V, α0 ∈ K, θ0 ∈ H1(Ω), (3.18)

f0 ∈ C
(
0, T ;L2(Ω)d

)
, f2 ∈ C

(
0, T ;L2 (Γ2)

d
)
, (3.19)

q0 ∈ C
(
0, T ;L2(Ω)

)
, q2 ∈ C

(
0, T ;L2 (Γb)

)
, (3.20)

B > 0, ki > 0, i = 0, 1, ρ ∈ C
(
0, T ;L2 (Ω)

)
. (3.21)

We introduce the following bilinear forms ai : H
1(Ω)×H1(Ω) → R, i = 0, 1 by

a0(ζ, ξ) = k0

∫
Ω

∇ζ · ∇ξdx+B

∫
Γ

ζξdγ, (3.22)

a1(ζ, ξ) = k1

∫
Ω

∇ζ · ∇ξdx. (3.23)

Next. We define four mappings j : V × V → R, h : V ×W → W , f : [0, T ] → V and q : [0, T ] → W , respectively,
by

j(u,v) =

∫
Γ1

pν (uν − g)vνda+

∫
Γ3

µpν (uν − g) ∥vτ∥ da, (3.24)

(h(u, φ), ζ)W =

∫
Γ3

ψ (uν − g)ϕl (φ− φ0) ζda, (3.25)

(f(t),v)V =

∫
Ω

f0(t) · vdx+

∫
Γ2

f2(t) · vda, (3.26)

(q(t), ζ)W =

∫
Ω

q0(t)ζdx−
∫
Γb

q2(t)ζda, (3.27)

for all u,v ∈ V , φ, ζ ∈W and t ∈ [0, T ]. Note that

f ∈ C (0, T ;V ) , q ∈ C(0, T ;W ). (3.28)

By a standard procedure based on Green’s formula we can derive the following variational formulation of the
contact problem (2.1)-(2.16).

problem PV

Find a displacement field u : (0, T ) → V , a stress field σ : (0, T ) → H, an electric potential φ : (0, T ) → W, a
damage field α : (0, T ) → H1(Ω), and a temperature θ : (0, T ) → H1(Ω) such that

σ(t) = Aε (u̇(t)) + B (ε (u(t)) , θ(t), α(t))+∫ t

0

M (t− s, ε (u(s)) , θ(s), α(s)) ds− (E)∗E (φ(t))
(3.29)

(σ(t), ε(v)− ε(u̇(t))H + j(u(t),v)− j(u(t), u̇(t)) ≥ (f(t),v − u̇(t))V (3.30)

(B∇φ(t),∇ζ)H − (Eε(u(t)),∇ζ)H + (h(u(t), φ(t)), ζ)W = (q(t), ζ)W , (3.31)

(θ̇(t),v)L2(Ω) + a0(θ(t),v) = (ψ(σ(t), ε(u(t)), θ(t)),v)L2(Ω)

+ (ρ(t),v)L2(Ω), ∀v ∈ H1(Ω), a.e. t ∈ (0, T ),
(3.32)

α(t) ∈ K, (α̇(t), ξ − α(t))L2(Ω) + a(α(t), ξ − α(t))

≥ (S (ε(u(t)), α(t)) , ξ − α(t))L2(Ω) ,∀ξ ∈ K, t ∈ (0, T ),
(3.33)

u(0) = u0, θ(0) = θ0, α(0) = α0. (3.34)

Our main existence and uniqueness result for Problem PV is in the following section.
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4 Existence and uniqueness

Theorem 4.1. Assume that (3.7)-(3.21) hold, Then there exists a unique solution (u,σ, φ, θ, α,D) to problem PV .
Moreover, the solution has the regularity

u ∈ C1(0, T ;V ), (4.1)

φ ∈ C(0, T ;W ), (4.2)

σ ∈ C(0, T ;H), (4.3)

θ ∈W 1,2
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
, (4.4)

α ∈W 1,2
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
, (4.5)

D ∈ C(0, T ;W). (4.6)

The functions u, σ, φ, θ, α, and D which satisfy (3.29)-(3.34) are called a weak solution of the contact problem P .
We conclude that, under the assumptions (3.7)-(3.21), the mechanical problem (2.1)-(2.16) has a unique weak solution
satisfying (4.1)-(4.6).

It follows from (3.31) that divD − q0 = 0 for all t ∈ (0, T ), and therefore the regularity (4.2) of φ, combined with
(3.13),(3.14), and (3.20) implies (4.6).

The proof of theorem 4.1, is carried out is several steps and is based on arguments of time-dependent variational
inequalities, parabolic inequalities, differential equations and fixed points.

We denote by C a constant whose value may change from line to line when no confusing can arise.

Let η ∈ C(0, T ;H) and g ∈ C(0, T ;V ) we consider the following variational problem.

Problem P1
η

Find a displacement field uη : [0, T ] → V and a stress field ση : [0, T ] → H such that for all t ∈ [0, T ]

ση = A (ε (u̇η)) + η, (4.7)

(ση(t), ε (w − u̇η))H + j(uη,w)− j (uη, u̇η) ≥ (f(t),w − u̇η)V , ∀w ∈ V, (4.8)

uη(0) = u0. (4.9)

We consider the following variational inequality

Problem P2
η

Find vηg : Ω× (0, T ) → V such that

(Aε (vηg) , ε (w − vηg))H + j(g,w)− j (g,vηg)

≥ (f ,w − vηg)V − (η, ε (w − vηg))H , ∀w ∈ V.
(4.10)

Lemma 4.2. For all g ∈ C(0, T ;V ), η ∈ C(0, T ;V ), P2
η has a unique solution with the regularity vηg ∈ C(0, T ;V ).

Proof . Using Riesz Representation Theorem, we may define an element F ∈ C(0, T ;V ) by

(F(t),v)V = (f(t),v)V − (η(t), ε(v))H, ∀v ∈ V.

We define the operator A : V → V such that

(Au,v) = (Aε(u), ε(v))H,∀u,v ∈ V. (4.11)

It follows from (4.11) and (3.7)(a) that for all u1,u2 ∈ V and v ∈ V we have

∥(Au1 −Au2,v)V ∥ = ∥(A (ε (u1))−A (ε (u2)) , ε(v))∥H ,

≤ ∥A (ε (u1))−A (ε (u2))∥H ∥ε(v)∥H,
≤ LA ∥ε (u1)− ε (u2)∥H ∥ε(v)∥H,
≤ LA ∥u1 − u2∥V ∥v∥V ,
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which shows that A : V → V is Lipschitz continuous. Now, by (4.11) and (3.7)(b) we find

(Au1 −Au2,u1 − u2)V = (A (ε (u1))−A (ε (u2)) , ε (u1)− ε (u2))H

≥ mA ∥ε (u1)− ε (u2)∥2H ≥ C ∥u1 − u2∥2V .

And according to Korn’s inequality, it comes

(Au1 −Au2,u1 − u2)V ≥ C ∥u1 − u2∥2V ,

i.e., that A : V → V is a strongly monotone operator on V . And we can easily check that v 7→ j(g(t),v) is convex
lower semicontinuous and proper. It follows from classical results for elliptic variational inequalities (see [4]) that there
exists a unique vηg ∈ V , which is a solution of (4.10). To establish its regularity by showing that vηg ∈ C(0, T ;V ).
We let t1, t2 ∈ [0, T ] and denote ηi = η (ti), gi = g (ti), fi = f (ti) and vi = vηg(ti). Using the relation (4.10) we find
that

(Aε (v1)−Aε (v2) , ε (v1 − v2))H ≤ (f1 − f2,v1 − v2)V
+ (η1 − η2, ε (v1 − v2))H + j (g1,v2)− j (g1,v1) + j (g2,v1)− j (g2,v2) .

(4.12)

Moreover, we have

(Aε (v1)−Aε (v2) , ε (v1 − v2))H ≥ mA ∥v1 − v2∥2V . (4.13)

From the definition of the functional j given by (3.24), we have

j (g1,v1)− j (g1,v2) + j (g2,v1)− j (g2,v2)

≤ c20Lν∥µ∥L∞(Γ3) ∥g1 − g2∥V ∥v1 − v2∥V .
(4.14)

Using these bounds in (4.12), we obtain

∥v1 − v2∥V ≤ C (∥f1 − f2∥V + ∥η1 − η2∥H + ∥g1 − g2∥V ) , (4.15)

then the conclusion that vηg ∈ C([0, T ];V ) follows from the continuity of f , σ and g in their respective spaces V and
H. □

With the help of Lemma 4.2, we are in a position to show the following existence and uniqueness result for Problem
P1
η .

Lemma 4.3. There exists a unique solution to Problem P1
η such that uη ∈ C1(0, T ;V ) and ση ∈ C(0, T ;H).

Proof . We consider an operator Λη : C(0, T ;V ) → C(0, T ;V ) defined by

Ληg = gη, g ∈ C(0, T ;V ), (4.16)

where

gη(t) = u0 +

∫ t

0

vηg(s)ds, t ∈ (0, T ). (4.17)

and vηg is the solution of (4.10). We will show that this operator has a unique fixed point gη ∈ C([0, T ];V ). To this
end, let g1, g2 ∈ C([0, T ];V ) and denote by vi = vηgi

, i = 1, 2, the corresponding solutions of (4.10). Using (4.16)
and (4.17) we have

∥Ληg1(t)− Ληg2(t)∥V ≤
∫ t

0

∥v1(s)− v2(s)∥V ds, ∀t ∈ [0, T ]. (4.18)

Using estimates similar to those in the proof of Lemma 4.2 ( see (4.12)-(4.15)) we see that

∥v1(s)− v2(s)∥V ≤ C ∥g1(s)− g2(s)∥V , s ∈ [0, T ]. (4.19)
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Taking into account (4.18) we obtain

∥Ληg1(t)− Ληg2(t)∥V ≤ C

∫ t

0

∥g1(s)− g2(s)∥V ds, ∀t ∈ [0, T ]. (4.20)

Let is introduce the following notations
I1 =

∫ t

0

∥g1(s)− g2(s)∥V ds,
...

Ik =

∫ t

0

∫ sk−1

0

· · ·
∫ s1

0

∥g1(r)− g2(r)∥V ,

and by induction, by denoting by Λmη the m power of the operator Λη, we obtain∥∥Λmη g1(t)− Λmη g2(t)
∥∥
V

≤ Cm

(
m∑
k=1

CkmI
m−k∥g1(t)− g2(t)∥V

)
,

for all t ∈ (0, T ) and m ∈ N,

Im−k∥g1 − g2∥V =

∫
(m−k) fois

.

∫
∥g1 − g2∥V

≤
∫ s

0

∫
· · ·
∫
(m−k) fois

∥g1 − g2∥C(0,T ;V )

≤ tm−k

k!
∥g1 − g2∥C(0,T ;V )

≤ Tm−k

k!
∥g1 − g2∥C(0,T ;V ) ,

∥Λmη g1(t)− Λmη g2(t)∥C(0,T ;V )

≤ Cm

(
m∑
k=1

Ckm
Tm−k

k!
∥g1(t)− g2(t)∥C(0,T ;V )

)

≤ (CT )m

m!
∥g1(t)− g2(t)∥C(0,T ;V ) ,

(4.21)

which implies that for a sufficiently large m the operator Λmη is a contraction on C(0, T ;V ), Thus Λη has a unique
fixed point g∗

η ∈ C([0, T ];V ). Next, let vη ∈ C([0, T ];V ) and ση ∈ C([0, T ];H) be given by

vη = vηg∗
η
, ση = σηg∗

η
= Aε

(
vηg∗

η

)
+ η. (4.22)

Moreover, using (4.17) and (4.22), we let uη : [0, T ] → V be the function

uη(t) = u0 +

∫ t

0

vη(s)ds, ∀t ∈ [0, T ]. (4.23)

Clearly, (4.7) and (4.9) are satisfied. Moreover, by (4.22), (4.23) and (4.16), (4.17), it follows that uη = g∗
η and

u̇η = vη. Therefore, if g = g∗
η in (4.10), then we obtain (4.8).

To prove the regularity of ση, we choose w = vηg(t)± φ in (4.8) where φ ∈ C∞
0 (Ω)d, t ∈ (0, t) we find

(σηg, ε(φ))H = (F, φ)V , ∀φ ∈ C∞
0 (Ω)d, on [0, T ]. (4.24)
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Using (3.26) we deduce

Div ση + f0 = 0, on [0, T ], (4.25)

and then, assumption (3.19) and equation (4.25) imply that ση ∈ C([0, T ];H). This establishes the existence part in
Lemma 4.3. The uniqueness is a consequence of the uniqueness of the fixed point of the operator Λη defined by (4.16),
(4.17) and the unique solvability of the Problem P2

η and relations (3.7) and (4.7). □

In the second step we use the displacement field uη obtained in Lemma 4.3, to construct the following variational
problem for the an electrical potential.

Problem P3
η

Find an electrical potential φη : (0, T ) →W such that

(B∇φη(t),∇ζ)H − (Eε (uη(t)) ,∇ζ)H + (h (uη(t), φη(t)) , ζ)W
= (q(t), ζ)W , for all ζ ∈W, t ∈ (0, T ).

(4.26)

We have the following result for problem P3
η

Lemma 4.4. Problem (4.26) has unique solution φη which satisfies the regularity (4.2). Moreover, if φη1 and φη2 are
the solutions of (4.26) corresponding to η1,η2 ∈ C([0, T ];H), then there exists C > 0 such that

∥φη1(t)− φη2(t)∥W ≤ C ∥uη1(t)− uη2(t)∥V ∀t ∈ [0, T ]. (4.27)

To prove the above lemma, we use an abstract existence and unique result which may be found in [15] .

For λ ∈ C(0, T ;L2(Ω)), we consider the following variational problem.

Problem Pλ

Find the temperature field θλ : (0, T ) → L2(Ω)(
θ̇λ(t),v

)
L2(Ω)

+ a0 (θλ(t),v) = (λ(t) + ρ(t),v)L2(Ω),

∀v ∈ L2(Ω), a.e. t ∈ (0, T ),
(4.28)

θλ(0) = θ0, in Ω. (4.29)

Lemma 4.5. There exists a unique solution θλ to the auxiliary problem Pλ satisfying (4.4).

Proof .

By an application of the Poincaré-Friedrichs inequality, we can find a constant B′ > 0 such that∫
Ω

∥∇ζ∥2dx+
B

k0

∫
Γ

∥ζ∥2dγ ≥ B′
∫
Ω

∥ζ∥2dx, ∀ζ ∈ V.

Thus, we obtain
a0(ζ, ζ) ≥ c1∥ξ∥2V , ∀ζ ∈ V,

where c1 = k0min(1, B
′)/2, which implies that a0 is V-elliptic. Consequently, based on classical arguments of functional

analysis concerning parabolic equations [14], the variational equation (4.28) has a unique solution θλ satisfying (4.4).
□

In the third step we let χ ∈ L2(0, T ;L2(Ω))
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Problem Pχ

Find the damage field αχ : (0, T ) → L2(Ω) such that αχ(t) ∈ K and

(α̇χ(t), ξ − αχ)L2(Ω) + a1 (αχ(t), ξ − αχ(t))

≥ (χ(t), ξ − αχ(t))L2(Ω) ∀ξ ∈ K, a.e. t ∈ (0, T ),
(4.30)

αχ(0) = α0. (4.31)

For the study of problem Pχ, we have the following result.

Lemma 4.6. There exists a unique solution αχ to the auxiliary problem Pχ satisfying (4.5).

The above lemma follows from a standard result for parabolic variational inequalities, (see [25]).

Finally, as a consequence of these results and using the properties of the operator G the operator E , the functions
Θ and S for t ∈ (0, T ), we consider the element

Λ(η, λ, χ)(t) =
(
Λ1(η, λ, χ)(t),Λ2(η, λ, χ)(t),Λ3(η, λ, χ)(t)

)
∈ H × L2(Ω)× L2(Ω), (4.32)

defined by (
Λ1(η, λ, χ)(t),v

)
H×V = (B(ε(u(t), θλ(t), αχ(t)), ε(v))H + (E∗∇φη(t), ε(v))H

+

(∫ t

0

M (t− s, ε (uη(s)) , θλ(s), αχ(s)) ds, ε(v)

)
H
,∀v ∈ V,

(4.33)

Λ2 (η, λ, χ) (t) = Θ (ση, ε (uη(t)) , θλ(t), αχ(t)) . (4.34)

Λ3 (η, λ, χ) (t) = S (ε (uη(t)) , αχ(t)) . (4.35)

Here, for every (η, λ, χ) ∈ C(0, T ;H × L2(Ω) × L2(Ω)). uη, φη, θλ, αχ and ση represent the displacement field, the
electric potential field, the temperature field, the damage field and the stress field , obtained in Lemmas 4.2, 4.3,
4.4,4.5 and 4.6 respectively. We have the following result.

Lemma 4.7. The mapping Λ has a fixed point (η, λ, χ) ∈ C(0, T ;H × L2(Ω) × L2(Ω)), such that Λ (η∗, λ∗, χ∗) =
(η∗, λ∗, χ∗) .

Proof . Let t ∈ (0, T ) and (η1, λ1, χ1) , (η2, λ2, χ2) ∈ C
(
0, T ;H× L2(Ω)× L2(Ω)

)
. We use the notation that

uηi = ui, u̇ηi = vηi = vi, θλi = θi, φηi = φi, αη = αi and σηi,θi = σi for i = 1, 2.

Let us start by using (3.8), (3.9) and (3.14), we have

∥Λ1 (η1, λ1, χ1) (t)− Λ1 (η2, λ2, χ2) (t)∥2H
≤ ∥B (ε (u1(t)) , θ1(t), α1(t))− B (ε (u2(t)) , θ2(t), α2(t))∥2H
+ ∥E∗∇φ1(t)− E∗∇φ2(t)∥2H

+

∫ t

0

∥M (t− s, ε(u1(s)), θ1(s), α1(s))−M (t− s, ε(u2(s)), θ2(s), α2(s))∥2H ds,

≤ C
(
∥φ1(t)− φ2(t)∥2W + ∥u1(t)− u2(t)∥2V + ∥θ1(t)− θ2(t)∥2L2(Ω)

+ ∥α1(s)− α2(s)∥2L2(Ω) +

∫ t

0

∥u1(s)− u2(s)∥2V ds

+

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds+

∫ t

0

∥α1(s)− α2(s)∥2L2(Ω) ds

)
.

(4.36)

By similar arguments, from (4.34), (3.10) we obtain∥∥Λ2 (η1, λ1, χ1) (t)− Λ2 (η2, λ2, χ2) (t)
∥∥2
H

≤ C
(
∥σ1(t)− σ2(t)∥2V + ∥u1(t)− u2(t)∥2V

+ ∥θ1(t)− θ2(t)∥2L2(Ω) + ∥α1(t)− α2(t)∥2L2(Ω)

)
, a.e. t ∈ (0, T ).

(4.37)
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Similarly, using (4.35), (3.11) implies∥∥Λ3 (η1, λ1, χ1) (t)− Λ3 (η2, λ2, χ2) (t)
∥∥2
H

≤ C
(
∥u1(t)− u2(t)∥2V + ∥α1(t)− α2(t)∥2L2(Ω)

)
.

(4.38)

It follows now from (4.36), (4.37) and (4.38) that

∥Λ (η1, λ1, χ1) (t)− Λ (η2, λ2, χ2) (t)∥2H
≤ C

(
∥φ1(t)− φ2(t)∥2W + ∥σ1(t)− σ2(t)∥2H

+ ∥u1(t)− u2(t)∥2V +

∫ t

0

∥u1(s)− u2(s)∥2V ds

+ ∥θ1(t)− θ2(t)∥2L2(Ω) +

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds

+ ∥α1(s)− α2(s)∥2L2(Ω) +

∫ t

0

∥α1(s)− α2(s)∥2L2(Ω) ds

)
.

(4.39)

Taking into account that

σi(t) = A (ε (u̇i(t))) + ηi(t), ∀t ∈ [0, T ], (4.40)

it follows that
(A (ε (v1(s)))−A (ε (v2(s))) , ε (v1(s)− v2(s)))H

≤ j (v1(s),v2(s)) + j (v2(s),v1(s))− j (v1(s),v1(s))− j (v2(s),v2(s))

− (η1(s)− η2(s), ε(v1(s)− v2(s)))H.

So, by using (3.7), (3.2) and (3.24), we deduce that

mA ∥v1(s)− v2(s)∥2V ≤c20Lν∥µ∥L∞(Γ3) ∥v1(s)− v2(s)∥2V
+ ∥η1(s)− η2(s)∥H ∥v1(s)− v2(s)∥2V ,

which, implies

∥v1(s)− v2(s)∥V ≤ C ∥η1(s)− η2(s)∥H . (4.41)

Moreover, from (4.23), we obtain

∥u1(t)− u2(t)∥V ≤
∫ t

0

∥v1(s)− v2(s)∥V ds. (4.42)

So, using the inequality above, we find∫ t

0

∥u1(s)− u2(s)∥V ds ≤ C

∫ t

0

∫ s

0

∥η1(r)− η2(r)∥H drds

≤
∫ T

0

∥η1(s)− η2(s)∥H ds.

(4.43)

From (4.28) we deduce that(
θ̇1 − θ̇2, θ1 − θ2

)
L2(Ω)

+ a0 (θ1 − θ2, θ1 − θ2) + (λ1 − λ2, θ1 − θ2)L2(Ω) = 0.

We integrate this equality with respect to time, using the initial conditions θ1(0) = θ2(0) = θ0 and inequality
a0 (θ1 − θ2, θ1 − θ2) ≥ 0 to find

1

2
∥θ1(t)− θ2(t)∥2L2(Ω) ≤

∫ t

0

(λ1(s)− λ2(s), θ1(s)− θ2(s))L2(Ω) ds,
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which implies that

∥θ1(t)− θ2(t)∥2L2(Ω) ≤
∫ t

0

∥λ1(s)− λ2(s)∥2L2(Ω) ds+

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds.

This inequality combined with Gronwall’s inequality leads to

∥θ1(t)− θ2(t)∥2L2(Ω) ≤ C

∫ t

0

∥λ1(s)− λ2(s)∥2L2(Ω) ds. (4.44)

Form (4.30), deduced that

(α̇1 − α̇2, α1 − α2)L2(Ω) + a1 (α1 − α2, α1 − α2)

≤ (χ1 − χ2, α1 − α2)L2(Ω) , a.e. t ∈ (0, T ).

integrate inequality with respect to time, using the initial conditions α1 (0) = α2 (0) = α0, and inequality

a1 (α1 − α2, α1 − α2) ≥ 0

we find

1
2 ∥α1 (t)− α2 (t)∥2L2(Ω) ≤ C

t∫
0

(χ1 (s)− χ2 (s) , α1 (s)− α2 (s))L2(Ω)ds,

which implies

∥α1 (t)− α2 (t)∥2L2(Ω)

≤ C

 t∫
0

∥χ1 (s)− χ2 (s)∥2L2(Ω) ds+

t∫
0

∥α1 (s)− α2 (s)∥2L2(Ω) ds

 .

This inequality combined with the Gronwall inequality leads to

∥α1 (t)− α2 (t)∥2L2(Ω) ≤ C

t∫
0

∥χ1 (s)− χ2 (s)∥2L2(Ω) ds , ∀t ∈ [0, T ] . (4.45)

Form the previous inequality and estimates (4.45), (4.44), (4.43) and (4.39) it follows now that

∥Λ (η1, λ1, χ1) (t)− Λ (η2, λ2, χ2) (t)∥2H×L2(Ω)×L2(Ω)

≤ C

∫ T

0

∥(η1, λ1, χ1) (s)− (η2, λ2, χ2) (s)∥2H×L2(Ω)×L2(Ω) ds.
(4.46)

Reiterating this inequality m times we obtain

∥Λm (η1, λ1, χ1)− Λm (η2, λ2, χ2)∥2C(0,T ;H×L2(Ω)×L2(Ω))

≤ CmTm

m!
∥(η1, λ1, χ1)− (η2, λ2, χ2)∥2C(0,T ;H×L2(Ω)×L2(Ω)) .

Thus, for m sufficiently large, Λm is a contraction on the Banach space C(0, T ;H×L2(Ω)×L2(Ω)), and so Λ has
a unique fixed point. □

Now we have every thing that is required to prove Theorem 4.1.

Existence

Let (η∗, λ∗, χ∗) ∈ C(0, T ;H×L2(Ω)×L2(Ω)) be the fixed point of Λ defined by (4.32)-(4.35) and let (uη,ση) be the
solution of problem P1

η .Let φη be the solution of problem P3
η for η = η∗, let θλ∗ be the solution of problem Pλ for λ = λ∗

and let αχ∗ be the solution of problem Pχ for χ = χ∗. The equalities Λ1(η∗, λ∗, χ∗) = η∗, Λ2(η∗, λ∗, χ∗) = λ∗ and
Λ3(η∗, λ∗, χ∗) = χ∗ combined with (4.33)-(4.35) show that (3.29)-(3.33) are satisfied. Next (3.34) and the regularity
(4.1)-(4.5) follow from Lemmas 4.3, 4.4, 4.5 and 4.6. Which concludes the existence part of the theorem.
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Uniqueness

The uniqueness of the solution is a consequence of the uniqueness of the fixed point of operator Λ. and the unique
solvability of the Problems P1

η , P3
η , Pλ and Pχ which completes the proof.
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