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Abstract

In this paper, we consider a mathematical model that describes the quasi-static process of contact between a piezo-
electric body and a deformable foundation. A nonlinear thermo-electro-viscoelastic constitutive law with long term
memory and damage is used and the contact is described with the normal compliance condition and a version of
Coulomb’s law of friction. We derive variational formulation for the model which is in the form of a system involving
the displacement field, the electric potential field, the temperature field and the damage field, existence and unique-
ness of a weak solution of the problem is proved. The proof is based on arguments of time-dependent variational
inequalities, parabolic inequalities, differential equations and fixed points.
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1 Introduction

Situations of contact between deformable bodies are very common in the industry and everyday life. Contact of
braking pads with wheels, tires with roads, pistons with skirts or complex metal forming processes are just a few
examples. Because of the importance of contact processes in structural and mechanical systems, considerable progress
has been achieved recently in modeling and mathematical analysis and numerical simulations and so, the engineering
literature concerning this topic is rather extensive [3}, [16} [@].

The piezoelectricity lie between the coupling of the mechanical and electrical material properties, This coupling,
leads to the appearance of electric field in the presence of a mechanical stress, and conversely in the presence of the
electric potential the mechanical stress is generated. This kind of materials appears usually in the industry as switches
in radiotronics, electroacoustics or measuring equipments. General models for elastic materials with piezoelectric
effects can be found in [2], 19 20} 21].
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In order to model the effect of temperature in the behaviour of some real bodies like metals, magmas, polymers
and so on, thermo-elastic and thermo-viscoplastic constitutive laws has been studied by mathematicians, physicists
and engineers, see for examples and details [I3] 17, (18] [5L [1].

In this paper, we also consider the damage of the material. The effect due to the damage leads to the decrease in
the load carrying capacity of the body, is also included. The effective functioning and safety of a mechanical system
may be deteriorated by this decrease as the material undergoes damage. Because of the importance of this topic,
General novel models for damage were derived in [6, [7] from the virtual power principle. The mathematical analysis of
one-dimensional problems can be found in [§]. Contact problems with damage have been investigated in [25] [TT], 12} 23].

Contact problems involving viscoelastic materials with long memory have been studied in [10, 24 [26].

Here we continue this line of research and study a quasistatic contact problem with coulomb friction in thermo-
electro-viscoelasticity with long-term memory body. when the foundation is deformable and conductive.

In Section [2] we present contact model and provide comments on the contact boundary conditions. In Section
we list the assumptions on the data and derive the variational formulation. We prove in Section [f] the existence and
uniqueness of the solution.

2 Problem statement

The physical setting is the following, A body occupies the domain 2 C R%(d = 2,3) with outer Lipschitz surface
which is divided into three disjoint measurable parts I'y, 'y and I's on one hand, and a partition of I'y UT's into two
open parts I', and I'y, on the other hand. We assume that meas(I'y) > 0 and meas(I';) > 0. Let T > 0 and let [0, 7]
be the time interval of interest. The body is clamped on I'y x (0,7") and the displacement vanishes there. A volume
force of density fo acts in € x (0,7T") and surface tractions of density f2 act on I's x (0,7T). We also assume that the
electrical potential vanishes on T', x (0,7) and a surface electric charge of density go is prescribed on T’y x (0,T).
The body may come in contact with a conductive obstacle over the part I's, the potential contact surface. A gap g
may exist between the contact surface I's and the foundation, measured along the outward normal vector v over the
potential contact surface I's. We admit a possible external heat source applied in 2 x (0,7’), given by the function p.

The classical formulation of the mechanical problem of electro viscoelasticity with long-term memory body with
damage and thermal effects, be stated as follows.

Problem P

Find a displacement field u : Q x (0,7) — R? a stress field o : Q x (0,7) — S%, an electric potential field
©:Qx (0,T) = R, a temperature field 6 : Q x (0,7) — R, an electric displacement field D : Q x (0,7) — R¢, and a
damage field a:  x (0,7) — R such that

= Ae (a(t)) + B (e (u(t), 6(1), a(t)) +

. in Q % (0,7), (2.1)
/ M (t = s,¢(u(s)),0(s), als)) ds — (£)" E (p(t))
D = E=(u) + BV(yp) in Q % (0,7), (2.2)
0 — koAO = O (o,¢(u),0,0) +p inQx(0,T), (2.3)
& — kAa+ 0pi(a) 3 8 (e(u), ), inQx(0,7), (2.4)
Dive + fo =0 in Q % (0,7), (2.5)
divD — gy =0 in Qx(0,7), (2.6)
u=20 onI'y x (0,7), (2.7)
ov = fy on I's x (0,7), (2.8)
—0oy=py(uy—g) onTsx(0,T) (2.9)
lo=ll < ppy (un — g)
oIl < ppy (w, — g) =10, =0 on I'y x (0,7) (2.10)

llo-|| = upy (u, — g) = there exists A > 0
such that o, = -\,
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i 0 onI' x (0,7, (2.11)
=0 on 'y x (0,7, (2.12)
Dv=gqg on I'y x (0,7), (2.13)
D-v=14(u,—g)di(p—po) onl3x(0,T), (2.14)
ko?—l—BG:O on ' x (0,7), (2.15)

v
u(0) =up, 6(0) =6y, «(0)= o, in Q. (2.16)

First, equations and represent the thermo-electro-viscoelastic constitutive law with long term-memory
and damage, were A and B are the viscosity and elasticity operators, respectively, and M is the relaxation operator,
where 6 represents the absolute temperature and « is the damage field. E(p) = —V is the electric field, £ = (e;jx)
represent the third order piesoelectric tensor, £* is its transposition.

Equation ({2.3]) represents the energy conservation where O is a nonlinear constitutive function which represents
the heat generated by the work of internal forces and p is a given volume heat source

The evolution of the damage field is governed by the inclusion of parabolic type given by the relation (2.4) where
K (a) denotes the subdifferential of the indicator function of the set K of admissible damage functions defined by
K={aeH(Q)|0<a<1ae in Q}, and S is the mechanical source of the damage

Equations (2.5 and (2.6)) represent the equilibrium equations for the stress and electric displacement fields. Equa-
tions (2.7)-(2.8)) are the displacement-traction conditions.

Frictional contact conditions of the form (2.9) and (2.10) have been used in various papers [12], 23]. and which
describe the contact on the surface I's , described by the normal compliance function p, such that p(u) = 0 when
u < 0, g is the initial gap and the condition, u, — g > 0 represents the penetration of body in the foundation.

In (2.10) the tangential stress cannot exceed the friction threshold up, (u, — g). In addition, when the threshold
is not reached, there is no slip ( the tangential velocity vanishes). When this threshold is reached, the body begins to
slide and the tangential stress tends to oppose the tangential movement

The relation (2.11)) describes a homogeneous Neumann boundary condition. (2.12) and (2.13)) represent the electric
boundary conditions.

Equality (2.14)) represents the electrical condition on the potential contact surface, where ¢; is the potential of the
electric foundation. The function ¢; is given by

1 ifs <,
di(s) =< s if —1<s<lI, (2.17)
l if s > 1.

here [ is a large positive constant, it may be arbitrarily large, higher than any possible peak voltage in the system.
The function 1 is given bellow. For more details see [I5]. (2.15) represent a Fourier boundary condition for the
temperature. Finally, The functions ug, 6y and «q in (2.16)) are the initial data.

3 Variational formulation and preliminaries

For a weak formulation of the problem, first we introduce some notation. Let d be a positive integer. We denote
by S¢ the space of second order symmetric tensors on R¢ The inner products and the corresponding norms on R? and
S¢ are given by

u-v=uv;, Yu,veR? and o -T=0y7; Vo,7eS%
|u|| = (u-u)2, YueR? and |o|= (0o -0)2, VoeS
Here and everywhere in this paper the indices i, 7, k run from 1 to d. The convention of summation over repeated

indices is used and the index that follows a comma indicates a partial derivative with respect to the corresponding
component of the independent variable.

Let Q C R? be a bounded domain with a regular boundary I'. we introduce the spaces

H=L*(Q:RY), H ={ucH|s(u)eH}=H (R,
H= {O’ = (O’ij) ‘ Oij = 0j; € LQ(Q)} = L2(Q;Sd), Hi= {0’ ceH | Diveo € H}
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where ¢ : H' (;R?) — L? (2;S%) and Div : #; — L? (€;R?) denote the deformation and the divergence operators,
respectively, given by

() = (eis(w)), eiy(w) = 5 (wiy +wg), Divlo) = o3y

The spaces H, Hy, H and H; are Hilbert spaces equipped with the inner products

(u,v)H:/uwidx Yu,v € H, (o-,‘r)yz/aijnjdx Vo, € H,
Q Q

(u7v)H1 = ('U,,’U)H + (E(U),€(’U)>H, V'U,,'U S H17
(o,7)nu, = (0,7) + (Dive,Divr)y, o,7 € H;.

The associated norms in H, Hy, H and H; are denoted by ||.||a, [|-|lz,, ||l and ||.||3, respectively.

Given u € H? (T'; R%) we denote by u, and u, the normal and the tangential components of w on the boundary,
ie. u, = w.v and u, = u — u,v Similarly, for a regular tensor field & : I' — S% we define its normal and tangential
components by ¢, = ov - v and o, = ov — o,v, and we recall that the following Green formula holds

(o,e(v))y + Diveo,v)g = / ov.vda, Yv € Hi.
r

and for the displacement field we need the closed subspace of H'(Q)? defined by

V={veH Q)" |v=00nT}.

Since meas(I'1) > 0, Korn’s inequality holds and there exists a constant Cy > 0, that depends only on © and I'y
such that

le()ll% > Collvll 1 (aye, Vv eV

A proof of Korn’s inequality may be found in ([22] ,p.79). On V, we consider the inner product and the associated
norm given by

(u,v)v = (e(u),e(v)n, [vllv = [le(0)]n, u,v e V. (3.1)
It follows that [.||g1(qye and [.][y are equivalent norms on V' and therefore (V,||.[[y/) is a real Hilbert space.
Moreover, by the Sobolev trace Theorem and (3.1)) there exists a constant ¢y > 0 depending only on ©,I'; and I's such
that
[0l L2 (rgye < collvllv, Vv eV (3.2)
For the electric displacement field we use the Hilbert space
W= {D = (D;)| D; € L*(Q),divD € L*(Q)},

endowed with the inner product
(D,E)w = (D,E)y + (divD,divE) 2 (q),

and the associated norm ||.||yy. The electric potential field is to be found in

W={¢eH" (Q),£=00nT,}.
Since meas(I',) > 0, the Friedrichs-Poincaré inequality holds

IVl = crliCla@), YCeW, (3.3)

where cp > 0 is a constant which depends only on Q and I',. On W we use the inner product

(%f)wz/ﬂvwvﬁdx, (3.4)
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and |[|.|[w the associated norm. It follows from (3.3)) that ||.||1 (o) and ||.||[w are equivalent norms on W and therefore
(W, ||.|lw) is a real Hilbert space.

Moreover, by the Sobolev trace theorem, there exist a constant ¢, such that
19l L2(rs) < Coll¥llw, Vi eW. (3.5)

Moreover, when D € W is a regular function, the following Green’s type formula holds

(D,VC)H + (diV D,C)L2(Q) = ‘/FD -v(da, V(€ Hl(Q) (3.6)

For any real Hilbert space X, we use the classical notation for the spaces LP(0,T; X) and W*?(0,T; X), where
1<p<ooand k> 1. For T > 0 we denote by C(0,T; X) and C*(0,T; X) the space of continuous and continuously
differentiable functions from [0, 7] to X, respectively, with the norms

.x) = t .
[fllcora = max I£(®)llx

oy = t F(t)| x.
I fllcro,7;x) e, £ x +f§f§”§] IF®)lx

)

In the study of the problem P, we consider the following assumptions

The viscosity operator A : Q x S¢ — S? satisfies

(a) There exists L4 > 0 such that

[A(z,€1) — A(z, €2)|| < Laller —e2f|,
for all 1,5 € S¢, a.e x € Q.

(b) There exists m4 >0 such that

(A(z,e1) — Az, €2)).(e1 — €2) > maller — eal/?, (3.7)
for all e1,e5 € S, a.e & € Q.

(¢) The mapping « — A(x,€) is Lebesgue measurable on €,
for any e € S%.

(d) The mapping x — A(x,0) € H.

The elasticity operator B: Q x S x R x R — S? satisfies

(a) There exists Lg > 0 such that
|B(x,€1,01,01) — B(x,€2,02,2)|| < L(ller — €2l + (|01 — 02

+ |1 — asl]), for all e1,e9 € S, ae. x e .

3.8
(b) The mapping « — B(z,¢,0,a) is Lebesgue measurable on €2, (3:8)
for all e € $%, 0, € R.
(¢) The mapping « — B(z,0,0,0) € H.
The relaxation function M : Q x (0,7) x S x R x R — R satisfies
(a) There exists a constant Lys > 0 such that
M (z,t,e1,01,00) = M (2,1, 62,02, a2)|| < La(ller — &2 + 1161 — 62|
+ [|ay — as||), forallt € (0,T),e1,e2 € S% 61,60, a1,02 € R, ae. Q.
(b) The mapping x — M(x,t,e,0,a) is Lebesgue measurable on €, (3.9)

for all e,€ St € (0,T), for all §,a € R.

(¢) The mapping « — M(x,t,€,0,«) is continuous in €2,
for all e,€ St € (0,T), for all §,a € R.

(d) The mapping & — M(x,t,0,0,0) € H.
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The function © : Q x S? x §¢ x R x R — R satisfies

(a) There exists a constant Lg > 0 such that
1O (z,01,€1,01,01) — O (x,02,€2,00, )| < Lo(|lo1 — o2 + ||e1 — 2|
+ 101 = b2 + [loa — c2])),
for all €1,€2,01,05 € S%, and 64,05, a1, a0 € R, a.e x € Q. (3.10)
(b) For any o,e € S, and 0,a € R,z — O(x,0,¢,0,0) is Lebesgue
measurable on (.

(¢) The mapping x +— ©(x,0,0,0,0) € L*(Q).

The function S : Q x S? x R — R satisfies

(a) There exists a constant Lg > 0 such that

1S (z, €1, 1) = S (@, €2, 0)|| < Ls (|lex — &2 + [lar — azl])

for all e1,e2 € S%, for all ay,as € R, ae. x € Q.

(b) The mapping @ — S(x,e,a) is Lebesgue measurable on , (3.11)
for all € € S%, for all & € R.

(¢) The mapping x +— S(z,0,0) € L*(Q).

The surface electrical conductivity function 9 : I's x R — R* satisfies

(a) There exists Ly, > 0 such that

H’(/} (.,ul) — ’L/J (,UQ)H < Lw Hu1 — U2|| s for all uy, ug € R.

(b) There exists My, > 0 such that ||¢(x, u)| < My,
for all u € R, a.e. x € I's.

(c)x — 9(x,) is measurable on I's, for all u € R,

(d)x — ¢P(z,u) =0, forall u<O0.

(3.12)

Electric permittivity operator B = (b;;) :  x R? — R? satisfies

(a) B(z, E) = (bjj(x)E;) for all E = (E;) € R, ae. x € Q.
(b) bij = bji S LOO(Q), 1<4,5< d.
(c) There exists a constant mpg > 0 such that

BE.E >mp| E|? for all E = (E;) € R%, ae. in Q.

(3.13)

The piezoelectric operator & : Q x S — R? satisfies

E = (eijk),eijr € L°(Q),1 <4,k <d.
{(a) (e]k) €ijk () 2,7 (3.14)

(b) EX)o-T=0-ET, forall o € S¢, and all T € RY.

The normal compliance function p, : I's x R — R satisfies

(a) There exists L, > 0 such that
[Py (@, u1) = pu (@, u2)|| < Ly [lur — uz|
Vul,u2 ER, ae. xely (315)
(d) For any u € R, @ — p,(x,u) is measurable on I's
(e) & = py(x,u) =0, for all u <0.

We assume that the gap function g the initial potential ¢q the friction coefficient u, the volume heat source p, the
initial data g, up and 6y the volume of forces fy and fo and the charges densities qg, g2, the energy coefficient ky,
the microcrack diffusion coefficient ky satisfy
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g€ L?*(T3), g>0ae onTs, ¢oe L?(T3), (
weL>®(Ts), u>0a.e. onlsy, (
ug €V, ap€K, 6yc HY(Q), (3.18
fo€C(0,T; L)Y, freC (o,T; L2 (rg)d) , (
q € C(0,T;L*()), g2 € C(0,T;L*(T)) , (
B>0, k>0, i=0,1, peC(0,T;L*(Q)). (

We introduce the following bilinear forms a; : H'(Q) x H*(Q) -+ R, i = 0,1 by
w(6.6) =k [ V¢-Vedo+ B [ cer (322)
Q r
alxyazzkl/“vc~vgmn (3.23)
Q

Next. We define four mappings j: VXV =R, h:V xW =W, f:[0,T] =V and ¢ : [0,T] — W, respectively,
by

j(uv) = / (= g)vyda + / (= ) v da (3.24)

(h(ua 90)7 C)W == . 1;[} (ul/ - g) ¢l (90 - 900) Cdav (325)

(ft),v)y = / Fo(t) - vdx + fa(t) - vda, (3.26)
Q Iy

(4(t).Ow = /Q qo(t)Cdar — /F a(0Gde (3.27)

for all w,v € V, ¢, € W and t € [0,T]. Note that

fecCc0,1;vV), qeC(0,T;W). (3.28)

By a standard procedure based on Green’s formula we can derive the following variational formulation of the
contact problem (2.1)-(2.16).
problem PV

Find a displacement field w : (0,7) — V, a stress field o : (0,7) — H, an electric potential ¢ : (0,T) — W, a
damage field o : (0,7) — H*(Q2), and a temperature 6 : (0,T) — H'() such that
+

o(t) = Az (u(t)) + B(e (u(t)) , 0(t), a(t))
. (3.29)
/ Mt 5,2 (uls)),0(5). als)) ds — ()" E(o(1)
(a(t),e(v) —e(u(t))u + j(u(t),v) = j(u(t), u(t)) = (£(t),v —w(t))v (3.30)
(BVe(t), VO r — (Ee(u(t)), VO + (h(u(t), ¢ (1), Ow = (¢(t), Ow, 31)
(0(1), V)20 + ao(6(1),v) = (¥(o(t), e(u(1)), 6(1), V)20 (3.32)
+ (p(t),v )L2(Q) Vv € HY(Q), ae. t €(0,7),
a(t) € K, (&(t),§ — a(t)) L2 (o) + a(a(t),§ — a(t)) (3.33)
> (5 (£(u(0). a(0) & — 1)) ey Ve € Kot € (0.T),
u(0) = ug, 6(0) =6y, «a(0)= . (3.34)

Our main existence and uniqueness result for Problem PV is in the following section.
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4 Existence and uniqueness

Theorem 4.1. Assume that — hold, Then there exists a unique solution (u, o, p,0,a, D) to problem PV.
Moreover, the solution has the regularity
ue CH0,T;V),
e C0,T;W),
o e C(0,T;H),
0 € W (0,T; L*(Q)) N L* (0, T; H'()),
ae W2 (0,T; L*(Q)) N L* (0, T; H' (Q)),
D e C0,T;W).

IR NN
@Cﬂﬂkwl\Db—l
N et e N N N

(4.
(4.
(4.
(4.
(4.
(4.

The functions u, o, ¢, 0, o, and D which satisfy (3.29)-(3.34) are called a weak solution of the contact problem P.
We conclude that, under the assumptions (3.7))-(3.21]), the mechanical problem (2.1))-(2.16)) has a unique weak solution
satisfying (.1)- (4.6).

It follows from 1_} that divD —qo =0 for all t € (0,T), and therefore the regularity (4.2)) of ¢, combined with
- -, and (3.20) 1mphes

The proof of theorem [4.1] is carried out is several steps and is based on arguments of time-dependent variational
inequalities, parabolic inequalities, differential equations and fixed points.

We denote by C' a constant whose value may change from line to line when no confusing can arise.

Let n € C(0,T;H) and g € C(0,T;V) we consider the following variational problem.

Problem ’Pl
Find a displacement field u,, : [0,T] — V and a stress field o, : [0,7] — H such that for all ¢ € [0, T
oy = A(e (iy)) +n, (4.7)
(o'n(t)vg(w_i"n))q{ + j(un, w) = j(uy, ay) > (£(t), w —iy)y,, YweV, :
u,(0) = uo. (4.9)

We consider the following variational inequality

Problem ’P?]
Find v,g : © x (0,7) — V such that

(Ae (vﬁy) (w vng))y +3j(g,w) —j(g, 'Ung)

€
(4.10)
> (f,w—vy,g), — (e (w— ”ng))ya Ywe V.

Lemma 4.2. For all g € C(0,T;V), n € C(0,T;V), 7)727 has a unique solution with the regularity v,q € C(0,T;V).

Proof . Using Riesz Representation Theorem, we may define an element F € C(0,7; V') by
(F(t),v)v = (£(t),v)v — (n(t),e(v))n, Vv V.
We define the operator A : V' — V such that

(Au,v) = (Ae(u),e(v))y, Yu,v € V. (4.11)
It follows from (4.11]) and ( . ) that for all uy,us € V and v € V we have

[(Auy = Aug, v)y || = [[(A(e (1)) = Ale (u2)) ,6())ly,
< [ A(e (u1) = Ale (u2)) [l lle(@)ll;
< Lalle (u1) = & (u)lly [le(@)44,
< Lallur —usfy [Joflv,
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which shows that A : V — V is Lipschitz continuous. Now, by (4.11)) and (3.7))(b) we find

(Auy — Aug, uy —uz)y, = (A(e (u1)) — A(e (u2)) € (u1) — & (uz))y

> m e (ur) = & (u2) 3, = C luy — ully, -

And according to Korn’s inequality, it comes
2
(Au1 — A’U,Q,’UQ — UQ)V Z C ||U1 — UQ”V 5

i.e., that A:V — V is a strongly monotone operator on V. And we can easily check that v — j(g(t),v) is convex
lower semicontinuous and proper. It follows from classical results for elliptic variational inequalities (see [4]) that there
exists a unique v,g € V, which is a solution of . To establish its regularity by showing that v, € C(0,T;V).
We let t1,t2 € [0,7] and denote n; =1 (t;), g; = g (t;), fi = f (t;) and v; = v,4(t;). Using the relation we find
that

(Ae (v1) — Ae (v2) e (V1 —v2))y < (f1 — fo,v1 —v2)y

(01 = 120 (01 = 02+ (91,02) = (92,00) + 7 (932 1) 5 (9 2) 12
Moreover, we have
(Ae (v1) — Ae (v2) & (V1 — v2))y, > ma |lv1 — 2|} . (4.13)
From the definition of the functional j given by , we have
j(glv";l)*j(glaw)+j(927171)*j(927v2) (4.14)
< coLullpllne(rs) 191 — g2llv [lv1 — w2l -
Using these bounds in , we obtain
o1 —vally < C(llf1 = fally + lm = m2ll + 1191 — g2llv) (4.15)

then the conclusion that v,g € C([0,T7]; V') follows from the continuity of f, o and g in their respective spaces V' and
H. O

With the help of Lemmal[£:2] we are in a position to show the following existence and uniqueness result for Problem
PL.

n
Lemma 4.3. There exists a unique solution to Problem P} such that u,, € C*(0,T;V) and o, € C(0,T;H).
Proof . We consider an operator A, : C(0,T;V) — C(0,T;V) defined by

Ayg=g,, g€ C0,T;V), (4.16)

where
t
g,(t) = uo +/ Vng(s)ds, t € (0,T). (4.17)
0
and vy,g is the solution of (4.10). We will show that this operator has a unique fixed point g, € C([0,77; V). To this
1%

end, let g;,g, € C([0,T]; V) and denote by v; = v,4,, i = 1,2, the corresponding solutions of (4.10). Using (4.16)
and (4.17) we have

1491 (t) = Anga (D)l < /O [v1(s) = va(s)lly ds, vt €[0,T]. (4.18)

Using estimates similar to those in the proof of Lemma 4.2 ( see (4.12))-(4.15))) we see that

[v1(s) = va(s)lly, < Cllgi(s) = ga(s)lly» s €[0,T]. (4.19)
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Taking into account (4.18) we obtain
t
[1Ang:(t) = Anga(B)]ly, < C/O lg1(s) — g2(s)lly ds, vt €0,T]. (4.20)

Let is introduce the following notations

n= [ ) - ga(oly s

u:fﬁ%3~[Wmm—%mm,

and by induction, by denoting by A7 the m power of the operator A,, we obtain
HAn g:(t AZTQQ(t)”V
m

<cm <Z CrI" " |g, (1) — gQ(t)HV) 5

k=1

for all t € (0,7) and m € N,

™ ¥|g, - %wf/ /mlwm
m k: fois

S/ / / 191 — 92llco,mv)
(m—k) fois

gz”c 0,T;V)

Tmfkt
< T g, — 92||c(o,T;V) ;

||A77m91(t) - AanQ(t)HC(O,T;V)

- m Tm—k
<C (Z ch A g1 (t) — gQ(t)HC(O,T;V)) (4.21)
k=1

(CT)7YL
m!

<

lg1(t) = g2l co,7;v) -

which implies that for a sufficiently large m the operator A} is a contraction on C(0,7; V'), Thus A, has a unique
fixed point g; € C([0,T]; V). Next, let v, € C([0,7];V) and o, € C([0,T];H) be given by

Uy =Upgr, On = 0Opg: = A (1;7797*7) +n. (4.22)
Moreover, using (4.17)) and (4.22)), we let u,, : [0,7] — V be the function

w,(t) = uo + /Ot v, (s)ds, Vtel0,T). (4.23)

Clearly, (4.7)) and ( are satlsﬁed Moreover, by (4.22)), (4.23)) and ( 7 , it follows that u, = g; and

Uy = vy Therefore 1f g g17 in , then we obtain 1
To prove the regularity of o, we choose w = v,4(t) £ ¢ in (4.8) where ¢ € C5°(2)9, t € (0,t) we find

(Tng:£(9))5, = (F,@)v, Vo € ()%, on [0,T]. (4.24)
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Using ([3.26]) we deduce
Divo, +f, =0, on [0,77], (4.25)

and then, assumption (3.19) and equation (4.25)) imply that o, € C([0,T; ). This establishes the existence part in
Lemma The uniqueness is a consequence of the uniqueness of the fixed point of the operator A, defined by (4.16]),

(4.17) and the unique solvability of the Problem P2 and relations (3.7) and (4.7). O

In the second step we use the displacement field u,, obtained in Lemma @ to construct the following variational
problem for the an electrical potential.
Problem 'Pg

Find an electrical potential ¢, : (0,7") — W such that

(BVipn(t), V) g — (€& (uy(t)) , V) iy + (7 (un (t), on(1)), Oy

= (q(t),Qw, for all ¢ e W,t € (0,T). (4.26)

We have the following result for problem ”P,?;

Lemma 4.4. Problem (4.26) has unique solution ¢, which satisfies the regularity (4.2)). Moreover, if ¢, and ¢,,, are
the solutions of (4.26) corresponding to n,my € C([0,T];H), then there exists C' > 0 such that

1@, () = s (Ol < C g, (8) = wn, Oy, VE € [0, T). (4.27)

To prove the above lemma, we use an abstract existence and unique result which may be found in [15] .

For A € C(0,T; L?(£2)), we consider the following variational problem.

Problem P,
Find the temperature field 0y : (0,7) — L?(£2)

(0r(0).v) |, +a0 (Ox(8).¥) = (A(®) + p(8), V)20,

@ (4.28)
Vv € L*(), ae. t € (0,7T),

0,(0) = 6y, in €. (4.29)

Lemma 4.5. There exists a unique solution 6y to the auxiliary problem P, satisfying (4.4)).

Proof .

By an application of the Poincaré-Friedrichs inequality, we can find a constant B’ > 0 such that
B
[Iveas+ o [Py = B [ oPds, wcev.
Q o.Jr Q

Thus, we obtain
a0(C,0) > alllélly, ¢ eV,

where ¢; = kgmin(1, B’)/2, which implies that ag is V-elliptic. Consequently, based on classical arguments of functional
analysis concerning parabolic equations [14], the variational equation (4.28)) has a unique solution ) satisfying (4.4]).
O

In the third step we let x € L(0,T; L*())
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Problem P,
Find the damage field v, : (0,T) — L?(f2) such that a,(t) € K and
(A (t),€ — ax)m(ﬂ) + a1 (ay (1), € — oy (1))
Z (X(ﬂ?g - ax(t))LZ(Q) Vf € K? a.e. t € (OvT)v
ay (0) = ayp. (4.31)

(4.30)

For the study of problem P,,, we have the following result.
Lemma 4.6. There exists a unique solution a,, to the auxiliary problem P, satisfying (4.5]).

The above lemma follows from a standard result for parabolic variational inequalities, (see [25]).

Finally, as a consequence of these results and using the properties of the operator G the operator £, the functions
O and S for t € (0,T), we consider the element

A, A ) () = (A (1, A ) (), A% (1, A ) (8), A%(m, A, X) (1) € H x LP(Q) x L*(9), (4.32)
defined by
(AL (0, X, 0)(1),0) 5, = (Ble(u(t), 01 (), ay (1)), e(v)1 + (£ Vi, (1), €(v))4,

</ M (t —s,e(uy(s)),0x(s), ay(s)) ds,e(v))H VYo eV, (4.33)
A2 (0,0, X) (8) = © (g, (uy (1)), Ox(1), oy (1)) - (4.34)
AP (0,0, X) (1) = S (e (uy (1)), (1)) - (4.35)

Here, for every (n,A,x) € C(0,T;H x L*(2) x L*(2)). uy,, ¢,, 0, o, and o, represent the displacement field, the
electric potential field, the temperature field, the damage field and the stress field , obtained in Lemmas [£.2] [4-3]
and respectively. We have the following result.

Lemma 4.7. The mapping A has a fixed point (n, A, x) € C(0,T;H x L?(Q) x L*(Q2)), such that A (n*, \*,x*) =
(", A% X") -

Proof . Let t € (0,7) and (n,A1,x1), (M2, A2, x2) € C(0,T;H x L2(Q) x L?(Q)). We use the notation that
Wy, = Ws, WUy, = Vy, = V4, O\, = 0;, 0, = @4, ay = a; and o, 9, = 0; for i = 1,2.

Let us start by using (3.8)), (3.9) and (3.14]), we have

||A1 (7717)\17X1>( ) Al (772»>\27X2) (t)”?-l
< (1B (e (u1(1)) , 61(t), @1 () — B (e (ua(t)) , 6(t), s (1)) I3,

+ € Vpr(t) — EVipa(t)I3,

+ / ||M (t - 8,€(u1(8)), 91(5)7a1<8)) -M (t - SvE(UQ(S))ﬂ 92(3)7042(5))”3{ ds,
0 ) ) , (4.36)

<C (llwl(t) —@2(t) Iy + llwa (t) — wa (D)l + [101(2) — 02(2) |72 (@)

t
(o) = a6y + [ ) - walo) s
/ 161(5) — 62(5) |22 gy s + / s 2<s>||i2<mds)-

By similar arguments, from (4.34)), (3.10) we obtain
2
[[A% (11, A1, x1) () = A% (05, A2, x2) (1),
< C (Jlos(®) = o2} + Jus () - ua(0)} (4.37)

+1161(8) = B2(8) 720 + lleua () — a2(t)||iQ(Q)> ,ae te(0,T).
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Similarly, using (4.35)), (3.11) implies

1A% (113, Aty xa) () — A2 (113, A2, x2) ()|,

; , (4.38)
< O (Ila®) = ua ()1 + llar(®) = a2 (Dl x(e ) -
It follows now from (4.36]), (4.37) and (4.38) that
1A (171, A1, xa) (8) = A (m, he, x2) (815,
< C (lles(®) = 20l + llos (8) = o2 (0)I5,
2 K 2
Hlur () = wa O + [ s () = a(s) s o
101 (8) = 020y + [ 101(5) = 0a(5) [ oy
Hlas(s) = axll + [ larls) = )l ).
Taking into account that
oi(t) = Al (ui(t)) +n,(t), Vtel0,T], (4.40)
it follows that
(A (e (v1(s))) = A(e (v2(s))) , € (v1(s) — v2(s)))y
< j (01(s),v2(s)) + j (v2(s), v1(s)) = j (vi(s),v1(s)) — j (va(s), v2(s))
= (m1(s) = ma(s),e(vi(s) — va(s)))n-
So, by using and ((3.24 , we deduce that
mallvi(s) = v2(s)I5 <3 Lullpllz(ry) 01 (s) — va(s)|l3
+ [Im(s) = m2(8)lly lv1(s) — w2 ()],
which, implies
[v1(s) —va(s)lly < Clini(s) —ma(s)ly - (4.41)
Moreover, from , we obtain
()~ wa(®)lly < [ foi(s) = vas) |y ds. (4.42)
0
So, using the inequality above, we find
a1 (s) —uz(s)l[y, ds < C [m1(r) = m2(r)ll5, drds
/ v / / " (4.43)

_/ l71(5) — 712(5) |, ds.
0

From (4.28) we deduce that

(=201 02) 4 0 01 = 02,61 02) & (1 = D01 = B2) o) = O

We integrate this equality with respect to time, using the initial conditions 6;(0) = 65(0) = 6y and inequality
ag (91 - 02,01 - 92) Z 0 to find

31010 = 02020y < [ (0(5) = 2a(5).01() = 025D 0y .
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which implies that
100 = 020y < [ I006) = Aoy s+ [ 1616) = 0a) o .
This inequality combined with Gronwall’s inequality leads to
000 = 0203y < € [ 1a6) = 2a(6) gy an

Form , deduced that
(G1 — G2, 00 — a2) 2oy + a1 (01 — a2, 00 — az)
<(x1—x2 01 — a2)L2(Q) , a.e. t€(0,7).
integrate inequality with respect to time, using the initial conditions a; (0) = a3 (0) = ag, and inequality
ay (@1 — ag, a1 — ) >0

we find

Lo (1) — a2 (8)a(e, / 2 () 1 (5) = 2 () 1o g 05
0

which implies

lar (t) — a2 (t)”iz(o)
<c /ml X2mp@w+/mlewxw9®@
This inequality combined with the Gronwall inequality leads to

llas (£) = a2 (D)1 720 < C/ It (8) = x2 () 2y ds V2 € [0, 7. (4.45)
0

Form the previous inequality and estimates (4.45)), (4.44)), (4.43) and (4.39)) it follows now that

1A (15 A1, x1) (8) = A (M9, A2, x2) (D50 20y x 220

T , (4.46)
< C/O (71, A1, x1) (8) = (M2, A2, x2) ()30 x 12 () x L2 () dS-

Reiterating this inequality m times we obtain

m m 2
[A™ (11, Ao x1) = A™ (M2, A2, X2) o030 x 2 (@) < L2(9)
< (1, A, xa) = (M2, A2 X2) [0 max 2 () x 22 () -

Thus, for m sufficiently large, A™ is a contraction on the Banach space C(0,T;H x L*(2) x L?(Q2)), and so A has
a unique fixed point. O

Now we have every thing that is required to prove Theorem

Existence

Let (n*, \*, x*) € C(0,T; H x L*() x L2(2)) be the fixed point of A defined by (4.32)-(4.35) and let (u,, o) be the
solution of problem Pl Let ¢, be the solution of problem P3 for n = n*, let 6~ be the solutlon of problem Py for A = \*
and let ay- be the solutlon of problem P, for xy = x*. The equahtles AL(p*, A5 x*) = 0, A2(77 A*, x*) = A* and

A3(n*, A%, x*) = x* combined with |-D (4.35) show that (3.29)-(3.33) are satisfied. Next and the regularity
. . ) follow from Lemmas |4.3] . 4.5| and [4.6) . Which concludes the existence part of the theorem
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Uniqueness

The uniqueness of the solution is a consequence of the uniqueness of the fixed point of operator A. and the unique
solvability of the Problems P} 77;’, Py and P, which completes the proof.

n’

References

[1] M.S. Aamur, T.H. Ammar and L. Maiza, Analysis of a frictional contact problem for viscoelastic piezoelectric
materials, Aust. J. Math. Anal. Appl. 17 (2020), no. 1, Article 6.

[2] R.C. Batra and J.S. Yang. Saint- Venant’s principle in linear piezoelectricity, J. Elastic. 38 (1995), no. 2, 209-218.

[3] V.L. Berdichevsky, Variational principles, Variational Principles of Continuum Mechanics Springer, Berlin, Hei-
delberg, 2009.

[4] H. Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier 18

(1968), 115-175.

[5] H. L. Dai and X. Wang, Thermo-electro-elastic transient responses in piezoelectric hollow structures, Inter. J. Sol.
Struct. 42 (2005), 1151—1171.

[6] M. Fremond and B. Nedjar, Damage in concrete: the unilateral phenomenon, Nucl. Eng. Des. 156 (1995), 323-335.

[7] M. Fremond and B. Nedjar, Damage, gradient of damage and principle of virtual work, Internat. J. Solids Struct.
33 (1996), 1083-1103.

[8] M. Fremond, KL. Kuttler, B. Nedjar and M. Shillor, One-dimensional models of damage, Adv. Math. Sci. Appl.
8 (1998), 541-570.

[9] A.C. FisherCripps Introduction to Contact Mechanics, Mechanical Engineering Series, Springer, 2000.

[10] I. Figueiredo and L. Trabucho, A class of contact and friction dynamic problems in thermoelasticity and in
thermoviscoelasticity, Internat. J. Engrg. Sci. 33 (1995), no. 1, 45—G66.

[11] W. Han, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic problem with
normal compliance, friction and damage, J. Comput. Appl. Math. 137 (2001), 377-398.

[12] W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced
Mathematics, Americal Mathematical Society and International Press, 2002.

[13] LR. Tonescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford University Press,
Oxford, 1993.

[14] J.L. Lions and E. Magenes, Problémes auz limites non homogénes et applications, vol. 1, Dunod, Paris, 1968.

[15] Z. Lerguet, M. Shillor and M. Sofonea, A frictional contact problem for an electro-viscoelastic body, Electron. J.
Diferential Equ. 2007 (2007), Article ID 170.

[16] A.D. Muradova and G.E. Stavroulakis, A unilateral contact model with buckling in von Kdrmdn plates, Nonlinear
Anal. 8 (2007), no. 4, 1261-1271.

[17] F. Messelmi and B. Merouani, Quasi-static evolution of damage in thermo-viscoplastic materials, An. Univ.
Oradea Fasc. Mat, Tom XVII (2010), no. 2, 133-148.

[18] A. Merouani and F. Messelmi, Dynamic evolution of damage in elasticthermo-viscoplastic materials, Electron. J.
Differential Equ. 2010 (2010), no. 129, pp. 1-15.

[19] R.D. Mindlin, Polarisation gradient in elastic dielectrics, Int. J. Solids Struct. 4 (1968), 637-663.

[20] R.D. Mindlin, Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin
dielectric films, Int. J. Solids 4 (1969), 1197-1213.

[21] R.D. Mindlin, Flasticity, Piezoelectricity and Cristal lattice dynamics, J. Elastic. 4 (1972), 217-280.

[22] J. Necas and I. Hlavdcek, Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction, Elsevier,
Amsterdam, 1981.



220 Hamidat, Aissaoui
[23] M. Rochdi, M. Shillor and M. Sofonea, Quasistatic viscoelastic contact with normal compliance and friction, J.
Elast. 51 (1998), 105-126.

[24] A. Rodriguez-Ards, J.M. Viatio and M. Sofonea, A class of evolutionary variational inequalities with Volterra-type
term, Math. Models Methods Appl. Sci. 14 (2004), no. 4, 557-—577.

[25] M. Sofonea, W. Han and M. Shillor, Analysis and Approzimations of Contact Problems with Adhesion Or Damage,
Pure and Applied Mathematics Chapman and Hall/CRC Press, Boca Raton, Florida, 2006.

[26] M. Sofonea, A. Rodriguez-Ards, J.M. Viafio, A class of integro-differential variational inequalities with applications
to viscoelastic contact, Math. Comput. Modell. 41 (2005), no. 11-12, 1355—1369.



	Introduction
	Problem statement
	 Variational formulation and preliminaries
	Existence and uniqueness

