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Abstract

Let A be an arbitrary ∗-algebra with unit I over the real or complex field F that contains a nontrivial idempotent P1

and n ≥ 1 a natural number and φ : A −→ A be a surjective map on A such that φ satisfies condition

φ(P ) •n−1 φ(P ) • φ(A) = P •n−1 P •A,

for every A ∈ A and projection P ∈ {P1, I − P1}, where A •n−1 A with repeat n− 1 times A is the Jordan multiple
∗-product. Then φ(A) = φ(I)A for all A ∈ A and φ(I)2 = I.
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1 Introduction and Preliminaries

Let A be a ∗-algebra. For A,B ∈ A, we define Jordan ∗-product and Lie ∗-product of A,B respectively by
A • B = AB + BA∗ and [A,B]∗ = AB − BA∗, which are two different kinds of new products. The products are
found playing a more and more important role in some recent researches and studying the new products was the
main focus of many mathematicians over the past years (see [1, 2, 3, 8, 10, 12, 13, 14, 15]). Continuing it in [2],
let A and B be two factor von Neumann algebras. The authors studied nonlinear bijective map Φ : A −→ B
satisfying Φ([A,B]∗) = [Φ(A),Φ(B)]∗ for all A,B ∈ A if and only if Φ is a ∗-ring isomorphism. In [1] which M and
N are two von Neumann algebras, it is proved that a not necessarily linear bijective map φ : M −→ N satisfies
φ([S, T ]∗) = [φ(T ), φ(S)]∗ for all T, S ∈ M if and only if φ is the direct sum of a linear ∗-isomorphism and a conjugate
linear ∗-isomorphism. Also in [8] where A and B are two factor von Neumann algebras, it is characterized that a not
necessarily linear bijective map Φ : A −→ B satisfies Φ(A • B) = Φ(A) • Φ(B) for all A,B ∈ A if and only if Φ is a
∗-ring isomorphism.

Let R be an associative ring (or an associative algebra over a field F). Then recall a map φ : R −→ R preserves
strong commutativity or strong Lie Product if [φ(A), φ(B)] = [A,B], for each A,B ∈ A that [A,B] is Lie product i.e.
[A,B] = AB − BA. Similarly φ preserves strong Jordan product if φ(A) ◦ φ(B) = A ◦ B, for each A,B ∈ A that
A ◦ B is Jordan product i.e. A ◦ B = AB + BA. The structure of linear (or nonlinear) maps that preserve strong
commutativity and strong Jordan product have been investigated in [6, 12, 14]. Gonga et al [6] proved that every
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nonlinear map φ that preserves strong Jordan product on any algebra R with unit I over a field F, has the form of
φ(A) = φ(I)A, for all A ∈ R, where φ(I) ∈ R and φ(I)2 = I.

For a ring R and a positive integer k, recall that the k-commutator of elements A,B ∈ R is defined by [A,B]k =
[[A,B]k−1, B] with [A,B]0 = A and [A,B]1 = [A,B] = AB − BA; similarly we define A ◦k B = (A ◦k−1 B) ◦ B with
A ◦0 B = A and A ◦1 B = A ◦ B = AB + BA. A map φ : R −→ R is called strong k-commutativity preserver if
[φ(A), φ(B)]k = [A,B]k for all A,B ∈ R and φ is called strong k-Jordan product if φ(A) ◦k φ(B) = A ◦k B for each
A,B ∈ R. Qi [5], characterizes the structure of a strong 2-commutativity preserving map on prime algebra. Also
Lin and Hou [9] characterized the structure of a map that preserves Strong 3-commutativity on standard algebras.
Moreover recently in [15] authors proved the concrete form of a map that preserves strong 2-Jordan product on
standard operator algebras, properly infinite von Neumann algebras and nest algebras.

The aim of this paper is to extend this work by studying surjective maps that preserves strong skew Jordan multiple
∗-product on general ∗-algebras. We prove that if A be an arbitrary ∗-algebra (with identity I) over the real or complex
field F that contains a nontrivial idempotent P1 and φ : A −→ A satisfies below condition

φ(P ) •n−1 φ(P ) • φ(A) = P •n−1 P •A,

for every A ∈ A and projection P ∈ {P1, I − P1}, then φ(A) = φ(I)A for all A ∈ A and φ(I)2 = I, where, n ≥ 1 is a
natural number and A •n−1 A with repeat n− 1 times A is the Jordan multiple ∗-product.

Now we are ready to state the main results of the present paper.

2 The Main Results

We begin by showing a preliminary lemma.

Lemma 2.1. Let A be an arbitrary ∗-algebra over the real or complex field F that contains a nontrivial idempotent
P and n ≥ 1 a natural number. If P •n−1 P •A = 0, then PA = 0 = AP .

Proof . Since P •n−1P •A = 0 holds for A ∈ A, by applying mathematical induction we conclude that P •n−1P •A =
2n−1P •A = 2n−1(PA+AP ) = 0. Thus

AP + PA = 0. (2.1)

Now by multiplying P from the left side and the right side of the Equation 2.1 we obtain PAP + PA = 0 and
AP + PAP = 0. Again by using 2.1 we have PAP = PA = AP = 0. □ Following, we will state the main results and
proofs.

Theorem 2.2. Let A be an arbitrary ∗-algebra with unit I over the real or complex field F that contains a nontrivial
idempotent P1 and n ≥ 1 a natural number. Assume that φ : A −→ A is a surjective map satisfying the condition

φ(P ) •n−1 φ(P ) • φ(A) = P •n−1 P •A, (2.2)

for all A ∈ A and projection P ∈ {P1, I − P1}. Then φ(A) = φ(I)A for all A ∈ A and φ(I)2 = I.

Proof . We assume P2 = I − P1 and we organize the proof into several steps.

Step 1. φ is injective.

Let A1, A2 ∈ A such that φ(A1) = φ(A2). By applying the Equation 2.2 we have

0 = φ(P ) •n−1 φ(P ) • (φ(A1)− φ(A2))

= P •n−1 P • (A1 −A2).

From the Lemma 2.1, it follows that PA1 = PA2. In fact, PiA1 = PiA2, i = 1, 2 which implies that A1 = A2.
Consequently, φ is a injective map.

Step 2. i) φ(A∗) = φ(A)∗ for all A ∈ A.

ii) φ(P )n+1 = P for every P ∈ {P1, P2}.
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i) Let B ∈ A, P ∈ {P1, P2} and φ(P ) •n−1 φ(P ) = C. Then using Equation 2.2 and by applying mathematical
induction, we obtain

CB +BC∗ = φ(P ) •n−1 φ(P ) • φ(φ−1(B))

= P •n−1 P • φ−1(B)

= 2n−1P • φ−1(B).

for all B ∈ A. That is
2n−1P • φ−1(B) = CB +BC∗, (2.3)

for all B ∈ A. Similarly, for every B∗ ∈ A we have

2n−1P • φ−1(B∗) = CB∗ +B∗C∗. (2.4)

Now, by adjionting from the two sides of the Equation 2.3 we have

2n−1P • φ−1(B)∗ = B∗C∗ + CB∗. (2.5)

Thus with comparison the Equation 2.4 and 2.5 we can conclude that P • φ−1(B∗) = P • φ−1(B)∗ and so
P • (φ−1(B∗)− φ−1(B)∗) = 0 for all B ∈ A. Then applying the Lemma 2.1 we obtain Pφ−1(B∗) = Pφ−1(B)∗ for all
B ∈ A and P ∈ {P1, P2}. In fact, Piφ

−1(B∗) = Piφ
−1(B)∗, i = 1, 2 which implies that φ−1(B∗) = φ−1(B)∗ for all

B ∈ A.

Now, let φ(A) = B so φ−1(B) = A, hence we can conclude that φ(A∗) = φ(φ−1(B)∗) = φ(φ−1(B∗)) = B∗ = φ(A)∗

for all A ∈ A.

ii) From (i) we have φ(P ∗) = φ(P )∗. Hence by choosing A = P in the Equation 2.2 and by applying mathematical
induction we obtain

2nφ(P )n+1 = φ(P ) •n φ(P ) = P •n P = 2nP,

which follows that φ(P )n+1 = P .

Step 3. For every A ∈ A and P ∈ {P1, P2}, we have

φ(P )φ(A) + φ(A)φ(P ) = PA+AP. (2.6)

It is easy to conclude from step 2 that Piφ(Pj) = φ(Pj)Pi, i, j = 1, 2. Again, using the Step 2 we can compute

2n−1(φ(p)nφ(A) + φ(A)φ(P )n) = (φ(P ) •n φ(P ) • φ(A))

= (P •n P •A)

= 2n−1(PA+AP )

for every A ∈ A. That is
φ(P )nφ(A) + φ(A)φ(P )n = PA+AP. (2.7)

We prove the result in two cases.

Case 1. Let n = 2k − 1 and k ∈ N. By the Step 2 we have (φ(P )2)k = P . Since φ(P ) is selfadjoint, φ(P )2 is kth

root of P and so φ(P )2 = P . Thus 2.7 turns to Equation 2.6.

Case 2. Let n = 2k and k ∈ N. By replacing A by P2 in Equation 2.7 and choosing P = P1 we have

φ(P1)
nφ(P2) + φ(P2)φ(P1)

n = 0. (2.8)

By multiplying φ(P1) from the right side and the left side of the Equation 2.8 we obtain

P1φ(P2)φ(P1) + φ(P1)P1φ(P2) = 0, (2.9)

Multiplying the sides of the Equation 2.9 by φ(P1) from the left and once from the right respectively, we compute

φ(P1)φ(P2)P1φ(P1) + P1φ(P1)
2φ(P2) = 0,
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and
φ(P2)P1φ(P1)

2 + P1φ(P1)φ(P2)φ(P1) = 0.

These follows that
φ(P2)P1φ(P1)

2 = P1φ(P1)
2φ(P2). (2.10)

Now, by applying the Step 2 we have Pφ(P )n+2 = Pφ(P ) = φ(P )P. Since n+ 2 is an even number, Pφ(P )n+2 =
Pφ(P ) is a positive element and so 2.10 implies that

φ(P2)P1φ(P1) = P1φ(P1)φ(P2).

Using Equation 2.9 and this Equation we get

P1φ(P1)φ(P2) = 0.

Hence, from the Step 2 we obtain P1φ(P2) = 0 and so φ(P1) = (P1 + P2)φ(P1) = P1φ(P1). This means which
φ(P ) = Pφ(P ) for every P ∈ {P1, P2}. Hence, positivity of Pφ(P ) follows that φ(P ) is a positive element. Then

φ(P )n+1 = P implies that φ(P ) is (n+ 1)
th

root P and so φ(P ) = P . It can be shown easily that 2.7 turns to
Equation 2.6. So in both cases the result is proved.

Step 4. PAφ(P ) = φ(P )AP for all A ∈ A and P ∈ {P1, P2}.
Let A ∈ A and P ∈ {P1, P2}. By multiplying φ(P ) from the left side and P from the right side of the Equation

2.6 and by applying the proof of the Step 3 we have

Pφ(A)P + φ(P )φ(A)φ(P ) = 2φ(P )AP. (2.11)

In a similar way multiplying φ(P ) from the right side and P from the left side of the Equation 2.6 and applying
the proof of the Step 3 we have

Pφ(A)P + φ(P )φ(A)φ(P ) = 2PAφ(P ). (2.12)

Then with comparison of two Equations 2.11 and 2.12, we conclude that PAφ(P ) = φ(P )AP for all A ∈ A and
P ∈ {P1, P2}.

Step 5. φ(A) = φ(I)A for all A ∈ A.

By Step 4 φ(P ), commutes with Pϕ(A)P and so from Equation 2.11 we have

Pφ(A)P = φ(P )AP. (2.13)

On the other hand, replacing P in 2.6 by P1 and by multiplying P2 from the right side and ϕ(P ) from the left side
we have

P1φ(A)P2 = φ(P1)AP2. (2.14)

Taking P in 2.13 by P1 and then by adding the sides of this equation with the Equation 2.14, we obtain

P1φ(A) = φ(P1)A, (2.15)

and similarly,
P2φ(A) = φ(P2)A. (2.16)

In a similar way from the two Equations 2.15 and 2.16, we can compute

φ(A) = (φ(P1) + φ(P2))A. (2.17)

Substituting A = I in 2.17, we obtain φ(I) = φ(P1) + φ(P2) and hence

φ(A) = φ(I)A, for all A ∈ A, and φ(I)2 = I.

This completes the proof. □
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Definition 2.3. Let A be an arbitrary algebra. An additive mapping φ : A −→ A is called a left (resp.right)
multiplier if φ(xy) = φ(x)y (resp.φ(xy) = xφ(y)), holds for all x, y ∈ A. A multiplier is an additive mapping which is
both right as well as left multiplier.

The following corollary follows directly from Theorem 2.2.

Corollary 2.4. Let A be an arbitrary ∗-algebra with unit I over the real or complex field F that contains a nontrivial
idempotent and n ≥ 1 a natural number. Assume that φ : A −→ A is a surjective map satisfying in the conditione of
Theorem 2.2, then φ is a multiplier.

Acknowledgments

The authors would like to thank anonymous referee for a thorough and detailed report with many helpful comments
and suggestions.

References

[1] Z. Bai and S. Dou, Maps preserving product XY − Y X∗ on von Neuman algebras, J. Math. Anal. Appl. 386
(2012), 103–109.

[2] J. Cui and C.K. Li Maps preserving product XY − Y X∗ on factor von Neuman algebras, Linear Algebra Appl.
431 (2009), 833–842.

[3] L. Dai andF, Lu. Nonlinear maps preserving Jordan ∗-products, J. Math. Anal. Appl. 409 (2014), 180–188.

[4] L. Fang, Linear maps preserving the idempotency of Jordan products of operators, Linear Algebra Appl. 22 (2011),
767–779.

[5] X. Qi, Strong 2-commutativity preserving maps on prime rings, Publ. Math. Debrecen 88 (2016), no. 1-2, 119–129.

[6] L. Gonga, X. Qi, J. Shao and F. Zhang, Strong (skew) ξ-Lie commutativity preserving maps on algebras, Cogent.
Math. Statist. 2 (2015), no. 1, 1003175.

[7] H. Gao, ∗-Jordan-triple muitiplicative surjective maps on B(H), J. Math. Anal. Appl. 401 (2013), 397–403.

[8] C. Li, F. Lu and X. Fang, Nonlinear mappings preseving product XY + Y X∗ on factor von Neuman algebra,
Linear Algebra Appl. 438 (2013), no. 5, 2339–2345.

[9] M.Y. Liu and J.C. Hou, Strong 3-commutativity preserving maps on standard algebras, Acta Math. Sinica English
Ser. 33 (2017), no. 12, 1659–1670.

[10] L. Molnar, Multiplicative Jordan triple isomorphisms on the self-adjoint elements of von Neuman algebras, Linear
Algebra Appl. 419 (2006), 586–600.

[11] X. Qi and J. Hou, Additivity of Lie multiplictive maps on triangular algebras, Linear Multilinear Algebra 59
(2011), 391–397.

[12] X. Qi, Strong 3-commutativity preserving maps on prime rings, Publ. Math. Debrecen 88 (2016), no. 2, 119–129.

[13] A. Taghavi, F. Kolivand and H. Rohi, A note on η-Lie products preserving maps on some algebra, Mediterr. J.
Math. 14 (2017), no. 1, 1–10.

[14] A. Taghavi and F. Kolivand, A note on strong skew Jordan product preserving maps on von Neuman algebras,
Period. Math. Hungar. 75 (2017), no. 2, 330–335.

[15] A. Taghavi and F. Kolivand, Maps preserving strong 2-Jordan product on some algebras, Asian-Eur. J. Math. 10
(2017), no. 3, 1750044.


	Introduction and Preliminaries
	The Main Results

