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Abstract

In this paper, the notions of a Smarandache p-filter, a Smarandache n-fold p-filter, Smarandache q-
filter, a Smarandache-n-fold q-filter of a Smarandache BH-Algebra are introduced. Some properties
of them with some theorems, proportions and examples are given.
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1. Introduction

The idea of BCK-algebras was formulated first in [4, 5]. In the same year another algebraic
structure called BCI-algebra which was a popularization of a BCK-algebra was given by K. Iséki
[6]. In 1983, Hu and Li introduced the notion of a BCH-algebra which was a popularization of
BCK/BCI-algebras [8, 11]. Hoo show that the notions of an ideal and a filter in a BCI-algebra [7].
A BH-algebra is an algebraic structure introduced by Jun et al in [10] which was a popularization
of BCH/BCI/BCK-algebras. The notions of a Smarandache BCI-algebra, Smarandache ideal of a
Smarandache BCI-algebra are given by Jun in [9]. Abbass and Dahham introduced the concept of
completely closed filter of a BH-algebra in [1]. Abbass and Luhaib introduced the idea of Smaran-
dache filter of a Smarandache BH-Algebra in [3]. In this paper, the notions of a Smarandache-p-filter,
a Smarandache n-fold p-filter, Smarandache q-filter, a Smarandache-n-fold q-filter and of a Smaran-
dache BH-Algebra are given.
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2. Preliminaries

In this section, several basic connotations about a BCI-algebra, a BCK-algebra, a Smarandache
BH-algebra, and a Smarandache filter of a Smarandache are reviewed.

Definition 2.1. [9] A BCI-algebra is an algebra (X−, □ , 0) , where X is a nonempty set, □ is a
binary operation and 0 is a constant, for all x, y, z ∈ X−, satisfying the following axioms:

i. ((x □y) □(x □z)) □(z □y) = 0,
ii. (x □(x □y)) □y = 0,
iii. x □x = 0,
iv. x □y = 0 and y □x = 0 imply x = y.

Definition 2.2. [8] BCK-algebra is a BCI-algebra satisfying the axiom: 0 □x = 0, for all x∈X−.

Definition 2.3. [10] A BH-algebra is a nonempty set X− with a constant 0 and a binary operation
□ satisfying the following conditions:

i. x □x = 0, for all x∈X−.
ii. x □y = 0 and y □x = 0 imply x = y, for all x, y∈X−.
iii. x □0 = x, for all x∈X−.

Definition 2.4. [10] A nonempty subset S of a BH-algebra X− is called a subalgebra of X− if x □y∈S,
for all x, y∈S.

Definition 2.5. [1] A filter of a BH-algebra X− is a non-empty subset F of X− such that:
(F1) if x∈F and y∈F , then y □(y □x)∈F and x □(x □y)∈F .
(F2) If x∈F and x □y = 0 then y ∈ F for all y∈X−.
Further F is a closed filter if 0 □x∈F , for all x∈F .

Definition 2.6. [2] Let X− be a BH-algebra and F be a filter of X−. Then F is called a p-filter
denoted by p− f if it satisfies:

if x, y∈F imply (x □z) □(y □z)∈F for all y, z∈X−.

Definition 2.7. [2] Let F be a filter of a BH-algebra X−. If x, y∈F and there exists a fixed n∈N
such that zn∈X− imply (x □zn) □(y □zn)∈F , for all z∈X−. Then F is said to be a n-fold p-filter of
X−.

Definition 2.8. [2] Let X− be a BH-algebra and F be a filter of X−. Then F is called a q-filter
denoted by q-f if it satisfies:

If x □z∈F, y∈F imply x □(y □z)∈F , for all x, z∈X−.

Definition 2.9. [2] Let X− be a BH-algebra, F be a filter of X−, and there exists a fixed n∈N such
that x □zn∈F, y∈F , for all x, z∈∈ imply x □(y □zn)∈F . Then F is called a n-fold q-filter of X−.

Definition 2.10. [3] A Smarandache BH-algebra is defined to be a BH-algebra X− in which there
exists a proper subset Q of X− denoted by S. BH-algebra such that

i. 0∈Q and |Q|≥2.
ii. Q is a BCK-algebra under the operation of X−.
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Definition 2.11. [3] A non-empty subset F of a S. BH-algebra X− is called a Smarandache filter
of X− denoted by S.f, if it satisfies (F1) and

(F3) If x∈F and x □y = 0 then y∈F , ∀y∈Q.

Proposition 2.12. [3] Let X− be a S. BH-algebra and let {Fβ, β∈Ω} be a family of S.f of X−. Then⋂
β∈Ω

Fβ is an S.f of X−.

Proposition 2.13. [3] Let X− be a S.f and let {Fi, i∈λ} be a chain of S.f of X−. Then
⋃
β∈Ω

Fβ is a S.f

of X−.

Theorem 2.14. [3] Let X− be a S. BH-algebra, and F be a S.f of X− such that x □y ̸=0, for all y /∈ F
and x∈F . Then F is a filter of X−.

3. Main Results

In this section, the notions of a Smarandache-p-filter, a Smarandache n-fold p-filter, Smarandache
q-filter, a Smarandache-n-fold q-filter and of a Smarandache BH-Algebra of a Smarandache BH-
Algebra are introduced. Also, some properties of these notions are studied.

Definition 3.1. Let X− be a S. BH-algebra and F be a Smarandache filter of X−. Then F is called
a Smarandache p-filter of X− and denoted by S.p-f of X− if it satisfies:

If x, y∈F imply (x □z) □(y □z)∈F for all z∈Q.

Further F is a Smarandache closed p-filter if 0 □x∈F , for all x ∈F .

Example 3.2. Let X− = {0,1, 2, 3}. Define □ as follows:

□ 0 1 2 3

0 0 0 2 3

1 1 0 1 2

2 2 2 0 1

3 3 3 2 0

where Q = {0, 1}, the subset F = {0, 1, 2} is a S.P.f of X. But is not p.f of X, since z = 3, x =
3, y = 0, (3 □3) □(0 □3) = 3 /∈ F .

Proposition 3.3. Let X− be a S. BH-algebra and F be a p-f of X. Then F is a S.p-f of X−.

Proof . Directly since Q⊆X−. □

Theorem 3.4. Let X be a S. BH-algebra, and F be a S.p-f of X such that x □y ̸=0, y /∈ F if
(x □z) □(y □z) /∈ F and x∈F, z∈X. Then F is a p.f of X−.
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Proof . Let F be a S.p-f of X it follows that By Definition3.1 is a S.f of X−. Since x □y ̸=0, y ̸∈F, x∈F ,
By Theorem 2.14, F is a filter of X−.

Now, let x, y∈F, z∈X, then we have two cases:
Case (I): If z∈Q, imply (x □z) □(y □z) ∈ F because by definition 3.1 F is S.p-f of X−,
Cases(II): If z ̸∈ Q, then either (x □z) □(y □z)∈ /∈ F or (x □z) □(y □z) ∈ F .
Suppose (x □z) □(y □z) /∈ F , then y /∈ F , this is a contradiction. Thus (x □z) □(y □z) ∈ F .

Therefore, is a p.f of X−. □

Proposition 3.5. Let X− be a Smarandache BH-algebra, and let {Fβ, β ∈ Ω} be a family of S.p-fs

of X−. Then
⋂
β∈Ω

Fβ is a S.p-f of X−.

Proof . Let {Fβ, β ∈ Ω} be a family of S.p-fs of X−, imply {Fβ, β ∈ Ω} be a family of Smarandache

filters of X. Hence, By Proposition 2.12,
⋂
β∈Ω

Fβ is a S.f of X−. Now, let x, y ∈
⋂
β∈Ω

Fβ and z ∈ Q.

Then x, y ∈ Fβ and z ∈ Q,∀β ∈ Ω implies that (x □z) □(y □z) ∈ Fβ, ∀β ∈ Ω, because Fβ is a S.p-f of

X−, for all β ∈ Ω, this mean that (x □z) □(y □z) ∈
⋂
β∈Ω

Fβ. Therefore
⋂
β∈Ω

Fβ is a S.p-f of X−. □

Example 3.6. Let X− = {0, 1, 2, 3, 4, 5}. Define □ as follows:-

□ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 1 0 0 0 0 1

2 2 2 0 0 1 0

3 3 2 2 0 1 1

4 4 4 4 4 0 1

5 5 5 5 5 5 0

where Q = {0, 2}. The subset F1 = {0, 2, 3} and F2 = {0, 2, 5} are two S.p-f of X, but F1∪F2 =
{0, 2, 3, 5} is not a S.p-f of X−, since x = 3, y = 5, z = 0 ∈ Q but (3 □0) □(5 □0) = 1 ̸∈ F1∪F2,

Proposition 3.7. Let X− be a S. BH-algebra, and let {Fβ, β ∈ Ω} be a chain of S.P.f of X. Then⋃
β∈Ω

Fβ is a S.P.f of X−.

Proof . Let {Fβ, β ∈ Ω} be a chain of S.P.f of X. it follows that {Fβ, β ∈ Ω} be a chain of
Smarandache filters of X [By definition 3.1]. This together with Proposition (2.13) implies that⋃
β∈Ω

Fβ is a Smarandache filter of X.

Now, let x, y ∈
⋃
β∈Ω

Fβ, z ∈ Q, then there exists Fn, Fm ∈ {Fβ, β ∈ Ω}, such that x ∈ Fj and

y ∈ Fk. Then either Fn⊆Fm or Fm⊆Fn. If Fn⊆Fm, it follows that x, y ∈ Fm and z ∈ Q. So,
there exists m ∈ Ω such that (x □z) □(y □z) ∈ Fm, because Fi is a S.P.f of X,(∀β ∈ Ω). Then

(x □z) □(y □z) ∈
⋃
β∈Ω

Fβ. Similarly, Fm⊆Fn implies that
⋃
β∈Ω

Fβ is a S.P.f of X−. □
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Definition 3.8. Let F be a Smarandache filter of a S. BH-algebra X−. If x, y ∈ F and there exists
a fixed n ∈ N such that zn ∈ Q imply (x □zn) □(y □zn) ∈ F , for all z ∈ Q. Then F is said to be a
Smarandache n-fold p-filter of X, denoted by a S. n-fold. p-f of X−.

Example 3.9. Let X− = {0, 1, 2, 3, 4} be as in example 3.6. The filter F = {0, 2, 3} is a S. 2-fold.
p-f of X−.

Theorem 3.10. Let X− be a S. BH-algebra, and F be a S. n-fold. p-f of X such that x □y ̸=0, y /∈ F
if (x □zn) □(y □zn) /∈ F and x ∈ F, zn ∈ X−, for a fixed n ∈ N . Then F is a n-fold p-filter of X−.

Proof . Let F be a S. n-fold. P.f of X−, then By Definition 3.8, F is a S.f of X−. Since x □y ̸=0, y /∈
F, x ∈ F , By Theorem 2.14, F is a filter of X. Now, let x, y ∈ F, zn ∈ X−, then we have the following
two cases:

Case (I): If zn ∈ Q, then (x □zn) □(y □zn) ∈ F , because by Definition 3.8, F is S. n-fold. P.f of
X−,

Cases(II): If zn /∈ Q, then either (x □zn) □(y □zn) /∈ F or (x □zn) □(y □zn) ∈ F .
Suppose that (x □zn) □(y □zn) /∈ F , then y /∈ F , this a contradiction. Thus (x □zn) □(y □zn) ∈ F ,

consequently F is a n-fold p-filter of X−. □

Proposition 3.11. Let X be a S. BH-algebra, and let {Fβ, β ∈ Ω} be a family of S. n-fold. p-f of

X−. Then
⋂
β∈Ω

Fβis a S. n-fold. p-f of X−.

Proof . Straightforward. □

Proposition 3.12. Let X− be a Smarandache BH-algebra, and let {Fβ, β ∈ Ω} be a chain of S.

n-fold. p-f of X. Then
⋃
β∈Ω

Fβis a S. n-fold. p-f of X−.

Proof . Straightforward. □

Definition 3.13. Let X be a S. BH-algebra and F be a Smarandache filter of X. Then F is called
a Smarandache q-filter and denoted by a S.q-f of X if it satisfies:- If x □z ∈ F, y ∈ F imply
x □(y □z) ∈ F for all x, z ∈ Q.

Example 3.14. Let X− = {0, 1, 2, 3, 4}. Define □ as follows:

□ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 2

2 2 2 0 2 0

3 3 1 3 0 3

4 4 4 4 4 0

Where Q = {0, 2}. The subset F = {0, 1, 2} is a S.q-f of X− but it is not a q-filter of X. Since
x = 3, y = 0, z = 3 and 3 □(0 □3) = 3 /∈ F
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Proposition 3.15. Let X be a S. BH-algebra and F is a q-filter of X. Then F is a S.q.f of X− .

Proof . Since Q⊆X−, the proof is clear. □

Remark 3.16. Consider the Q1− S. BH-algebra and Q2-Smarandache BH-algebra X such that
Q1⊆Q2. The Q1-Smarandache q-filter of X− may be not a Q2−Smarandache q-filter of X as in
the following example. Consider X = {0, 1, 2, 3} in example 3.14, where Q1 = {0, 1}, Q2 = {0, 2, 3}
are BCK-algebras and Q1⊆Q2 : F = {0, 1, 2} is a Q1-Smarandache q-filter of X, but it is not
Q2-Smarandache q-filter of X. Since x = 3, y = 2, z = 3 implies that 3 □(2 □3) = 3, but 3 /∈ F .

Proposition 3.17. Let X− be a S. BH-algebra and F be a S.q-f of X, such that F⊆Q. Then F is a
subalgebra of X−.

Proof . Let x, y ∈ F . Since z ∈ Q, choose z = 0, we have x = x □0 ∈ F, y ∈ F, x, 0 ∈ Q, because
F⊆Q. This Implies that x □(y □0) ∈ F , because by Definition 3.13, F is a S.q.f of X. Then x □y ∈ F .
Hence, F is a subalgebra. □

Theorem 3.18. Let X− be a S. BH-algebra, and be a S.q-f of X− such that x □y ̸=0, x □z /∈ F , and
y /∈ Fifx □(y □z) /∈ F and x ∈ F, z ∈ X−. Then F is a q-filter of X−.

Proof . Let F be a S.q.f of X−, then By Definition 3.13, it is a S.f of X. Since x □y ̸= 0, y /∈ F, x ∈ F ,
By Theorem 2.14, F is a filter of X.

Now, let x □z ∈ F, y ∈ F, x, z ∈ X−, then we have the following two cases:
Case (I): If x, z ∈ Q, then by Definition 3.13, x □(y □z) ∈ F ,
Cases(II): If x, z /∈ Q, then either x □(y □z) /∈ F or x □(y □z) ∈ F .
If x □(y □z) /∈ F , then y =∈ F , or x □z /∈ F , contradiction. Since x □z ∈ F, y ∈ F , we have

x □(y □z) ∈ F . Hence, it is a q-filter of X−. □

Proposition 3.19. Let X− be a S. BH-algebra, and let {Fβ, β ∈ Ω} be a family of S.q-f of X−. Then⋂
β∈Ω

Fβ is a S.q-f of X−.

Proof . Let {Fβ, β ∈ Ω} be a family of S.q-fs of X−, then By Definition 3.13, {Fβ, β ∈ Ω} be a

family of S.f of X. Thus, By Proposition 2.12,
⋂
β∈Ω

Fβ is a S.f of X.

Now, let x □z ∈
⋂
β∈Ω

Fβ, y ∈
⋂
β∈Ω

Fβ such that x, z ∈ Q, it follows that x □z ∈ Fβ, y ∈ Fβ, such

that x, z ∈ Q, imply x □(y □z) ∈ Fβ, (∀β ∈ Ω), bevause Fi is a S.q-f of X−. Hence, x □(y □z) ∈
⋂
β∈Ω

Fβ.

Therefore,
⋂
β∈Ω

Fβ is a S.q-f of X−. □

Remark 3.20. Let X be a S. BH-algebra and let f1, f2 be a S.q.f of X. Then f1∪f2 is not necessary
a S.q.f of X−.

Example 3.21. Consider X = {0, 1, 2, 3, 4, 5} be as in example 3.6, where Q = {0, 1}. The subset
F1 = {0, 1, 3} and F2 = {0, 1, 4} are two S.q-fs of X−, but F1∪F2 = {0, 1, 3, 4} is not a S.q-f of X,
because 3, 4 ∈ F1∪F2 , but 3 □(3 □4) = 2 /∈ F1∪F2. Then F1∪F2 it is not a S.q-f.
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Proposition 3.22. Let X− be a S. BH-algebra and let {Fβ, β ∈ Ω} be a chain of S.q.f of X. Then⋃
β∈Ω

Fβ is a S.q.f of X−.

Proof . Let {Fβ, β ∈ Ω} be a chain of S.q.f of X−. Then by Definition 3.13 {Fβ, β ∈ Ω} is a chain

of S.f of X. Thus, by Proposition 2.13,
⋃
β∈Ω

Fβ is a S.f of X,

Now, let x □z ∈
⋃
β∈Ω

Fβ, y ∈
⋃
β∈Ω

Fβ, such that x, z ∈ Q, then there exist Fn, Fm ∈ {Fβ : β ∈ Ω},

such that x □z ∈ Fn and y ∈ Fm. Thus either Fn⊆Fm or Fm⊆Fn.
If Fn⊆Fm, then x □z ∈ Fm, y ∈ Fm, such that x, z ∈ Q, thus there exists m ∈ Ω such that

x □(y □z) ∈ Fm, because Fβ is a S.q.f of X, for all β ∈ Ω. Consequently, x □(y □z) ∈
⋃
β∈Ω

Fβ.

Similarly, Fm ⊆Fn. Hence,
⋃
β∈Ω

Fβ is a S.q-f of X. □
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