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Abstract

In this work, the idea of neutrosophic semi-regularization of neutrosophic topology is shown, as well as some of its
characteristics. We show that for any neutrosophic set in neutrosophic topological space is a neutrosophic regular
generalized α-closed set in (Ψ, τ) if and only if it is neutrosophic regular generalized closed set in (Ψ, τα), where τα is
the family of all neutrosophic α-open sets in (Ψ, τ).
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1 Introduction

As an elaboration of Zadeh’s fuzzy sets [31] from 1965 and Atanassav’s intuitionistic fuzzy sets [5] from 1983,
Smarandache has proposed and described neutrosophic sets (NSs). Three values represent A (NS): truth (mem-
berships), indeterminacy, and falsity (non-memberships). Salama and Alblowi [28] proposed the new concept of
neutrosophic topological space (NTS) in 2012, which had only been examined recently. Arokiarani M et al. looked at
various concepts like neutrosophic (/regular/semi) closed sets in 2017 [4]. Rao and Srinivasa [26] then looked into the
concept of a neutrosophic per-closed set. In 2018, Ebenanjar M et al. described neutrosophic b-clsed in (NTS) [7]. In
2020, the concept of a neutrosophic bg-closed set is introduced and investigated in (NTS) [24]. Non-classical spaces
are used to study the expansion of some topological sets, such as soft sets [11, 8, 1, 12, 9], fuzzy sets [14, 15, 16, 17, 2],
nano sets [18], permutation sets [19, 20, 30, 21, 22, 23], and others [27, 13]. To investigate our non-classical expansion,
we’ll use the concept of neutrosophic. The main purpose of this work is to consider and discussed new classes of
neutrosophic topological spaces is called neutrosophic semi-regularization space, as well as some of its characteristics.
We show that for any neutrosophic set in neutrosophic topological space is a neutrosophic regular generalized α-closed
set in (Ψ, τ). if and only if it is neutrosophic regular generalized closed set in (Ψ, τα). , where τα is the family of all
neutrosophic α-open sets in (Ψ, τ).

2 Preliminaries

In this section, we’ll go through the background information are referred from the references [7, 10, 25, 3, 6, 29].
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Definition 2.1. Let Ψ = φ, then K = {⟨ε, γK(ε), ρK(ε), rK(ε)⟩ : ε ∈ Ψ} is said to be neutrosophic set (NS) , if
γK(ε), ρK(ε) and rK(ε) are the degrees of membership, indeterminacy and non-membership, according ∀ε ∈ Ψ to K .
Also, if H = {⟨ε, γH(ε), ρH(ε), rH(ε)⟩ : ε ∈ Ψ} is (NS). Then

(1) K ⊆ H if and only if γK(ε) ≤ γH(ε), ρK(ε) ≥ ρH(ε) and rK(ε) ≥ rH(ε),

(2) K ∩H = {⟨ε,min{γK(ε), γH(ε)},max{ρK(ε), ρH(ε)},max{rK(ε), rH(ε)}⟩ : ε ∈ Ψ}
(3) Kc = {⟨ε, rK(ε), 1− ρK(ε), γK(ε)⟩ : ε ∈ Ψ},
(4) K ∪H = {⟨ε,max{γK(ε), γH(ε)},min{ρK(ε), ρH(ε)},min{rK(ϵ), rH(ε)}⟩ : ε ∈ Ψ}

Definition 2.2. Let τ = {Ti|i ∈ I} be a family of neutrosophic sets (NSs) in Ψ. Then (Ψ, τ) is said to be neutrosophic
topological space (NTS) if and only if τ such that:

(1) 1N , 0N ∈ τ, where 0N = {⟨ε, (0, 1, 1)⟩ : ε ∈ Ψ} and 1N = {⟨ε, (1, 0, 0)⟩ : ε ∈ Ψ}.
(2) Ti ∩ Tj ∈ τ, ∀Ti, Tj ∈ τ,

(3) ∪i∈δTi ∈ τ for any δ ⊆ I. In other side, we say Ti is neutrosophic open set (NOS) and T c
i is neutrosophic closed

set (NCS) if Ti ∈ τ.

Definition 2.3. The neutrosophic closure of K is the intersection of all neutrosophic closed sets containing K and
is denoted by clNK . The neutrosophic interior of K is the union of all neutrosophic open set is contained in K and is
denoted by intNK. Similarly , we define neutrosophic regular closure, neutrosophic α-closure, neutrosophic pre-closure,
neutrosophic semi closure, neutrosophic b-closure and neutrosophic semi preopen closure of the neutrosophic set K
of a (NTS) Ψ and are denoted by rclNK,αclNK, pclNK, sclNK, bclNK and spclNK respectively. The family of all
neutrosophic α-open (resp. neutrosophic semi-open, neutrosophic preopen, neutrosophic semi-preopen, neutrosophic -
open, neutrosophic regular open) sets in a (NTS)(Ψ, τ) is denoted by τα (resp. NSO(Ψ, τ), NPO(Ψ, τ), NSPO(Ψ, τ),
NBO(Ψ, τ), NRO(Ψ, τ)). The complement of the neutrosophic α-open , neutrosophic semi-open, neutrosophic pre-
open, neutrosophic semi-preopen, neutrosophic -open, neutrosophic regular open are their respective neutrosophic
α-closed, neutrosophic semi-closed, neutrosophic preclosed, neutrosophic semi-preclosed, neutrosophic -closed, neutro-
sophic regular closed.

Definition 2.4. A (NS)K in a (NTS)(Ψ, τ) is said to be

(1) a neutrosophic generalized closed set(NgCS) in Ψ if clNK
∼
⊆ H whenever K ⊆ H and H is (NOS) in Ψ.

(2) a neutrosophic semi open set (NSOS) if K ⊆ clN (intNK)

(3) a neutrosophic regular open set (NROS) if K = intN (clNK)

(4) a neutrosophic α-open set (NαOS) if K ⊆ intN (clN (intNK))

(5) a neutrosophic b-open set (NbOS) if K ⊆ clN (intNK) ∪ intN (clNK)

(6) a neutrosophic semi preopen or neutrosophic β-open set (NβOS) if K ⊆ clN (intN (clNK))

(7) a neutrosophic pre-open set (NPOS) if K ⊆ intN (clNK)

(8) a neutrosophic regular generalized closed set (NrgCS) in a (NTS) (Ψ, τ) if clNK ⊆ H whenever K ⊆ H and
H ∈ NRO(Ψ, τ).

(9) a neutrosophic pre generalized closed set (NPgCS) in a (NTS) (Ψ, τ) if pclNK ⊆ H whenever K ⊆ H and
H ∈ NPO(Ψ, τ).

Remark 2.5.

(1) In Definition 2.4, the complement of each (NS) for (1,9,8) is (NOS) and they are referred by (NgOS), (NrgOS)
and (NPgOS), respectively.

(2) In Definition 2.4, the complement of each (NS) for (2,3,4,5,6,7) is (NCS) and they are referred by (NSCS), (NRCS),
(NαCS), (NbCS), (NβCS) and (NPCS), respectively.

Lemma 2.6. In a (NTS) we have the following:

(i) Every (NROS) is (NOS).

(ii) Every (NOS) is (NαOS).

(iii) Every (NαOS) is both (NSOS) and (NPOS).

(iv) Every (NSOS) and every (NPOS) is (NβOS).
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Theorem 2.7. In a (NTS) , every (NbOS) is (NβOS) and every (NbCS) is (NβCS).

Theorem 2.8. In a (NTS)

(i) Every (NPOS) is (NbOS).

(ii) Every (NSOS) is (NbOS).

Remark 2.9. By 2.6, 2.7 and 2.8, we consider that for each (NS) K in a (NTS)(Ψ, τ). Then satisfies the following:

(i) spclNK ⊆ bclNK ⊆ sclNK ⊆ αclNK ⊆ clnK ⊆ rclNK.

(ii) spclNK ⊆ bclNK ⊆ pclNK ⊆ αclNK ⊆ clnK ⊆ rclNK.

3 Neutrosophic Semi-Regularization of Neutrosophic Topology

In this section, we introduced neutrosophic semi-regularization spaces and study some their properties.

Definition 3.1. Let (Ψ, τ) be a (NTS), then the family of neutrosophic regular open sets forms a base for a smaller
neutrosophic topology τ on Ψ called the neutrosophicsemi-regularization of τ .

Remark 3.2. It is clearly for any (NTS)(Ψ, τ) we have: NSO(Ψ, τα) = NSO(Ψ, τ) The following remark is very
useful in the sequel

Proposition 3.3. If K ∈ NSO(Ψ, τα), then τα − clNK = τ − clNK = τs − clNK .

Proof . We need only to show that τs−clNK ⊆ τα−clNK forK ∈ NSO(Ψ, τ). Let m be a neutrosophic point such that
m ̸∈ τα−clNK. Then there exists aB ∈ tα such thatm ∈ B andK∩B = φ. This implies that τ−intNB∩τ−intNK = φ
and τ − clN (τ − intNB) ∩ τ − intNK = φ. Consequently τ − intN (τ − clN (τ − intNB)) ∩ τ − intNK = φ and
τ − intN (τ − clN (τ − intNB)) ∩ τ − clN (τ − intNK) = φ. Since K ∈ NSO(Ψ, τ), K ⊆ τ − clN (τ − intNK). This
implies that τ − intN (τ − clN (τ − intNB)) ∩ K = φ. Since B ∈ tα, m ∈ τ − intN (τ − clN (τ − intNB)). Hence,
m ̸∈ τα − clNK, and the proof is complete. □

Corollary 3.4. Let (Ψ, τ) be a (NTS), then τs = (τα)s .

Proof . Since every (NRCS) precisely (NSOS), it follows from Remark 3.2 and Proposition 3.3 that NRO(Ψ, τ) =
NRO(Ψ, τα). That means NRC(Ψ, τ) = NRC(Ψ, τα). This implies τs = (τα)s . □

Corollary 3.5. If K is a (NS) in (NTS)(Ψ, τ), then

(a) τα − intN (τα − clNK) = τ − intN (τ − clNK).

(b) τα − clN (τα − intN (τα − clNK)) = τ − clN (τ − intN (τ − clNK).

(c) τ − clN (τ − intN (τ − clNK)) ⊆ τα − clNK.

Proof .

(a) From Remark 3.2, it follows that NSC(Ψ, τα) = NSC(Ψ, τ).By proposition 3.3, τα − intNB = τ − intNB for
each B ∈ NSC(Ψ, τ), so that τα − intN (τα − clNK) = τ − intN (τα − clNK). Since τ − intN (τα − clNK) =
τ − intN (τ − clNK), we conclude that τα − intN (τα − clNK) = τ − intN (τ − clNK).

(b) This follows from (a) and proposition 3.3.

(c) This is an immediate consequence of (b).

□

Lemma 3.6. If K is a (NS)(Ψ, τ), then τα − intN (τα − clNK) = intN (clNK).

Proof . This follows from Corollary 3.5. □

Lemma 3.7. Let K be a (NS) in (NTS)(Ψ, τ). Then K ∈ NRO(Ψ, τ) if and only if K ∈ NRO(Ψ, τα)

Proof .This is an immediate consequence of Lemma 3.6. □
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Theorem 3.8. A (NS)K in (NTS)(Ψ, τ) is (NrgαCS) in )Ψ, τ if and only if K is (NrgCS) in the (NTS)(Ψ, τα)

Proof . Necessity. Suppose that K is (NrgαCS) in (Ψ, τ). Let K ⊆ B and B ∈ NRO(Ψ, τα). Let us refer to
αclNK in (Ψ, τα) by ατ clNK. Then by Lemma 3.7, B ∈ NRO(Ψ, τ) and we have ατ clNK = αclNK ⊆ B. Therefore,
K is (NrgCS) in (Ψ, τα).

Sufficiency, suppose that K is (NrgCS) in (Ψ, τα).K ⊆ B and B ∈ NRO(Ψ, τ). By Lemma 3.7, B ∈ NRO(Ψ, τα),
and hence, αclNK = ατ clNK ⊆ B. Therefore, K is (NrgCS) in (Ψ, τ). □

4 Conclusion

In this article, we look at the concept of neutrosophic semi-regularization of neutrosophic topology and discover a
number of intriguing characteristics. Finally, we hope that this article is only the beginning of new classes of functions
between two neutrosophic semi-regularization spaces, additional theoretical research will be required to examine the
relationships between them.
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