Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 185–190
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.6235

Weakly semi-primary submodules

Mamoon F. Khalf^{a,*}, Obaida Amer Radhi^b

^aDepartment of Physics, College of Education, University of Samarra, Iraq ^bDepartment of Education Al-Dur, General Directorate of Education for Salah Al-Din, Ministry of Education, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

Let R be a commutative ring with identity, and let W be a unitary R-module. In this paper, we introduced the concept of a weakly semi-primary submodule as a generalization of the primary submodule, where a submodule X of W is called weakly semi-primary if the $\operatorname{Rad}(X : W) = \sqrt{(X : W)}$ is a weakly prime ideal of R, and from this work, we have provided some characteristics of weakly semi-primary submodule.

Keywords: Weakly semi-primary, weakly prime, multiplication module, Weakly semi-primary ring, local ring and finitely generated. 2020 MSC: 13C05

1 Introduction

Throughout this paper, every ring is associative with identity and every module is unitary and we use the notion of any two submodule X and Y by $(X:Y) = \{x \in R : xY \subseteq X\}$, and annihilator of a submodule X in R is denoted $\operatorname{ann}_R(X) = \{s \in R : sX = 0\}$. In [6] approper submodule G of W is called primary submodule of W if for all, $g \in R$ and $m \in W$, $gm \in G$ and $m \notin G$ imply that $g^n W \subseteq G$, for some n is positive integer. And in [5] an ideal I of R is called a semi-primary ideal if \sqrt{I} is prime ideal. And erson and smith in [1], a proper ideal I of R is called weakly prime if for $0 \neq ij \in I$, then either $i \in I$ or $j \in I$, and it was show that a proper ideal I of R is weakly prime if and only if $0 \neq PJ \subseteq I$, where P, J are two ideals of R, implies that either $P \subseteq I$ or $J \subseteq I$. Where an R-submodule K of W is called prime R-submodule if and only if $K \neq W$ and $kx \in K$, for $k \in R$, and $x \in W$, then either $k \in (K : W)$ or $x \in K$ [9]. And erson and Smith have shown that a weakly prime ideal is not prime ideal satisfies, $I^2 = 0$ and $I\sqrt{0} = 0$. The weakly prime radical H(X) of X in W is defined the intersection of all weakly prime submodule H of W such that $X \subseteq H$ *i.e.* $H(X) = \cap \{H \subseteq W : H \text{ is weakly prime and } X \subseteq H\}$. In this paper present a new concept which is a generalization of primary submodule, is weakly semi-primary submodule, where an R-submodule X of W is called weakly semi-primary submodule if $\sqrt{(X:W)}$ is a weakly prime ideal of R. And we proved in this work if R is weakly semi-primary ring, then R is a local ring. Finally we finish this paper in section four, we have proven if W is a faithful- multiplication R-module so W is weakly semi-primary module if and only if R is weakly semi-primary ring. Also a module multiplication contains finitely generated weakly semi-primary sub-module, is finitely generated.

*Corresponding author

Email addresses: mamoun42@uosamarra.edu.iq (Mamoon F. Khalf), obaidaimer@gmail.com (Obaida Amer Radhi)

2 Weakly Semi-Primary Submodules

Definition 2.1. An proper R-submodule X of W is called weakly semi-primary submodule if $\sqrt{(X:W)}$ is a weakly prime ideal of R. It is clear that every primary submodule is weakly semi-primary submodule. A ring R is called weakly semi-primary ring if R is weakly semi-primary module as an R-module.

Remark 2.2. Let (0) be an submodule of a module W. Then (0) is weakly semi-primary if and only if ann (W) is a weakly semi-primary ideal of R.

Before we give other characteristics of weakly semi-primary submodule, we need to present this lemma.

Lemma 2.3. Let A and B be two submodules of W, and let I be an ideal of R. If $IB \subseteq A$, then $\sqrt{I} \cap \sqrt{(B:W)} \subseteq \sqrt{(A:W)}$.

Proof. Let $x \in \sqrt{I} \cap \sqrt{(B:W)} \subseteq \sqrt{(A:W)}$, then there exists k is positive integer such that $x^k \in I \cap (B:W)$, thus $x^k W \subseteq B$ and $x^{2k} W \subseteq x^k B \subseteq A$. Therefore $x \in \sqrt{(A:W)}$. \Box

Proposition 2.4. Let X be an R-submodule of W, and I be an ideal of R. Then Y is weakly semi-primary R-submodule if and only if $IX \subseteq Y$ implies that $\sqrt{I} \subseteq \sqrt{(Y:W)}$ or $\sqrt{(X:W)} \subseteq \sqrt{(Y:W)}$.

Proof. Let Y be a weakly semi-primary submodule of W, assume that $IX \subseteq Y$ then by Lemma 2.3, $\sqrt{I} \cap \sqrt{(X:W)} \subseteq \sqrt{(Y:W)}$, thus $\sqrt{I} \cdot \sqrt{(X:W)} \subseteq \sqrt{(Y:W)}$, then either $\sqrt{I} \subseteq \sqrt{(Y:W)}$ or $\sqrt{(X:W)} \subseteq \sqrt{(Y:W)}$.

Converse, let $y \notin \sqrt{(Y:W)}$, where $x, y \in R$ and $xy \in \sqrt{(Y:W)}$. Thus $x^n y^n W \subseteq Y$, for some n is positive integer, so either $\sqrt{(x^n)} \subseteq \sqrt{(Y:W)}$ or $\sqrt{(y^n W:W)} \subseteq \sqrt{(Y:W)}$. If $\sqrt{(x^n)} \subseteq \sqrt{(Y:W)}$, then $x \in \sqrt{(Y:W)}$ this is contradiction. Now if $\sqrt{(y^n W:W)} \subseteq \sqrt{(Y:W)}$, then $y \in \sqrt{(Y:W)}$, this is contradiction. Therefore $xy \notin \sqrt{(Y:W)}$. \Box

Corollary 2.5. Let X be an submodule of M and $q \in R$. Then Y is weakly semi-primary submodule of W if and only if $qX \subseteq Y$ implies that $\sqrt{q} \subseteq \sqrt{(Y:W)}$ or $\sqrt{(X:W)} \subseteq \sqrt{(Y:W)}$.

Proposition 2.6. Let W_1 and W_2 be tow R-modules and $g: W_1 \to W_2$ be an epimorphism. Then X is weakly semi-primary submodule of W_2 if and only if $g^{-1}(X)$ weakly semi-primary submodule of W_1 .

Proof. It is straightforward. \Box

The homomorphic image of weakly semi-primary submodule need not to be weakly semi-primary submodule as the following example shows:

Example 2.7. Let Z[n] as a Z-module and K = (6 + 6n) is a submodule of Z[n], but (K : Z[n]) = 0, and since Z is an integral domain, then $\sqrt{(K : Z[n])} = 0$ is weakly prime, that mean K is a weakly semi-primary. Now let $g : Z[n] \to Z$ such that $(b_m n^m + b_{m-1} n^{m-1} + \cdots + b_0) = b_0$, where $b_m, b_{m-1}, \cdots, b_0 \in Z$, since g is homomorphism and g(K) = 6z, but $\sqrt{6z}$ is not weakly prime.

A condition is given under which a homomorphic image of primary ideal is a primary ideal [10]. Similar when adding a condition to the following proposition, it gives us the homomorphic image of weakly semi-primary submodule is a weakly semi-primary submodule.

Proposition 2.8. Let W_1 and W_2 be tow R-modules and $g: W_1 \to W_2$ be an epimorphism, such that ker $g \subseteq X$, where X is a submodule of W_1 . Then X is weakly semi-primary submodule of W_1 if and only if g(X) weakly semi-primary submodule of W_2 .

Proof . It is clear by direct calculations. \Box

Corollary 2.9. Let X and Y be two submodule of W, such that, $X \subseteq Y$, then $\frac{Y}{X}$ is weakly semi-primary submodule of $\frac{W}{X}$ if Y is weakly semi-primary submodule of W.

Proof. Let $h: W \to \frac{W}{X}$ be the natural homomorphism, then

$$Y = h^{-1} \left(\frac{Y}{X}\right)$$

and hence the conclusion follows by Proposition 2.8. \Box

Proposition 2.10. Let $W = U_1 \oplus U_2$ be a direct summend of an *R*-module and *X* be a submodule of *W*,

- (1) Assume that $(X : U_1) \subseteq ann(U_2)$, then X is weakly semi-primary submodule of M if and only if X is weakly semi-primary submodule of U_1 .
- (2) If X is weakly semi-primary submodule of U_1 , then $X \oplus U_2$ is weakly semi-primary submodule of W.

Proof. (1) It is clear $\sqrt{(X:W)}$ is weakly prime ideal of R, that we can notice that

$$\sqrt{(X:W)} = \sqrt{(X:U_1) \cap (X:U_2)} = \sqrt{(X:U_1)}.$$

Accordingly, the evidence has become clear.

(2) We can notice that $\sqrt{(X \oplus U_2 : W)} = \sqrt{(X \oplus U_2 : U_1) \cap (X \oplus U_2 : U_2)} = \sqrt{(X : U_1)}$, that mean $\sqrt{(X \oplus U_2 : W)}$ is weakly prime ideal of R. Therefore $X \oplus U_2$ is weakly semi-primary submodule of M. \Box

In the next proposition we give a condition which $X \oplus Y$ is a weakly semi-primary submodule of $U_1 \oplus U_2$, where X is weakly semi-primary submodule of U_1 , and Y is weakly semi-primary submodule of U_2 . But before that we need to present the following lemma.

Lemma 2.11. Let X be a submodule of an R-module U_1 , and Y is a submodule of an R-module U_2 . Then $\sqrt{(X \oplus Y : U_1 \oplus U_2)} = \sqrt{(X : U_1)} \cap \sqrt{(Y : U_2)}$

Proof. Let $x \in \sqrt{(X \oplus Y : U_1 \oplus U_2)}$, then $x^k \in (X \oplus Y : U_1 \oplus U_2)$, for some positive integer k. Then $x^k(U_1 \oplus U_2) \subseteq (X \oplus Y)$, thus $x^k(U_1 \oplus 0) \subseteq (X \oplus 0)$ and $x^k(0 \oplus U_2) \subseteq (0 \oplus Y)$, then $x^k \in (X : U_1)$ and $x^k \in (Y : U_2)$. Therefore $x \in \sqrt{(X : U_1)} \cap \sqrt{(Y : U_2)}$.

Conversely, Llet $x \in \sqrt{(X:U_1)} \cap \sqrt{(Y:U_2)}$, that is $x^k \in (X:U_1) \cap (Y:U_2)$, for some positive integer k. Then $x^k(U_1 \oplus U_2) \subseteq (X \oplus Y)$ and hence $x \in \sqrt{(X \oplus Y:U_1 \oplus U_2)}$. \Box

Proposition 2.12. Let W_1 and W_2 be an *R*-module, and let X_1 and X_2 be submodules of W_1 and W_2 , respectively. Then $\sqrt{(X_1:W_1)} \cap \sqrt{(X_2:W_2)}$ is a weakly prime if and only if $X_1 \oplus X_2$ is a weakly semi-primary submodule of $W_1 \oplus W_2$.

Proof. The proof is straightforward from the Lemma 2.11 \Box

Proposition 2.13. Let U be an R-module such that $U = X_1 \oplus X_2$ then $\sqrt{(X_1 : X_2)}$ is a weakly prime ideal of R if and only if X_1 is weakly semi-primary submodule of U.

Proof. We can notice that $\sqrt{(X_1:U)} = \sqrt{(X_1:X_1 \oplus X_2) \cap (X_1:X_2)} = \sqrt{(X_1:X_2)}$. Accordingly, the evidence has become clear. \Box

Definition 2.14. An R-module W is called weakly semi-primary R-module if every proper submodule of W is a weakly semi-primary submodule.

Proposition 2.15. Every module over a valuation ring is a weakly semi-primary module.

Proof. Let X be a submodule of an R-module W, since R is a valuation ring then by [6] $\sqrt{(X:W)}$ is a weakly prime ideal of R. Therefore X is weakly semi-primary submodule of W. \Box

3 Weakly Semi-Primary Rings

In this section we prove that every ideal of a ring R is a weakly semi-primary, and we offer the relationship between a weakly semi-primary ideal and local ring. Also the correspondence between the weakly semi-primary ideals of R and R[y] is studied. And recall that prufer domains were defined in [8] as domains in which every finitely generated ideal is invertible.

Proposition 3.1. The ideal I is weakly semi-primary of R if and only if for all $i, j \in \frac{R}{I}$ such that ij = 0, either $i^n = 0$ or $j^n = 0$, for some n is positive integer.

Proof . Evident. \Box

Proposition 3.2. The (0) is a weakly semi-primary ideal of a ring R, then (0) and (1) are the only idempotent elements of R.

Proof. Let *i* be an idempotent elements in R, since (0) is a weakly semi-primary ideal then by Proposition 3.1, i(1-i) = 0, so either $i^n = 0$ or $(1-i)^n = 0$. Hence either i = 0 or (1-i) = 0. \Box

Corollary 3.3. Let (0) is a weakly semi-primary ideal of a ring R, then R is an indecomposable ring.

Proof. Let *I* and *J* be an ideal of R, such that $R = I \oplus J$, then i + j = 1, thus $i = i^2 + ij$ and $i = i^2$, hence by Proposition 3.2, either i = 0 i = 1 or. If i = 0, then R = J and if i = 1 then R = I. \Box

Corollary 3.4. Let R be a ring such that every cyclic ideal of R is projective. If (0) is a weakly semi-primary ideal, then R is an integral domain.

Proof. Let $a \in R$, and $a \neq 0$, think about the following exact sequence:

Since Rais projective, $R = Ra \oplus ann(a)$. Thus by Corollary 3.3, either Ra = 0 or ann(a) = 0. But $Ra \neq 0$, then ann(a) = 0. Therefore R is integral domain. \Box

Recall that a ring R with unit element is said semi-hereditary if any finitely generated ideal of R is projective [3].

Corollary 3.5. Let *R* be a semi-hereditary ring. If (0) is a weakly semi-primary ideal of *R*, then *R* is a prufer domain. **Proof**. It is clear. \Box

Theorem 3.6. If R be a ring, and (0) is weakly semi-primary, then R is local ring.

Proof. Let $y \in R$ and y be not a unit element. Then R = (y) + (1 - y), thus $(y) \cap (1 - y) = 0$ or $(y) \cap (1 - y) \neq 0$. If $(y) \cap (1 - y) = 0$, then $R = (y) \oplus (1 - y)$. Since (0) is a weakly semi-primary ideal, R is an indecomposable ring, by Corollary 3.3. That is either R = (y) or R = (1 - y), but (y) is not a unit element, then R = (1 - y). Therefore (1 - y) is a unit element. Now if $(y) \cap (1 - y) \neq 0$, assume that there exists amaximal ideal I of R, such that, $(1 - y) \in I$, so $y (1 - y) \in (y) \cap (1 - y)$, then $y (1 - y) \in \sqrt{(y) \cap (1 - y)}$, so either $y \in \sqrt{(y) \cap (1 - y)}$ or $(1 - y) \in \sqrt{(y) \cap (1 - y)}$. If $(1 - y) \in \sqrt{(y) \cap (1 - y)}$, then $(1 - y)^m \in (y) \cap (1 - y)$, for some m is positive integer. Since y is not a unit element, there exists amaximal ideal J of R, such that, $(y) \subseteq J$, that mean $(1 - y)^m \in (y) \subseteq J$, then $(1 - y) \in J$, thus J = R. This is a contradiction. Hence $y \in \sqrt{(y) \cap (1 - y)}$, so $y^n \in (y) \cap (1 - y)$, for some n is positive integer, where $y^n \in (1 - y) \subseteq I$, that mean I = R. Therefore (1 - y) is a unit element in R. \Box

Corollary 3.7. Let R be a ring whose proper ideals are linearly ordered with respect to inclusion, then R is a weakly semi-primary ring and is a local ring.

The converse of Theorem 3.6 is not true, the following example illustrates this.

Example 3.8. Let R be a set of real-value continuous functions on the interval [0, 1], where we define (h + q)(y) = h(y) + q(y) and $(h.q)(y) = h(y) \cdot q(y)$, where 0, 1 is constant function. Then (R, +, ..., 0, 1), is a commutative ring. Now let $I = \{h : h \in R, h(\frac{1}{2}) = 0\}$, where I is a maximal ideal of R. Let:

$$h(y) = \begin{cases} 0 & for & 0 \le y \le \frac{1}{2} \\ y - \frac{1}{2} & for & \frac{1}{2} \le y \le 1 \end{cases}$$
$$q(y) = \begin{cases} -y + \frac{1}{2} & for & 0 \le y \le \frac{1}{2} \\ 0 & for & \frac{1}{2} \le y \le 1 \end{cases}$$

Thus $h(y) \cdot q(y) = 0$, but $h(y)_I \neq 0$, $q(y)_I \neq 0$ in R_I and $h(y)_I \cdot q(y)_I \in \sqrt{0}$, then $h(y)_I^m \neq 0$ and $q(y)_I^m \neq 0$, for some m is positive integer. Hence (0) is not a weakly semi-primary ideal in R_I .

In the following remark we give description for integral domains using a weakly semi-primary concept.

Remark 3.9. The ring R is integral domain if and only if (0) is a weakly semi-primary ideal of R and $\sqrt{0} = 0$. **Proof**. It is evident. \Box

If X is a weakly semi-primary of W and $I = \sqrt{(X, W)}$, we say that X is I-weakly semi-primary ideal.

Proposition 3.10. If J is I- weakly semi-primary ideal of a ring R, then J[y] is I[Y]- weakly semi-primary ideal of R[y].

Proof. Let $g \in I[y]$, such that $g = b_0 + b_1 y + \dots + b_n y^n$, $b_i \in I$, where $0 \le i \le n$, since $I = \sqrt{J}$ then for all i there exists n_i is positive integer, such that $b_i^{n_i} \in J$. Now let $h = m_0 + m_1 + \dots + m_n$ then $b_i^h \in J$ for all i. Then $g^h \in J[y]$, hence $I[y] \subseteq J[y]$. Since $J \subseteq I$, $J[y] \subseteq I[y]$, that is $\sqrt{J[y]} \subseteq I[y]$. Hence $\sqrt{J[y]} = I[y]$. \Box

4 Weakly Semi-Primary Submodules of Multiplication Modules

In this section, we study the properties of multiplication module which contains a weakly semi-primary submodule, where an R-module W is called a multiplication module if every submodule K of W is of the from K = JW for some ideal J of R [2]. And we also proved if W is a multiplication faithful R-module, then W is a weakly semi-primary R-module if and only if R is a weakly semi-primary ring. And we prove that if a multiplication R-module which contains a finitely generated weakly semi-primary submodule so the module is finitely generated.

Theorem 4.1. Let W be a multiplication R-module the following statement are equivalent for a proper sub-module X of W:

- (1) X is a weakly semi-primary submodule.
- (2) (X:W) is a weakly semi-primary ideal of R.
- (3) X = JW for some weakly semi-primary ideal J of R with ann $(W) \subseteq J$

Proof.

 $(1) \Longrightarrow (2)$ It is evident by definition.

(2) \implies (3) Put J = (X : W).

(3) \implies (1) Let X = JW for some weakly semi-primary ideal Jof R with ann $(W) \subseteq J$, since W is multiplication module, so X = (X : W) W, we assume that $\sqrt{(X : W)} = \sqrt{J}$. But JW is a proper submodule of W, then by [4] JW is contained a maximal submodule H of W. That is $I(JW) = \sqrt{J}W \neq W$, but J is weakly semi-primary, then \sqrt{J} is weakly prime. Thus $(X : W) W = JW \subseteq \sqrt{J}W$ and $\sqrt{J}W \neq JW$, then there exists $j \in W$ and $j \notin \sqrt{J}W$ such that $j(X : W) \subseteq \sqrt{J}W$. Then by [4] $(X : W) \subseteq \sqrt{J}$, hence $\sqrt{(X : W)} \subseteq \sqrt{J}$. Since X = JW, implies that $J \subseteq (X : W)$, thus $\sqrt{J} \subseteq \sqrt{(X : W)}$. Therefore X is weakly semi-primary submodule. \Box

Corollary 4.2. Let U be a multiplication faithful R-module, then U is a weakly semi-primary R-module if and only if R is a weakly semi-primary ring.

Corollary 4.3. Let U be a multiplication faithful R-module weakly semi-primary R-module, then U is a cyclic R-module, and isomorphic to R.

Proof. Let U be a weakly semi-primary R-module, then R is weakly semi-primary ring. Hence by (Theorem 3.6) R is local ring, then U is cyclic and isomorphic to R by $[2] \square$

Lemma 4.4. Let W be a multiplication R-module the following statement are equivalent for a proper submodule X of W:

- (1) X is a weakly prime submodule.
- (2) ann $\left(\frac{W}{X}\right)$ is a weakly prime ideal of R.
- (3) X = AW, where A is weakly prime ideal of R, which is a maximal with respect to this property (i.e., $JW \subseteq X$ implies that $J \subseteq A$).

Proof . Straightforward. \Box

Proposition 4.5. Let W be a multiplication R-module which contains finitely generated weakly semi-primary submodule, then W is a finitely generated R-module.

Proof. Let X be a weakly semi-primary submodule of W, then $\sqrt{(X:W)}$ is weakly prime ideal of R, and thus $A = \sqrt{(X:W)}W$ is a weakly prime submodule of W, by Lemma 4.4. Since W is multiplication, we have $\frac{W}{A}$ is multiplication and $\operatorname{ann}\left(\frac{W}{A}\right)$ is weakly prime. Then $\frac{W}{A}$ is finitely generated R-module [7]. So $W = R_{y_1} + R_{y_2} + \cdots + R_{y_n} + A$, where $y_1 + y_2 + \cdots + y_n \in W$. We claim that $W = R_{y_1} + R_{y_2} + \cdots + R_{y_n} + X$. Assume that, $R_{y_1} + R_{y_2} + \cdots + R_{y_n} + X \neq W$, then there exists a maximal submodule B of W such that $R_{y_1} + R_{y_2} + \cdots + R_{y_n} + X \subseteq B$ by [4]. That mean $H(X) = \sqrt{(X:W)}W \subseteq B$, thus $W \subseteq B$, that is contradiction. Therefore $W = R_{y_1} + R_{y_2} + \cdots + R_{y_n} + X$. \Box

Corollary 4.6. If $\operatorname{ann}(W)$ is a weakly semi-primary ideal of R and W is a multiplication R-module, then W is a finitely generated R-module.

Proof. ann (W) W = (0 : W) W = (0), thus (0) is weakly semi-primary (Theorem 4.1). Then by (Prop. 4.5) W is a finitely generated R-module. \Box

Corollary 4.7. Let X be a weakly semi-primary submodule of a multiplication R-module W, such that $\frac{W}{X} \equiv Y$, where Y is a submodule of W. If $\sqrt{ann(Y)} = \sqrt{ann(W)}$, then W is a finitely generated R-module.

Proof. Let $\frac{W}{X} \equiv Y$, then $\operatorname{ann}\left(\frac{W}{X}\right) = (X : W) = \operatorname{ann}(Y)$. But X is weakly semi-primary submodule and $\sqrt{\operatorname{ann}(Y)} = \sqrt{\operatorname{ann}(W)}$, then $\operatorname{ann}(W)$ is weakly semi-primary ideal of R. Then by Corollary 4.6, W is a finitely generated R-module. \Box

References

- [1] D.D. Anderson and E. Smith, Weakly prime ideals, Huston J. Math. 29 (2003), no. 4, 831–840.
- [2] A. Barnard, Multiplication modules, J. Alg. 71 (1981), 174–178.
- [3] H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, 1956.
- [4] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Alg. 16 (1988), 755–779.
- [5] R.W. Gilmer, Ring in which semi-primary ideal are primary, Pac. J. Math. 12 (1962), 1273–1276.
- [6] M.D. Larsen and P.J. McCarthy, *Multiplicative theory of ideals*, Academic press, New York and London, 1971.
- [7] A.S. Mijbass, On cancellation modules, M. Sc. Thesis, University of Baghdad, 1992.
- [8] H. Prufer, Untersuchungen uber teilbarkeitsenschaften in korpern, J. Reine Angew. Math. 168 (1932), 1–36.
- [9] S.A. Saymeh, On prime R-submodules, Univ. Nac. Tucuman Rev. Ser. A 29 (1979), no.1, 121–136.
- [10] O. Zariski and P. Samuel, Commutative algebra, Vol.I, D. Van Nostrand Company, Inc., 1958.