Weakly semi-primary submodules

Mamoon F. Khalfa,*, Obaida Amer Radhi ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, College of Education, University of Samarra, Iraq
${ }^{b}$ Department of Education Al-Dur, General Directorate of Education for Salah Al-Din, Ministry of Education, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

Let R be a commutative ring with identity, and let W be a unitary R-module. In this paper, we introduced the concept of a weakly semi-primary submodule as a generalization of the primary submodule, where a submodule X of W is called weakly semi-primary if the $\operatorname{Rad}(X: W)=\sqrt{(X: W)}$ is a weakly prime ideal of R, and from this work, we have provided some characteristics of weakly semi-primary submodule.

Keywords: Weakly semi-primary, weakly prime, multiplication module, Weakly semi-primary ring, local ring and finitely generated.
2020 MSC: 13C05

1 Introduction

Throughout this paper, every ring is associative with identity and every module is unitary and we use the notion of any two submodule X and Y by $(X: Y)=\{x \in R: x Y \subseteq X\}$, and annihilator of a submodule X in R is denoted $\operatorname{ann}_{R}(X)=\{s \in R: s X=0\}$. In [6] aproper submodule G of W is called primary submodule of W if for all, $g \in R$ and $m \in W, \quad g m \in G$ and $m \notin G$ imply that $g^{n} W \subseteq G$, for some n is positive integer. And in [5] an ideal I of R is called a semi-primary ideal if \sqrt{I} is prime ideal. Anderson and smith in [1], a proper ideal I of R is called weakly prime if for $0 \neq i j \in I$, then either $i \in I$ or $j \in I$, and it was show that a proper ideal I of R is weakly prime if and only if $0 \neq P J \subseteq I$, where P, J are two ideals of R , implies that either $P \subseteq I$ or $J \subseteq I$. Where an R-submodule K of W is called prime R -submodule if and only if $K \neq W$ and $k x \in K$, for $k \in R$, and $x \in W$, then either $k \in(K: W)$ or $x \in K$ [9]. Anderson and Smith have shown that a weakly prime ideal is not prime ideal satisfies, $I^{2}=0$ and $I \sqrt{0}=0$. The weakly prime radical $H(X)$ of X in W is defined the intersection of all weakly prime submodule H of W such that $X \subseteq H$ i.e. $H(X)=\cap\{H \subseteq W: H$ is weakly prime and $X \subseteq H\}$. In this paper present a new concept which is a generalization of primary submodule, is weakly semi-primary submodule, where an R-submodule X of W is called weakly semi-primary submodule if $\sqrt{(X: W)}$ is a weakly prime ideal of R . And we proved in this work if R is weakly semi-primary ring, then R is a local ring. Finally we finish this paper in section four, we have proven if W is a faithful- multiplication R-module so W is weakly semi-primary module if and only if R is weakly semi-primary ring. Also a module multiplication contains finitely generated weakly semi-primary sub-module, is finitely generated.

[^0]
2 Weakly Semi-Primary Submodules

Definition 2.1. An proper R-submodule X of W is called weakly semi-primary submodule if $\sqrt{(X: W)}$ is a weakly prime ideal of R. It is clear that every primary submodule is weakly semi-primary submodule. A ring R is called weakly semi-primary ring if R is weakly semi-primary module as an R -module.

Remark 2.2. Let (0) be an submodule of a module W. Then (0) is weakly semi-primary if and only if ann (W) is a weakly semi-primary ideal of R.

Before we give other characteristics of weakly semi-primary submodule, we need to present this lemma.
Lemma 2.3. Let A and B be two submodules of W, and let I be an ideal of R. If $I B \subseteq A$, then $\sqrt{I} \cap \sqrt{(B: W)} \subseteq$ $\sqrt{(A: W)}$.
Proof . Let $x \in \sqrt{I} \cap \sqrt{(B: W)} \subseteq \sqrt{(A: W)}$, then there exists k is positive integer such that $x^{k} \in I \cap(B: W)$, thus $x^{k} W \subseteq B$ and $x^{2 k} W \subseteq x^{k} B \subseteq A$. Therefore $x \in \sqrt{(A: W)}$.

Proposition 2.4. Let X be an R-submodule of W , and I be an ideal of R. Then Y is weakly semi-primary Rsubmodule if and only if $I X \subseteq Y$ implies that $\sqrt{I} \subseteq \sqrt{(Y: W)}$ or $\sqrt{(X: W)} \subseteq \sqrt{(Y: W)}$.
Proof . Let Y be a weakly semi-primary submodule of W , assume that $I X \subseteq Y$ then by Lemma $2.3 \sqrt{I} \cap \sqrt{(X: W)} \subseteq$ $\sqrt{(Y: W)}$, thus $\sqrt{I} \cdot \sqrt{(X: W)} \subseteq \sqrt{(Y: W)}$, then either $\sqrt{I} \subseteq \sqrt{(Y: W)}$ or $\sqrt{(X: W)} \subseteq \sqrt{(Y: W)}$.
Converse, let,$y \notin \sqrt{(Y: W)}$, where $x, y \in R$ and $x y \in \sqrt{(Y: W)}$. Thus $x^{n} y^{n} W \subseteq Y$, for some n is positive integer, so either $\sqrt{\left(x^{n}\right)} \subseteq \sqrt{(Y: W)}$ or $\sqrt{\left(y^{n} W: W\right)} \subseteq \sqrt{(Y: W)}$. If $\sqrt{\left(x^{n}\right)} \subseteq \sqrt{(Y: W)}$, then $x \in \sqrt{(Y: W)}$ this is contradiction. Now if $\sqrt{\left(y^{n} W: W\right)} \subseteq \sqrt{(Y: W)}$, then $y \in \sqrt{(Y: W)}$, this is contradiction. Therefore $x y \notin \sqrt{(Y: W)}$.

Corollary 2.5. Let X be an submodule of M and $q \in R$. Then Y is weakly semi-primary submodule of W if and only if $q X \subseteq Y$ implies that $\sqrt{q} \subseteq \sqrt{(Y: W)}$ or $\sqrt{(X: W)} \subseteq \sqrt{(Y: W)}$.

Proposition 2.6. Let W_{1} and W_{2} be tow R-modules and $g: W_{1} \rightarrow W_{2}$ be an epimorphism. Then X is weakly semi-primary submodule of W_{2} if and only if $g^{-1}(X)$ weakly semi-primary submodule of W_{1}.
Proof. It is straightforward.
The homomorphic image of weakly semi-primary submodule need not to be weakly semi-primary submodule as the following example shows:

Example 2.7. Let $Z[n]$ as a Z-module and $K=(6+6 n)$ is a submodule of $Z[n]$, but $(K: Z[n])=0$, and since Z is an integral domain, then $\sqrt{(K: Z[n])}=0$ is weakly prime, that mean K is a weakly semi-primary. Now let $g: Z[n] \rightarrow Z$ such that $\left(b_{m} n^{m}+b_{m-1} n^{m-1}+\cdots+b_{0}\right)=b_{0}$, where $b_{m}, b_{m-1}, \cdots, b_{0} \in Z$, since g is homomorphism and $g(K)=6 z$, but $\sqrt{6 z}$ is not weakly prime.

A condition is given under which a homomrphic image of primary ideal is a primary ideal 10. Similar when adding a condition to the following proposition, it gives us the homomorphic image of weakly semi-primary submodule is a weakly semi-primary submodule.

Proposition 2.8. Let W_{1} and W_{2} be tow R-modules and $g: W_{1} \rightarrow W_{2}$ be an epimorphism, such that ker $g \subseteq X$, where X is a submodule of W_{1}. Then X is weakly semi-primary submodule of W_{1} if and only if $g(X)$ weakly semi-primary submodule of W_{2}.

Proof. It is clear by direct calculations.
Corollary 2.9. Let X and Y be two submodule of W, such that, $X \subseteq Y$, then $\frac{Y}{X}$ is weakly semi-primary submodule of $\frac{W}{X}$ if Y is weakly semi-primary submodule of W .
Proof. Let $h: W \rightarrow \frac{W}{X}$ be the natural homomorphism, then

$$
Y=h^{-1}\left(\frac{Y}{X}\right)
$$

and hence the conclusion follows by Proposition 2.8.

Proposition 2.10. Let $W=U_{1} \oplus U_{2}$ be a direct summend of an R-module and X be a submodule of W,
(1) Assume that $\left(X: U_{1}\right) \subseteq \operatorname{ann}\left(U_{2}\right)$, then X is weakly semi-primary submodule of M if and only if X is weakly semi-primary submodule of U_{1}.
(2) If X is weakly semi-primary submodule of U_{1}, then $X \oplus U_{2}$ is weakly semi-primary submodule of W .

Proof . (1) It is clear $\sqrt{(X: W)}$ is weakly prime ideal of R, that we can notice that

$$
\sqrt{(X: W)}=\sqrt{\left(X: U_{1}\right) \cap\left(X: U_{2}\right)}=\sqrt{\left(X: U_{1}\right)} .
$$

Accordingly, the evidence has become clear.
(2) We can notice that $\sqrt{\left(X \oplus U_{2}: W\right)}=\sqrt{\left(X \oplus U_{2}: U_{1}\right) \cap\left(X \oplus U_{2}: U_{2}\right)}=\sqrt{\left(X: U_{1}\right)}$, that mean $\sqrt{\left(X \oplus U_{2}: W\right)}$ is weakly prime ideal of R . Therefore $X \oplus U_{2}$ is weakly semi-primary submodule of M.

In the next proposition we give a condition which $X \oplus Y$ is a weakly semi-primary submodule of $U_{1} \oplus U_{2}$, where X is weakly semi-primary submodule of U_{1}, and Y is weakly semi-primary submodule of U_{2}. But before that we need to present the following lemma.

Lemma 2.11. Let X be a submodule of an R -module U_{1}, and Y is a submodule of an R-module U_{2}. Then $\sqrt{\left(X \oplus Y: U_{1} \oplus U_{2}\right)}=\sqrt{\left(X: U_{1}\right)} \cap \sqrt{\left(Y: U_{2}\right)}$
Proof . Let $x \in \sqrt{\left(X \oplus Y: U_{1} \oplus U_{2}\right)}$, then $x^{k} \in\left(X \oplus Y: U_{1} \oplus U_{2}\right)$, for some positive integer k. Then $x^{k}\left(U_{1} \oplus U_{2}\right) \subseteq$ $(X \oplus Y)$, thus $x^{k}\left(U_{1} \oplus 0\right) \subseteq(X \oplus 0)$ and $x^{k}\left(0 \oplus U_{2}\right) \subseteq(0 \oplus Y)$, then $x^{k} \in\left(X: U_{1}\right)$ and $x^{k} \in\left(Y: U_{2}\right)$. Therefore $x \in \sqrt{\left(X: U_{1}\right)} \cap \sqrt{\left(Y: U_{2}\right)}$.

Conversely, Llet $x \in \sqrt{\left(X: U_{1}\right)} \cap \sqrt{\left(Y: U_{2}\right)}$, that is $x^{k} \in\left(X: U_{1}\right) \cap\left(Y: U_{2}\right)$, for some positive integer k. Then $x^{k}\left(U_{1} \oplus U_{2}\right) \subseteq(X \oplus Y)$ and hence $x \in \sqrt{\left(X \oplus Y: U_{1} \oplus U_{2}\right)}$.

Proposition 2.12. Let W_{1} and W_{2} be an R-module, and let X_{1} and X_{2} be submodules of W_{1} and W_{2}, respectively. Then $\sqrt{\left(X_{1}: W_{1}\right)} \cap \sqrt{\left(X_{2}: W_{2}\right)}$ is a weakly prime if and only if $X_{1} \oplus X_{2}$ is a weakly semi-primary submodule of $W_{1} \oplus W_{2}$.
Proof . The proof is straightforward from the Lemma $2.11 \square$
Proposition 2.13. Let U be an R -module such that $U=X_{1} \oplus X_{2}$ then $\sqrt{\left(X_{1}: X_{2}\right)}$ is a weakly prime ideal of R if and only if X_{1} is weakly semi-primary submodule of U .
Proof. We can notice that $\sqrt{\left(X_{1}: U\right)}=\sqrt{\left(X_{1}: X_{1} \oplus X_{2}\right) \cap\left(X_{1}: X_{2}\right)}=\sqrt{\left(X_{1}: X_{2}\right)}$. Accordingly, the evidence has become clear.

Definition 2.14. An R-module W is called weakly semi-primary R-module if every proper submodule of W is a weakly semi-primary submodule.

Proposition 2.15. Every module over a valuation ring is a weakly semi-primary module.
Proof . Let X be a submodule of an R -module W , since R is a valuation ring then by [6] $\sqrt{(X: W)}$ is a weakly prime ideal of R . Therefore X is weakly semi-primary submodule of W .

3 Weakly Semi-Primary Rings

In this section we prove that every ideal of a ring R is a weakly semi-primary, and we offer the relationship between a weakly semi-primary ideal and local ring. Also the correspondence between the weakly semi-primary ideals of R and $\mathrm{R}[\mathrm{y}]$ is studied. And recall that prufer domains were defined in [8] as domains in which every finitely generated ideal is invertible.

Proposition 3.1. The ideal I is weakly semi-primary of R if and only if for all $i, j \in \frac{R}{I}$ such that $i j=0$, either $i^{n}=0$ or $j^{n}=0$, for some n is positive integer.
Proof. Evident.

Proposition 3.2. The (0) is a weakly semi-primary ideal of a ring R, then (0) and (1) are the only idempotent elements of R.

Proof . Let i be an idempotent elements in R, since (0) is a weakly semi-primary ideal then by Proposition 3.1 . $i(1-i)=0$, so either $i^{n}=0$ or $(1-i)^{n}=0$. Hence either $i=0$ or $(1-i)=0$.

Corollary 3.3. Let (0) is a weakly semi-primary ideal of a ring R , then R is an indecomposable ring.
Proof . Let I and J be an ideal of R , such that $R=I \oplus J$, then $i+j=1$, thus $i=i^{2}+i j$ and $i=i^{2}$, hence by Proposition 3.2, either $i=0 i=1$ or. If $i=0$, then $R=J$ and if $i=1$ then $R=I$.

Corollary 3.4. Let R be a ring such that every cyclic ideal of R is projective. If (0) is a weakly semi-primary ideal, then R is an integral domain.
Proof . Let $a \in R$, and $a \neq 0$, think about the following exact sequence:

Since Rais projective, $R=R a \oplus \operatorname{ann}(a)$. Thus by Coro.llary 3.3, either $R a=0$ or ann $(a)=0$. But $R a \neq 0$, then ann $(a)=0$. Therefore R is integral domain.

Recall that a ring R with unit element is said semi-hereditary if any finitely generated ideal of R is projective [3].
Corollary 3.5. Let R be a semi-hereditary ring. If (0) is a weakly semi-primary ideal of R, then R is a prufer domain. Proof . It is clear.

Theorem 3.6. If R be a ring, and (0) is weakly semi-primary, then R is local ring.
Proof . Let $y \in R$ and y be not a unit element. Then $R=(y)+(1-y)$, thus $(y) \cap(1-y)=0$ or $(y) \cap(1-y) \neq 0$. If $(y) \cap(1-y)=0$, then $R=(y) \oplus(1-y)$. Since (0) is a weakly semi-primary ideal, R is an indecomposable ring, by Corollary 3.3. That is either $R=(y)$ or $R=(1-y)$, but (y) is not a unit element, then $R=(1-y)$. Therefore $(1-y)$ is a unit element. Now if $(y) \cap(1-y) \neq 0$, assume that there exists amaximal ideal I of R , such that, $(1-y) \in I$, so $y(1-y) \in(y) \cap(1-y)$, then $y(1-y) \in \sqrt{(y) \cap(1-y)}$, so either $y \in \sqrt{(y) \cap(1-y)}$ or $(1-y) \in \sqrt{(y) \cap(1-y)}$. If $(1-y) \in \sqrt{(y) \cap(1-y)}$, then $(1-y)^{m} \in(y) \cap(1-y)$, for some m is positive integer. Since y is not a unit element, there exists amaximal ideal J of R , such that, $(y) \subseteq J$, that mean $(1-y)^{m} \in(y) \subseteq J$, then $(1-y) \in J$, thus $J=R$. This is a contradiction. Hence $y \in \sqrt{(y) \cap(1-y)}$, so $y^{n} \in(y) \cap(1-y)$, for some n is positive integer, where $y^{n} \in(1-y) \subseteq I$, that mean $I=R$. Therefore $(1-y)$ is a unit element in R .

Corollary 3.7. Let R be a ring whose proper ideals are linearly ordered with respect to inclusion, then R is a weakly semi-primary ring and is a local ring.

The converse of Theorem 3.6 is not true, the following example illustrates this.
Example 3.8. Let R be a set of real-value continuous functions on the interval $[0,1]$, where we define $(h+q)(y)=$ $h(y)+q(y)$ and (h.q) $(y)=h(y) . q(y)$, where 0,1 is constant function. Then $(R,+, ., 0,1)$, is a commutative ring. Now let $I=\left\{h: h \in R, \quad h\left(\frac{1}{2}\right)=0\right\}$, where I is a maximal ideal of R. Let:

$$
\begin{aligned}
& h(y)=\left\{\begin{array}{lll}
0 & \text { for } & 0 \leq y \leq \frac{1}{2} \\
y-\frac{1}{2} & \text { for } & \frac{1}{2} \leq y \leq 1
\end{array}\right. \\
& q(y)=\left\{\begin{array}{lll}
-y+\frac{1}{2} & \text { for } & 0 \leq y \leq \frac{1}{2} \\
0 & \text { for } & \frac{1}{2} \leq y \leq 1
\end{array}\right.
\end{aligned}
$$

Thus $h(y) \cdot \mathrm{q}(y)=0$, but $h(y)_{I} \neq 0, \quad q(y)_{I} \neq 0$ in R_{I} and $h(y)_{I} \cdot q(y)_{I} \in \sqrt{0}$, then $h(y)_{I}^{m} \neq 0$ and $q(y)_{I}^{m} \neq 0$, for some m is positive integer. Hence (0) is not a weakly semi-primary ideal in R_{I}.

In the following remark we give description for integral domains using a weakly semi-primary concept.
Remark 3.9. The ring R is integral domain if and only if (0) is a weakly semi-primary ideal of R and $\sqrt{0}=0$.
Proof. It is evident.
If X is a weakly semi-primary of W and $I=\sqrt{(X, W)}$, we say that X is I-weakly semi-primary ideal.
Proposition 3.10. If J is I - weakly semi-primary ideal of a ring R , then $J[y]$ is $I[Y]$ - weakly semi-primary ideal of $R[y]$.
Proof . Let $g \in I[y]$, such that $g=b_{0}+b_{1} y+\cdots+b_{n} y^{n}, b_{i} \in I$, where $0 \leq i \leq n$, since $I=\sqrt{J}$ then for all i there exists n_{i} is positive integer, such that $b_{i}^{n_{i}} \in J$. Now let $h=m_{0}+m_{1}+\cdots+m_{n}$ then $b_{i}^{h} \in J$ for all i. Then $g^{h} \in J[y]$, hence $I[y] \subseteq J[y]$. Since $J \subseteq I, J[y] \subseteq I[y]$, that is $\sqrt{J[y]} \subseteq I[y]$. Hence $\sqrt{J[y]}=I[y]$.

4 Weakly Semi-Primary Submodules of Multiplication Modules

In this section, we study the properties of multiplication module which contains a weakly semi-primary submodule, where an R-module W is called a multiplication module if every submodule K of W is of the from $K=J W$ for some ideal J of $\mathrm{R}[2]$. And we also proved if W is a multiplication faithful R -module, then W is a weakly semi-primary R -module if and only if R is a weakly semi-primary ring. And we prove that if a multiplication R -module which contains a finitely generated weakly semi-primary submodule so the module is finitely generated.

Theorem 4.1. Let W be a multiplication R -module the following statement are equivalent for a proper sub-module X of W:
(1) X is a weakly semi-primary submodule.
(2) $(X: W)$ is a weakly semi-primary ideal of R.
(3) $X=J W$ for some weakly semi-primary ideal J of R with ann $(W) \subseteq J$

Proof .

$(1) \Longrightarrow(2)$ It is evident by definition.
(2) \Longrightarrow (3) Put $J=(X: W)$.
$(3) \Longrightarrow(1)$ Let $X=J W$ for some weakly semi-primary ideal J of R with ann $(W) \subseteq J$, since W is multiplication module, so $X=(X: W) W$, we assume that $\sqrt{(X: W)}=\sqrt{J}$. But JW is a proper submodule of W, then by 44 JW is contained a maximal submodule H of W . That is $I(\mathrm{JW})=\sqrt{J} W \neq W$, but J is weakly semi-primary, then \sqrt{J} is weakly prime. Thus $(X: W) W=J W \subseteq \sqrt{J} W$ and $\sqrt{J} W \neq J W$, then there exists $j \in W$ and $j \notin \sqrt{J} W$ such that $j(X: W) \subseteq \sqrt{J} W$. Then by [4] $(X: W) \subseteq \sqrt{J}$, hence $\sqrt{(X: W)} \subseteq \sqrt{J}$. Since $X=J W$, implies that $J \subseteq(X: W)$, thus $\sqrt{J \subseteq} \sqrt{(X: W)}$. Therefore X is weakly semi-primary submodule.

Corollary 4.2. Let U be a multiplication faithful R-module, then U is a weakly semi-primary R-module if and only if R is a weakly semi-primary ring.

Corollary 4.3. Let U be a multiplication faithful R-module weakly semi-primary R-module, then U is a cyclic Rmodule, and isomorphic to R .
Proof . Let U be a weakly semi-primary R-module, then R is weakly semi-primary ring. Hence by (Theorem 3.6) R is local ring, then U is cyclic and isomorphic to R by [2]

Lemma 4.4. Let W be a multiplication R-module the following statement are equivalent for a proper submodule X of W:
(1) X is a weakly prime submodule.
(2) ann $\left(\frac{W}{X}\right)$ is a weakly prime ideal of R.
(3) $X=A W$, where A is weakly prime ideal of R , which is a maximal with respect to this property (i.e., $J W \subseteq$ X implies that $J \subseteq A$).

Proof. Straightforward.

Proposition 4.5. Let W be a multiplication R-module which contains finitely generated weakly semi-primary submodule, then W is a finitely generated R -module.
Proof . Let X be a weakly semi-primary submodule of W, then $\sqrt{(X: W)}$ is weakly prime ideal of R, and thus $A=$ $\sqrt{(X: W)} W$ is a weakly prime submodule of W, by Lemma 4.4. Since W is multiplication, we have $\frac{W}{A}$ is multiplication and $\operatorname{ann}\left(\frac{W}{A}\right)$ is weakly prime. Then $\frac{W}{A}$ is finitely generated R-module [7]. So $W=R_{y_{1}}+R_{y_{2}}+\cdots+R_{y_{n}}+A$, where $y_{1}+y_{2}+\cdots+y_{n} \in W$. We claim that $W=R_{y_{1}}+R_{y_{2}}+\cdots+R_{y_{n}}+X$. Assume that, $R_{y_{1}}+R_{y_{2}}+\cdots+R_{y_{n}}+X \neq W$, then there exists a maximal submodule B of W such that $R_{y_{1}}+R_{y_{2}}+\cdots+R_{y_{n}}+X \subseteq B$ by [4]. That mean $H(X)=\sqrt{(X: W)} W \subseteq B$, thus $W \subseteq B$, that is contradiction. Therefore $W=R_{y_{1}}+R_{y_{2}}+\cdots+R_{y_{n}}+X$.

Corollary 4.6. If $\operatorname{ann}(W)$ is a weakly semi-primary ideal of R and W is a multiplication R -module, then W is a finitely generated R-module.
Proof . ann $(W) W=(0: W) W=(0)$, thus (0) is weakly semi-primary (Theorem4.1). Then by (Prop. 4.5) W is a finitely generated R-module.

Corollary 4.7. Let X be a weakly semi-primary submodule of a multiplication R-module W , such that $\frac{W}{X} \equiv Y$, where Y is a submodule of W . If $\sqrt{\operatorname{ann}(Y)}=\sqrt{\operatorname{ann}(W)}$, then W is a finitely generated R-module.
Proof. Let $\frac{W}{X} \equiv Y$, then ann $\left(\frac{W}{X}\right)=(X: W)=a n n(Y)$. But X is weakly semi-primary submodule and $\sqrt{\operatorname{ann}(Y)}=$ $\sqrt{\operatorname{ann}(W)}$, then $\operatorname{ann}(W)$ is weakly semi-primary ideal of R . Then by Corollary 4.6. W is a finitely generated R-module.

References

[1] D.D. Anderson and E. Smith, Weakly prime ideals, Huston J. Math. 29 (2003), no. 4, 831-840.
[2] A. Barnard, Multiplication modules, J. Alg. 71 (1981), 174-178.
[3] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, 1956.
[4] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Alg. 16 (1988), 755-779.
[5] R.W. Gilmer, Ring in which semi-primary ideal are primary, Pac. J. Math. 12 (1962), 1273-1276.
[6] M.D. Larsen and P.J. McCarthy, Multiplicative theory of ideals, Academic press, New York and London, 1971.
[7] A.S. Mijbass, On cancellation modules, M. Sc. Thesis, University of Baghdad, 1992.
[8] H. Prufer, Untersuchungen uber teilbarkeitsenschaften in korpern, J. Reine Angew. Math. 168 (1932), 1-36.
[9] S.A. Saymeh, On prime R-submodules, Univ. Nac. Tucuman Rev. Ser. A 29 (1979), no.1, 121-136.
[10] O. Zariski and P. Samuel, Commutative algebra, Vol.I, D. Van Nostrand Company, Inc., 1958.

[^0]: *Corresponding author
 Email addresses: mamoun42@uosamarra.edu.iq (Mamoon F. Khalf), obaidaimer@gmail.com (Obaida Amer Radhi)

