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Abstract

Human Activity Recognition (HAR) systems used in healthcare have attracted much attention in recent years. A HAR
system consists of a wearable device with sensors. HAR has been used to suggest several machine learning (ML) algo-
rithms. However, only a few research have looked at how to evaluate HAR to identify physical activities. Nevertheless,
obtaining an explanation for their performances is complicated by two factors: the lack of implementation specifics and
the lack of a baseline evaluation setup that makes comparisons unfair. For establishing effective and efficient ML–HAR
of computers and networks, this study uses ten common unsupervised and supervised ML algorithms. The decision
tree (DT), artificial neural network (ANN), naive Bayes (NB), k-nearest neighbor (k-NN), support vector machine
(SVM), random forest (RF), and XGBoost (XGB) algorithms are among the supervised ML algorithms, while the
k-means, expectation-maximization (EM), and self-organizing maps (SOM) algorithms are among the unsupervised
ML algorithms. Multiple algorithms models are presented, and the turning and training parameters in ML (DT,
ANN, NB, KNN, SVM, RF, XGB) of each method are investigated in order to obtain the best classifier assessment.
Differ from earlier research, this research measures the true negative and positive rates, precision, accuracy, F-Score as
well as recall of 81 ML-HAR models to assess their performance. Because time complexity is a significant element in
HAR, the ML-HAR models training and testing time are also taken into account when evaluating their performance
efficiency. The mobile health care (M HEALTH CARE) dataset, which includes real-world network activity, is used
to test the ML-HAR models. In general, the XGB outperforms the DT-HAR, k-NN-HAR, and NB-HAR models in
recognizing human activities, with recall, precision, and f-scores of 0.99, 0.99, and 0.99 for each, respectively, for health
care mobile recognition.
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1 Introduction

IoT devices are tangible things that interact in a certain manner with the actual world. It could be a wireless
gadget or a sensor on an assembly line. In any situation, the device is sensing what is going on in the real world. IoT
devices vary in terms of functionality and different smart architectures such as buildings, healthcare, environment,
smart city, efficient energy, mobility, manufacturing and smart agriculture [29]. As a result, IoT technology is evolving
in the healthcare monitoring system in order to provide patients with appropriate emergency services [24]. Also,
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it is being employed as an E-health application for various purposes. This includes early identification of medical
problems, emergency notification, and computer-assisted rehabilitation. Sensors are included in the medical gadgets
to keep track of the subject’s health [33]. This sensor-based surveillance system collects a variety of signals or data from
diagnostics and wards equipment and mines it for efficient and automatic healthcare control [4]. The IoT healthcare
system allows for effective monitoring and tracking, which aids in improving people’s health [27]. Furthermore, cloud
computing is employed to manage healthcare data and cater to resource-sharing benefits such as flexibility and remote
access to monitor patient data [31]. Currently, one of the most significant and vital studies has been to monitor
human activity such as lying down, sitting, and walking. This is accomplished by using a sensor worn to monitor
the patients, with the data being sent to professionals for analysis at the information center [5]. Because acceleration
and angular velocity change with human movements, they can be used to extract human activities. Mobile sensors,
in contrast to fixed sensors, are flexible and tiny, allowing them to be integrated into body gear or mobile devices.
Mobile sensors are also advantageous since they are less expensive, require less energy, possess greater capabilities, and
are less affected by the environment. As a result of the widespread use of mobile sensors in everyday life, there has
been a surge in interest in mobile sensor-based activity detection, having a number of studies devoted to determining
the suitability of mobile sensors for identifying human activities approach [34]. Human activities detection utilising
mobile device sensors has traditionally been viewed as a multivariate time series classification problem. A significant
methodology has been investigated on lightweight network design based on Machine learning to perform recognition
tasks. The main measurements of recognition are accuracy and classification report including precession, recall, f-
score—moreover, training and testing time as an important factor to enhance the lifetime of battery for IoT sensor.
Although several ML monitor approaches exist, their accuracy remains a concern; accuracy is dependent on false and
true positives. To lessen false positives and enhance proper categorization class, the accuracy issue must be addressed.
This idea was the impetus for this investigation. In this paper, Decision Trees (DT), Artificial Neural Networks (ANN),
Naive Bayes (NB), k-Nearest-Neighbors (k-NN), Support Vector Machine (SVM), Random Forests (RF), Expectation-
Maximization (EM) clustering, XGBoost (XGB), Self-Organizing Maps (SOM) and K-means clustering, are used; these
approaches have been shown to be effective in addressing the classification problem. The following is how this article is
structured: Section 2 examines ML algorithms from a theoretical standpoint and briefly highlights important current
studies in ML-HAR recognition. Section 3 examines the benchmarking approach for evaluating ML-HAR performance
as well as the evaluation criteria used to assess classifier efficacy. Section 4 evaluates and tests evaluates the chosen
ML algorithms to implement ML-JAR, as well as the data activities that are described and recommended for training
and testing ML-HAR evaluation. Section 5 summarises the findings and makes recommendations for future research.

2 Background and Related Work

In this section, overview sensor types based on the functionality of the sensor, besides focusing on recent works,
are related to machine learning for human activities recognition models. The performance of recognition models is
measured by accuracy, precision and recall as a statistical test.

2.1 Sensor Types

2.1.1 Ambient sensor-based HAR (ASHAR)

Wearable sensor-based systems have achieved wide applications in HAR due to the ease of deployment and use of
low-cost and satisfying performance. However, WSHAR can only provide the recognition of specific activities without
giving the ambient context. Typical ambient sensors can instead provide rich contextual information relating to human
daily activities, and ambient sensor-based HAR (ASHAR) systems have also been widely used in HAR.

A wide range of ambient sensors are available and are explored for HAR, including cameras, light sensors, reed
switch sensors, RFID, PIR, temperature, flow sensor, pressure sensors, etc. Body-Worn Sensors.

A common HAR modality is body-worn sensors (for example, magnetometers, gyroscopes, and accelerometers).
Given the variations in angular velocity and acceleration, these sensors can capture data on human actions. Several
studies have used body-worn sensors in deep learning for HAR, with the majority focusing on accelerometer data. In
addition, magnetometers and gyroscopes are frequently used in conjunction with accelerometers to detect activities of
daily living (ADL) as well as specific sports activities.

2.1.2 Hybrid sensory-based HAR (ASHAR)

A single sensor modality, such as wearable or ambient alone, is often used in a HAR system. Each sensor modality
has its own set of strengths and limitations, and in fact, single sensor modalities are sometimes unable to cope with
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complicated scenarios. This establishes the groundwork for further research towards hybrid sensory HAR systems.
Different sensor modalities offer diverse information and varied performances for specific tasks. For example, cameras
deliver precise and direct information while coupled with privacy issues or working in a constrained space defined by
the camera position and settings; ambient sensors (such as the temperature or light sensor) can provide important
contextual information, whilst this can only give limited information for activity detection; door switches and other
binary sensors are inexpensive and easy to install, but the captured ambient information is simple and limited to
detect high-level activities; the accelerometer, the gyroscope and other wearable sensors are miniature-sized and can
be flexibly worn on the body to capture sufficient motion-related information. However, they are unable to supply
contextual information and face the issue of arbitrary data as a result of actions [32].

2.2 Human Activity Recognition ML Methods

There are unsupervised and supervised learning algorithms for training a machine learning algorithm. Supervised
learning is dependent on data examples being classified in the training phase. Decision Trees (DT), Artificial Neural
Networks (ANN), Naive Bayes (NB), k-Nearest-Neighbors (k-NN), Support Vector Machine (SVM), Random Forests
(RF), as well as XGBoost (XGB) are examples of supervised learning techniques. In unsupervised learning, where
clustering dominates the learning approach, data instances that are not labelled can be found. As illustrated in
Figure 1, the unsupervised learning methods are K-means clustering, Expectation-Maximization (EM) clustering, and
Self-Organizing Maps (SOM).

Figure 1: The ML-HAR models

2.2.1 Supervised Learning

In ML-HAR, eight different supervised machine learning algorithms will be assessed. The following diagrams show
the essential notions of these algorithms.

Artificial Neural Networks (ANN):

In terms of visual representation, it is a weighted directed network with nodes and edges [1]. Linkages between
artificial neurons are represented by artificial neurons and directed edges having weights (the strongest among neurons).
Note that the output of a neuron is used as input by other neurons. They welcome input from the outside world in
the form of a vector, which is akin to an image or pattern. Throughout the ANN’s training, the weights are modified,
which assists in the resolution of categorization issues. The ANN architecture is made up of three layers: input,
output, and hidden. Each layer contains neurons. The input layer receives input from the outside world, meanwhile
the output layer responds to the input layer’s input based on its learning capacity. Moreover, the hidden layer acts as
a link between the input and output layers, altering the input in order for the output layer to be used. Partially or
entirely coupled layers are possible. The authors used a multilayer perceptron approach with backpropagation learning
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in this study. Figure 2 depicts a general ANN design (I-H-O) for the c class, with I depicting the input nodes number,
H representing the number of hidden layer nodes, and O representing the output nodes number.

Figure 2: The architecture of the ANN

Decision Trees (DT):

A decision tree is one of the important algorithms in data science. There are many desirable decision techniques
like CART, C5, and Quinlan’s ID3. A decision tree describes the process formation and flow, in which every essential
node indicates a test on an element, every transition represents a result of the test, and every leaf is associated with
a class. Observations are split into parts to establish trees continuously.

They entail supervised learning algorithms commonly utilised to resolve machine learning classification issues. Tree
models, often known as classification trees, are utilised when the target variable may accept discrete values as input.
Branches, leaves, and nodes are examples of DT components. Branches indicate the set of attributes that appear
in the class labels, whereas leaves represent the class labels. They are capable of working with both discrete and
continuous data. The DT algorithm splits the samples into two or more homogeneous sets. Overfitting is a problem
that DT has, which is addressed by Bagging and Boosting [23]. Over discrete data, the DT function performs well. A
common structure example of a DT is indicated in Figure 3 [20].

Figure 3: The architecture of the DT

K-nearest-Neighbors (k-NN):

It is a categorization system and case-based learning, according to [6]. The distance function of the k-NN method
computes the correlations or differences between two instances or points. k-NN employs a variety of different distance
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measures. Euclidean distance is a well-known and widely used distance measure. D(a, b) is how Equation (2.1)
represents it [16]:

D(a, b) =

√√√√ r∑
i=1

(ai − bi)2 (2.1)

where ai is the ith-featured element of the instance a, bi is the ith-featured element of the instances b and r is
the entire dataset features quantity. It is a non-parametric approach that does not make assumptions about how
fundamental data is disseminated. The dataset is essentially used to determine the model’s build. In practice, this
is advantageous because the vast majority of the data is drawn from real-world datasets rather than mathematical
hypotheses. A lazy algorithm, on the other hand, involves the creation of a model without the need for training data
points. During the testing stage, all of the training data is utilized. It speeds up the training process, but it slows
down and costs more during the testing process. Time and consumption will be affected by a costly testing stage.
Hence, in the worst-case situation, the k-NN will need more time and memory to store training data and test all data.

Naive Bayes (NB):

The Bayes theorem is used to develop a set of probabilistic classifiers known as NB methods. It considers näıve
independence hypotheses for each pair of attributes or features [18]. The NB can compete with the latest complex
algorithms within its domain, such as the SVM and ANN, using an application before processing training data. A
supervised learning structure makes it simple to train. The parametric computation for the NB models uses the
technique of maximal probability in a number of real-world implementations that have been identified. In a nutshell,
the NB model may work with or without Bayesian probability. The Bayes theorem is encapsulated in the following
equation (2.2):

p(A|B) =
p(A|B)P (A)

p(B)
(2.2)

in which B represents the active of the predictor attribute or antecedent event, while A represents the active of the
target attribute or dependent event. Note that P (A) denotes the prior probability of A, P (A|B) denotes the posterior
probability of B. Meanwhile, P (B|A) is the likelihood of B if hypothesis A is true.

Random Forests (RF):

There are several supervised classification algorithms, and combining them may improve performance. The Random
forest algorithm uses this understanding to generate an ensemble of many decision tree classifiers known as the for-est
of the decision 165 of trees. Dr. Leo Breiman proposed the Random Forest method [31]. All the decision trees in the
forest participate and the final results are drowned by the majority vote. Therefore, a higher number of trees in the
forest give high accuracy results [2].

DT has difficulty with overfitting. An RF, on the other hand, effectively resolves the problem by allowing the
average of many deep decision trees [8]. The RF algorithm is an ensemble-learning technique utilized to handle
classification and regression problems. The development of several DT within the training timeframe is one of its
responsibilities. During the execution of a classification function, the output includes the classes’ mode of a specific
DT. As a result, the RF achieves better results than the DT. Figure 4 depicts an RF architectural instance.

Support Vector Machine (SVM):

Its goal is to find a hyper-plane that divides all training cases into different groups (multi-class classification or
binary classification). The SVM method, according to [15], accepts the stated instances and corresponding outputs,
which are binary or N-ary. The model is further built to allow fresh instances to be classified into different groups. The
training instance input sets are linearly separated by mapping the training instances into points in coordinate space.
There are a variety of hyper-planes to choose from in order to separate the training instance sets. The longest distance
from the most proximal occurrence of any class, on the other hand, is an ideal pick. P categorizes the instances
correctly, although it has a smaller range away from the most proximal instance than the other two hyper-planes. Q,
on the other hand, has a maximum range away, but it has a minor classification error, in which the hyper-plane P is
selected instead. In addition, SVM works well in high-dimensional environments.
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Figure 4: The architecture of the RF

XGB

Gradient Boosting Machine, which integrates gradient descent with boosting, is the starting point for Extreme
Gradient Boosting (GBM). Boosting is an ensemble learning algorithm that assigns different weights to each iteration’s
training data distribution. Note that each boosting iteration modifies the training data distribution by adding weight
to miss-classified error samples and subtracting weight from correct-classified error samples [11].

2.2.2 Unsupervised Learning Algorithms

There are three selected unsupervised machine learning algorithms to be assessed in ML-HAR. The following
diagram illustrates the core notions of these algorithms.

Expectation-Maximization (EM):

It is extremely similar to k-means [21]. In two ways, Expectation-Maximization improves on the basic k-means
clustering algorithm. First, according to one or more probability distributions, the EM algorithm computes the cluster
membership probabilities. Based on the final clusters, it aims to maximize the data’s total probability.

K-means:

From a distance-based perspective, it is one of the most basic unsupervised learning strategies. The n instances
are divided into k clusters, with each instance operating as a collective inside the cluster with the closest mean. The
biggest disadvantage of this strategy is: it demands the number of clusters k be pre-specified. k-signifies clustering
seeks to partition p instances into (k ≤ p) setsZ = {Z1, Z2, ..., Zk} to minimize variance given a set of examples
(p1, p2, ..., pn), in which each instance is a d-dimensional real vector. Then, k-means is determined as in the equation
below (2.3) [13, 22].

az min

k∑
i=1

max∑
p∈Zi

∥p−mi∥az min

k∑
i=0

|Zi|V arZi (2.3)

provided a is an argument, µi denotes the mean of points in set Zi.

Self-Organizing Maps (SOM):

It is predicated on the neural network models’ unsupervised learning class. SOM can cluster data without knowing
the input data class categories [17]. It provides a topology preserving mapping for mapping neurons that is derived
from a high-dimensional data space (units). The distance between places is kept in mind during the mapping. In the
SOM, neighboring maps units are mapped to mutually proximal places. The SOM network can recognize previous
inputs. SOM is depicted in Figure 6.

y = σ(wT + b) = σ

(
n∑

k=1

wkxk + b

)
(2.4)
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2.3 Related Work

Even though certain HAR techniques can be generalized to any sensor modality, most are specialized and restricted.
Ambient sensors, body-worn sensors, and object sensors are the three categories of modalities [25]. Several types of
research were proposed the machine learning approach as significate recognition for human activities such as SVM, RF,
and KNN [35]. The Adaboost ensemble classifiers have achieved performance for automated human activity recognition
utilizing human body sensors, according to the experimental data. The precision of motion of 7-activities of the users’
bodies was around 99%. This work has restrictions in terms of training and testing methods; nevertheless, they failed
to include the dataset statistics, the quantity of training and testing samples, and the realistic qualities were removed
by ignoring part of the classes [26]. The deep learning architecture is proposed with deep convolutional neural networks
to conduct HAR utilising smartphone sensors via extracting characteristics of activities and signal dimension of time-
series signals. This also offers a way to automatically and data-adaptively retrieve robust features from raw data having
high accuracy [25]. The suggested RNN can combine the positive time direction (forward state) and the negative time
direction (back state). Second, residual connections between stacked cells serve as gradient shortcuts, preventing
gradient vanishing. The model was evaluated using the opportunity dataset and the public domain UCI dataset, and
it scored 93.5 for accuracy and recall rate [35]. Employing wearable body sensor data to solve the problem of human
activity detection as a classification problem. The researchers suggested that for good human activity recognition,
they use a Deep Belief Network (DBN) classifier. They extract the crucial initial features from the raw body sensor
data, then do a Kernel Principal Component Analysis (KPCA) and Linear Discriminant Analysis (LDA) to better
handle the features and make them more robust so that they can be used in recognition training. To test the deep
learning algorithm’s performance, researchers used a real-world wearable sensor dataset. The results demonstrate that
for 11500 samples of 12 activities or labels, the recommended adequate activity recognition performance is roughly
97% accurate [12]. Researchers proposed a hybrid deep learning model given the LSTM recurrent units and an ELM
classifier. It was more appropriate to categorize the extracted features as well as shorten the runtime. Then, the
measurement was time for train and test with low accuracy for nine activities based on the OPPORTUNITY dataset
[28]. Their proposal a deep-learning model based on a Convolutional Long Short-Term Memory (ConvLSTM) network
to categorise human activities inside the indoor localization situation employing smartphones with smartphone inertial
sensor data. The accuracy was 73% for nine activities with few samples [30]. This dataset is indoor activity depending
on the GPS of the person and designing for tracking the person only. improved convolutional neural networks (CNN)
for the use of HAR task with local loss, the authors evaluated their methodology with a group of dataset recognition
activities based on global loss, the results were significant the few samples of the dataset as WISDM, UCI HAR but
not clearly measurement with others dataset. For healthcare applications, the proposed improved deep learning-based
approach may distinguish both specific activities and transitions between two distinct activities of short duration and
low frequency. To enhance the HAR identification rate, they first built a deep convolutional neural network (CNN)
to extract features from sensor data, and then a long short-term memory (LTSM) network to capture long-term
correlations between two events. A wearable sensor-based model is suggested that can reliably distinguish activities
and their transitions by combining CNN and LSTM. Based on the HAPT dataset [32], the experimental findings showed
that the suggested approach could achieve a recognition rate of up to 95.87% and a recognition rate for transitions
of more than 80%. The suggested end-to-end model uses a Deep Neural Network-based model that utilises CNN and
Gated Recurrent Units to perform automatic feature extraction and classification of activities. The studies in this paper
were conducted utilizing raw data from wearable sensors having no pre-processing, and no customised feature extraction
approaches were used. On the UCI-HAR, WISDM, and PAMAP2 datasets, the accuracies were 96.20%, 97.21%, and
95.27%, accordingly [7]. Nonetheless, despite the encouraging results, it is still hard to measure the activity efficacy
identification systems, particularly those involving deep learning. The lack of information on data pre-processing, and
sometimes even the implementation of AI recognition, might make reproducing reported performances difficult. It
is also challenging to evaluate the various ways due to a lack of consistency in the benchmark HAR dataset(s), as
well as the classification report and testing time, which makes for an unfair comparison or discussion of recognition
methodologies based on wearable sensors. In this work, benchmarking evaluation is proposed to measure the ability of
ML algorithms to recognize the human activity with accuracy, classification report and training and execution time.
The article [14] depicted a model of a perfect healthcare system. Network technology, sensor technology, and data
processing technology are the primary high technologies for the ideal healthcare system. Diagnostic software, digital
imaging processing, and electronic health record systems are examples of data processing. Recent IoT research has
opened up more opportunities than in the medical field.
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3 Benchmarking of ML-HAR in Mobile Health Care

Since the beginning of this decade, ML-HAR has sparked a lot of scientific interest. Researchers are still concerned
about building a HAR using ML techniques or AI to develop a secure network that can withstand physical activities.
Many studies use various metrics to improve HAR and analyze their findings. The behavior of most machine learning
algorithms is parameterized, meaning that it cannot be predicted from the processed data. Random parameters also
have a significant impact on the AIDS’ models performance [10]. The parameters behavior must then be fine-tuned
in order to attain an adequate evaluation. Figure 5 depicts a potential benchmarking methodology for testing and
assessing ML-HAR models, as well as related operations.

3.1 Pre-processing method

As per their histogram, the values of various mobile health care attributes have a wide range and are non-distributed.
We standardized all attribute values within the interval [−3, 3] to put them on the same scale as below:

X = −3 < min(zmax,max(z, zmin)) < 3 (3.1)

Where Standardization : zi =
x− µ

σ
(3.2)

mean : µ =
1

N

N∑
i=1

(xi) (3.3)

Standard deviation : σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (3.4)

3.2 Benchmarking Evaluation Methodology

The investigation of ML-HAR has continued since the beginning of this decade. As a consequence, it assists in
creating a HAR utilizing AI or machine learning approaches that produce a secure network important research issue.
Many studies aim to improve HAR and assess their outcomes using various criteria. The behavior of most machine
learning algorithms is parameterized, which means that it cannot be predicted from the processed data. Moreover,
the random parameters have a considerable impact on the model’s performance [10]. As a result, their behavior can
be fine-tuned for proper evaluation. Table 1 describes a method to evaluatie the performance of the ML-HAR models
and establishing benchmarking results.

Many strategies exist to generate hyperparameters, including Trial and Error as a common strategy [9]. Cross-
validation with k-folds is another option. The dataset is separated into training and testing segments in this technique.
To test reliability and generalization as well as the effectiveness of the ML-HAR models, these parts are specifically
chosen to a particular threshold of training and testing percentages (for instance, 40%-60%, 50%-50% or 60%-40%)
that are not visible in the training stage. Note that the training began by adjusting a set of parameters for each
algorithm, as described in the next section. Then, the outcome was assessed, and the process was repeated with
different parameters. The benchmarking technique and related procedures to evaluatie as well as test the ML-HAR
models are shown in Figure 5.

3.3 Evaluation Metrics

Since most real data is difficult to read visually, more quantitative criteria (accuracy, recall, F1, and the confusion
matrix) must be utilised to assess a model and determine which classes it is likely to confuse. These are the measures
that should be used to evaluate the HAR using performance metrics like precision, accuracy, F-Score, sensitivity
(recall), prediction time and training time, as shown below

� Accuracy is the proportion of right activity forecasts for TN and TP relative to the number of instances tested.

Accuracy =
TP + TN

TP + TN + FN + FP
(3.5)
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Table 1: The benchmarking ML-HAR Algorithm

♯ Step
1 Divide the dataset based on 5-folds cross-validation of training and testing without removing any instance or

feature to ensure the test robustness of the ML-HAR models;
2 Turn parameters of an ML-HAR model manually, then train and test the model;
3 Evaluate the results of the model by using the proposed evaluation metrics;
4 Repeat steps 2 and 3 until hyperparameters of the model are obtained based on the best result.
5 Conclude the hyperparameters of the ML-HAR model.
6 Repeat steps 2 to 5 for all ML-HAR models;
7 Present the benchmarking results of the ML-HAR models based on the evaluation metrics;
8 Identify the pros and cons of each model and choose the best model.

Figure 5: The benchmarking methodology of the ML-HAR

� Precision (true positive rate): It is used to calculate the proportion of correctly identified positives, as shown
in (3.6):

Precision =
TP

TP + FP
(3.6)

� Sensitivity (Recall) calculates the number of correct classifications minus the number of missing items as shown
in (3.3):

Sensitivity =
TP

TP + FN
(3.7)

� F1 Score: As in (3.4), a measure to achieve a balance between Precision and Recall:

F1 Score = 2 ∗ Precision + Recall

Precision ∗ Recall
(3.8)

� Training time (T1): This indicates how long it took a method to train the entire data set in order to develop
the best-fit NIDS model as described in (3.5):

T1 = endtrainingtime − starttrainingtime (3.9)

� Testing time (T2): This indicates how long it took an approach to forecast the entire data set as normal or
activity, as in (3.6):

T2 = endtestingtime − starttestingtime (3.10)

The number of activities adequately identified as activity is described as the True Positive (TP) measures. False
Positive (FP) measures, on the other side, are described as the number of normal connections that are mistakenly
identified as activity connections.
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3.4 Dataset Description

The MHEALTH (Mobile HEALTH) dataset contains recordings of ten participants’ vital signs and body motions
while undertaking various physical activities. Sensors attached to the subject’s right wrist, chest, and left ankle to
track the motion of various body parts, including the rate of turn, acceleration, and magnetic field orientation [3].
Furthermore, ”the sensor on the chest can also take 2-lead ECG readings, which may be utilized for basic cardiac
monitoring, screening for various arrhythmias, or examining the effects of exercise on the EC” [19]. The M HEALTH
CARE dataset used in the tests contains twelve types of classes. The class name, class label and support of class
(number of instances) of the M HEALTH CARE dataset are shown in Table 2. The number of instances (activities)
that are tested is represented by the support (support = N1− (N1/N2), where N1 specifies the number of instances
in the input dataset and N2 indicates the size of the testing dataset).

Table 2: Samples of the M Health care testing

Class name Class label Support
Standing still C1 147

Sitting and relaxing C2 154
Lying down C3 120
WALKING C4 148

Climbing stairs C5 133
Waist bends forward C6 124

Frontal elevation of arms C7 138
Knees bending (crouching) C8 133

Cycling C9 147
Jogging C10 93
Running C11 116

Jump front & back C12 44

4 Results and Discussion

The benchmarking classification algorithms for a multi-class label HAR M HEALTH CARE dataset are explained
in this section. The benchmarking comprises 10 ML algorithms, seven of which are supervised and three of which
are unsupervised. DT, ANN, NB, k-NN, SVM, RF, and XGB have supervised learning algorithms. As discussed in
section II, the unsupervised learning algorithms are EM clustering, SOM, and K-means clustering. Several models are
proposed to develop some of the ML algorithms. The models are set up by rotating parameters for each method to
find the best-fitting parameters based on their results. Those parameters are assumed to have certain initial values
for training and testing. Anaconda 3 executes the ML-HAR algorithms in Python 3. OPTIPLEX 3010 DELL with
Intel Core i3, 3.60 GHz processor, 4 GB main memory, and 2 GB GPU running Ubuntu 16.04. Depending on the ML
algorithms used, the ML-HAR algorithms are put to the test in eight supervised and three unsupervised learning tests.
Precision, accuracy, F1-Score, recall, training time (T1), and testing time (T2) are among the evaluation metrics used
to assess ML-HAR’s performance.

4.1 Results of Supervised Learning Algorithms

The following is a detailed description of the seven ML-HAR outcomes, which are based on proposed ML approaches
such as un-supervision and supervision:

4.1.1 ANN:

The ANN classifier testing consists of three models, each of which is described by a set of parameters connected
to the training model’s creation. The default values for these parameters are activation=’relu’, alpha=0.0001, batch
size=’auto’, number of hidden layers=’12’, Optimazer=’ ’. Table 3 shows the outcomes of the three ANN models.
In principle, changing the ANN algorithm’s training parameters yields various outcomes. One of the ANN models is
able to recognize the {C1−C12} activity, and the other two models low to recognize the Cs activities. Solver=adam,
loss= ”categorical cross-entropy,” and Epoch=100 are the settings for the ANN algorithm’s best model. The model
achieves 0.90 precision, 90.91 accuracy, 0.89 of f1 score, 0.88 recall, 225.54 seconds of training time, and 0.01 seconds
of testing time.
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Table 3: Performance results of the ANN algorithm

M Healthcare Dataset
Model Setting Measurement C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Solver = lbglfs = loss = categorical crosse

ntropy

Accuracy 68.34

Precision 0.80 0.88 0.99 0.45 0.46 0.45 0.78 0.58 0.89 0.49 0.68 0.44

Recall 0.99 0.99 1.00 0.43 0.26 0.64 0.76 0.43 0.87 0.50 0.66 0.10

F1-Score 0.88 0.93 1.00 0.44 0.34 0.53 0.77 0.49 0.88 0.69 0.67 0.16

Train (s) 79.75

Test (s) 0.04

Solver = adam, loss = categorical

crossentropy

Accuracy 90.91

Precision 0.99 0.99 1.00 0.88 0.78 0.94 0.92 0.85 0.99 0.82 0.86 0.81

Recall 1.00 1.00 1.00 0.88 0.76 0.95 0.92 0.93 0.99 0.86 0.86 0.50

F1-Score 1.00 1.00 1.00 0.88 0.77 0.95 0.92 0.89 0.99 0.84 0.86 0.60

Train (s) 225.54

Test (s) 0.01

Solver = sgd loss = categorical

crossentropy

Accuracy 87.73

Precision 0.96 0.99 1.00 0.81 0.74 0.92 0.88 0.82 0.97 0.70 0.80 0.35

Recall 1.00 1.00 1.00 0.81 0.64 0.90 0.95 0.87 0.98 0.73 0.87 0.21

F1-Score 0.98 0.99 1.00 0.81 0.96 0.91 0.81 0.84 0.97 0.71 0.83 0.30

Train (s) 212.750.21

Test (s) 0.03

4.1.2 DT:

The DT classifier testing is made up of three models that are described by parameters relevant to the training
models’ development. The DT’s two configurable parameters are maximum depth and feature type. The two-level
value is defined via the max depth, which starts at 1 and 2 and ends at None. This value has an impact on the models’
fit. For example, a larger max depth value results in good accuracy, whereas a smaller value causes underfitting,
implying poor HAR performance. The features used are ”gini” from the Gini impurity criterion or ”entropy” from
the information gain criterion. Table 4 displays the findings of the three DT models. In practice, changing the DT
algorithm’s training parameters produces various outcomes. For example, three of the DT models have a different level
of nodes, which are able to recognize the {C1−C12}, two models less to recognize the Cs activities. The best model
of the DT algorithm has the settings of criterion = gini, max depth = None, where the model achieves an accuracy of
96.46, recall of 0.96, the precision of 0.96 F1- score of 0.96, training time of 10.27s and testing time of 0.01s.

4.1.3 k-NN:

Three models are denoted as 1, 2, and 3 k-neighbors in the k-NN classifier testing. Table 5 shows the three k-NN
models outcomes. In general, the change in the k value of the k-NN algorithm shows different results. All of the (C1),
(C2), (C3), and some other classes are recognized by three of the k-NN models. The 2-NN models less to recognize
the Cs of activities. The best average results of all classes are obtained from the 1-NN and 3-NN models. The model
achieves a precision of 0.92, an accuracy of 93.52, recall of 0.91, F1 score of 0.92, training time of 3.22s and a testing
time of 0.33s.

4.1.4 NB:

There is only one default model in the NB classifier testing. C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, and
C12 activates are recognized by the model. It obtains a precision of 0.72, an accuracy of 70.94, an F1 score of 0.68,
a recall of 0.68, a training time of 0.18s and a testing time of 0.1s. Table 6. illustrates the performance of the NB
classifier that indicates a good recognition towards activities and consumes considerable time.

4.1.5 RF:

The RF classifier is made up of many subtrees that are built to distinguish different types of activities. The amount
of subtrees and maximum tree-level in the RF effect the accuracy rate and time complexity. Hence subtree is used as
a parameter in this experiment. The RF classifier testing is made up of two models that are depicted by parameters
with respect to the training models’ construction. The maximum depth and the number of estimators are the two RF
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Table 4: Performance results of the DT algorithm

M Healthcare Dataset
Model Setting Measurement C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

criterion = entropy, max depth=4

Accuracy 52.84

Precision 0.36 0.80 1.00 0.00 0.25 0.00 0.45 0.32 0.95 0.71 0.54 0.00

Recall 0.99 0.88 1.00 0.00 0.54 0.00 0.73 0.17 0.80 0.19 0.63 0.00

F1-Score 0.53 0.83 1.00 0.00 0.34 0.00 0.56 0.23 0.87 0.30 0.58 0.00

Train (s) 5.34

Test (s) 0.01

criterion = gini, max depth=4

Accuracy 46.63

Precision 0.33 0.44 0.89 0.00 0.00 0.00 0.61 0.24 0.95 0.43 0.42 1.00

Recall 0.99 0.62 1.00 0.00 0.00 0.00 0.50 0.59 0.80 0.02 0.59 0.16

F1-Score 0.50 0.51 0.94 0.00 0.00 0.00 0.55 0.34 0.87 0.04 0.49 0.27

Train (s) 2.32

Test (s) 0.01

criterion = gini, max depth= None

Accuracy 96.46

Precision 0.99 1.00 1.00 0.96 0.90 0.97 0.98 0.95 0.99 0.95 0.91 0.95

Recall 1.00 1.00 1.00 0.95 0.91 0.97 0.98 0.95 0.99 0.93 0.95 0.89

F1-Score 1.00 1.00 1.00 0.96 0.90 0.97 0.98 0.95 0.99 0.94 0.93 0.92

Train (s) 10.27

Test (s) 0.01

Table 5: Performance results of the k-NN algorithm

M Healthcare Dataset
Model Setting Measurement C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

K=1

Accuracy 93.32

Precision 1.00 1.00 1.00 0.90 0.90 0.93 0.97 0.92 0.98 0.78 0.84 1.00

Recall 1.00 1.00 1.00 0.93 0.86 0.98 0.99 0.92 0.98 0.85 0.80 0.64

F1-Score 1.00 1.00 1.00 0.91 0.88 0.96 0.98 0.92 0.98 0.81 0.82 0.78

Train (s) 3.22

Test (s) 0.33

K=2

Accuracy 93.79

Precision 1.00 1.00 1.00 0.86 0.88 0.90 0.97 0.95 0.99 0.73 0.87 1.00

Recall 1.00 1.00 1.00 0.97 0.85 0.99 0.99 0.88 0.96 0.88 0.72 0.59

F1-Score 1.00 1.00 1.00 0.91 0.87 0.94 0.98 0.91 0.97 0.80 0.79 0.74

Train (s) 2.95

Test (s) 0.28

K=3

Accuracy 93.52

Precision 1.00 1.00 1.00 0.90 0.90 0.93 0.97 0.92 0.98 0.78 0.84 1.00

Recall 1.00 1.00 1.00 0.93 0.86 0.98 0.99 0.92 0.98 0.85 0.80 0.64

F1-Score 1.00 1.00 1.00 0.91 0.88 0.96 0.98 0.92 0.98 0.81 0.82 0.78

Train (s) 2.93

Test (s) 0.34

Table 6: Performance results of the NB algorithm

M Healthcare Dataset
Model Setting Measurement C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Non-Parameters

Accuracy 70.94

Precision 0.75 0.84 1.00 0.74 0.81 0.57 0.74 0.53 0.88 0.62 0.59 0.65

Recall 0.97 0.56 1.00 0.65 0.41 0.83 0.82 0.55 0.83 0.66 0.73 0.25

F1-Score 0.84 0.67 1.00 0.69 0.54 0.68 0.78 0.54 0.86 0.64 0.65 0.37

Train (s) 0.18

Test (s) 0.1
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adjustable parameters (n estimators). Table 7 shows the findings of the two RF models. In general, the change in the
training parameters of the RF algorithm shows a few different results. Two of the RF models are able to recognize all
activities, one model less to recognize the samples of activities with a low level of nodes. The best model of the RF
algorithm possesses the settings of max depth = None and n estimators =100. The model obtains a precision of 0.98,
an accuracy of 98.80, f1 score of 0.98, recall of 0.98, training time of 160.3s and testing time of 0.1s. However, it is
more time-consuming than other models with high testing time.

4.1.6 SVM:

The SVM classifier testing is made up of two models that are denoted by parameters linked to the training models’
development. In such datasets, the SVM model’s function is best described as a kernel. Table 8 shows the outcomes
of the two SVM models. In general, changing the SVM algorithm’s kernel function and training settings yields various
results. Both SVM models are able to recognize the different activities with low performance. The best model of
the SVM algorithm has the settings of kernel = RBF and max iter=100. The model achieves a precision of 0.38, an
accuracy of 42.02, f1 score of 0.38, recall of 0.40, training time of 31.25s and testing time of 0.69s. However, it is
acceptable time consuming than different models.

4.1.7 XGB:

The XGB classifier is made up of many subtrees that are built to recognize different kinds of activities. The
combined subtree number in the XGB affects the accuracy rate and time complexity. The XGB classifier training and
testing with default parameters are represented in the construction of the XGB model. As a result, the model is able
to recognize the activities with high performance according to recall, precision, and f-score, as indicated in Table 9.
In essence, the model obtains a precision of 0.99, an accuracy of 99.33, an F1 score of 0.99, a recall of 0.99, a training
time of 343.97s and a testing time of 0.05s. However, it is more time-consuming to train with low testing time.

Table 7: Performance results of the RF algorithm

M Healthcare Dataset
Model Setting Measurement C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

n estimators =100, max depth=6

Accuracy 78.02

Precision 0.60 0.96 1.00 0.70 0.87 0.66 0.93 0.58 0.97 0.77 0.69 1.00

Recall 0.98 1.00 1.00 0.69 0.38 0.56 0.88 0.65 0.98 0.75 0.89 0.12

F1-Score 0.74 0.98 1.00 0.70 0.53 0.61 0.90 0.61 0.98 0.76 0.78 0.22

Train (s) 64.19

Test (s) 0.04

n estimators =100, max depth = None

Accuracy 98.80

Precision 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.93 0.94 1.00

Recall 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.95 0.97 0.85

F1-Score 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.94 0.95 0.92

Train (s) 160.3

Test (s) 0.1

4.2 Results of Unsupervised Learning Algorithms

4.2.1 EM:

There is only one default model in the EM classifier testing. Although the model fails to distinguish {C1− C12}
activities, it performs poorly in clustering. It obtains a precision of 0.08, an accuracy of 6.35, f1 score of 0.07, recall of
0.07, the training time of 136.06s and a testing time of 0.01s. Table 10 illustrates the performance of the EM classifier
that indicates its poor ability recognition to the activities.

4.2.2 k-means:

Only one default model is used in the k-means classifier testing. The model is able to identify C2, C7, C10, C11
and C12 activities and fails to recognize C1, C3, C4, C5, C6, C8 and C19 activities. The model obtains a precision of
0.20, an accuracy of 4.41, f1 score of 0.17, recall of 0.20, the training time of 19.34s and a testing time of 0.10s. Table
11. illustrates the performance of the k-means classifier that indicates its poor recognition rate to the activities.
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Table 8: Performance results of the SVM algorithm

M Healthcare Dataset
Model Setting Measurement C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

kernel = RBF, max iter=-6

Accuracy 37.01

Precision 0.00 1.00 0.99 0.72 0.04 0.39 0.15 0.23 0.50 0.23 0.78 0.19

Recall 0.00 0.18 1.00 0.12 0.02 0.10 0.09 0.85 0.98 0.75 0.25 0.07

F1-Score 0.00 0.31 1.00 0.21 0.03 0.17 0.12 0.36 0.66 0.35 0.38 0.10

Train (s) 78.2

Test (s) 2.62

kernel = poly, max iter=100

Accuracy 42.02

Precision 0.38 0.56 0.98 0.18 0.12 0.39 0.37 0.39 0.75 0.23 0.23 0.05

Recall 0.35 0.61 1 0.06 0.04 0.18 0.31 0.53 0.94 0.37 0.3 0.16

F1-Score 0.36 0.58 0.99 0.09 0.06 0.24 0.34 0.45 0.84 0.28 0.26 0.08

Train (s) 31.25

Test (s) 0.69

Table 9: Performance results of the XGB algorithm

M Healthcare Dataset
Model Setting Measurement C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Non-Parameters

Accuracy 99.33

Precision 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 0.95 0.97

Recall 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.96 0.98 0.97

F1-Score 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.96 0.97

Train (s) 343.97

Test (s) 0.05

4.2.3 SOM:

There is only one default model in the SOM classifier testing. The model is able to recognize all classes except
C4, C7, C9, and C11 fail to recognize activities. Furthermore, it has a higher rate of false alarms than previous
algorithms. The model obtains a precision of 0.20, an accuracy of 6.35, f1 score of 0.17, recall of 0.20, the training
time of 174.06s and a testing time of 0.05. Table 12 illustrates the performance of the SOM classifier that indicates
its poor recognition rate to the activities.

Table 10: Performance results of the EM algorithm

M Healthcare Dataset
Model Setting Measurement C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Non Parameters

Accuracy 6.35

Precision 0.00 0.22 0.00 0.00 0.00 0.01 0.00 0.04 0.00 0.68 0.00 0.12

Recall 0.00 0.25 0.00 0.00 0.00 0.01 0.00 0.04 0.00 0.40 0.00 0.24

F1-Score 0.00 0.23 0.00 0.00 0.00 0.01 0.00 0.04 0.00 0.51 0.00 0.16

Train (s) 136.06

Test (s) 0.01

Table 11: Performance results of the k-mean algorithm

M Healthcare Dataset
Model Setting Measurement C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Non Parameters

Accuracy 4.41

Precision 0.00 0.17 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.48 0.02 0.06

Recall 0.00 0.25 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.14 0.03 0.05

F1-Score 0.00 0.20 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.21 0.03 0.06

Train (s) 19.34

Test (s) 0.10



Evaluation of machine learning approaches for sensor-based human activity recognition 1197

Table 12: Performance results of the SOM algorithm

M Healthcare Dataset
Model Setting Measurement C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Non Parameters

Accuracy 6.35

Precision 0.70 0.22 0.40 0.00 0.25 0.01 0.00 0.04 0.00 0.68 0.00 0.12

Recall 0.80 0.25 0.44 0.00 0.30 0.01 0.00 0.04 0.00 0.40 0.00 0.24

F1-Score 0.50 0.23 0.43 0.00 0.25 0.01 0.00 0.04 0.00 0.51 0.00 0.16

Train (s) 174.06

Test (s) 0.05

4.3 Overall Evaluation

The purpose of this research is to see how effective ML-HAR algorithms are at detecting activity. The testing is
done using the M healthcare dataset as a starting point. This study then offers the benchmarking of 10 classification
methods, including supervised learning techniques (DT, ANN, NB, k-NN, SVM, RF, and XGB) as well as three unsu-
pervised learning strategies (EM clustering, K-means clustering, and SOM). Several models are available for several of
the ML-HAR algorithms. There are 18 models in total that have been tested, with 31 models being described in this
paper. In general, when compared to other algorithms, the DT, RF, and ANN classifiers do better at recognizing ac-
tivities. The supervised learning algorithms exceed the unsupervised learning algorithms in the ML-HAR algorithms’
overall performance. XGB is the best-supervised learning algorithm that does not take into account training and
testing time, and the ANN is the best-supervised learning algorithm that does take into account training and testing
time. Without taking into account the training and testing time, the EM is the best-unsupervised learning method.
This total result comprises all of the algorithms’ models that have been tested, as well as the models’ accuracy and
classification report. The overall performance of the 10 ML-HARs evaluated is shown in Table 13.

Table 13: Overall performance results of the ML-ANTDS algorithms

Algorithms Accuracy Precision Recall F1-Score T1(s) T2(s)
ANN 0.90 0.90 0.88 0.89 225.54 0.01
DT 0.96 0.96 0.96 0.96 10.27 0.01
k-NN 0.93 0.92 0.90 0.90 2.95 0.28
NB 0.70 0.72 0.68 0.68 0.18 0.10
RF 0.98 0.98 0.98 0.98 160.3 0.10
SVM 0.42 0.38 0.40 0.38 31.25 0.69
XGB 0.99 0.99 0.99 0.99 343.97 0.05
EM 0.60 0.08 0.078 0.07 136.06 0.01

k-means 0.41 0.071 0.046 0.05 19.34 0.1
SOM 0.63 0.20 0.206 0.17 174.06 0.05

Subsequently, the algorithms are exposed to false alarms because of the overlapping of activities problem. Figure 6
depicts the average accuracy, training time, and testing time of the 10 algorithms. In comparison to other algorithms,
this figure confirms our conclusion that the DT, K-NN, FR, ANN, and XGB are the optimum ML-HAR algorithms
for recognizing activities.

The ML model’s building time that needs to create a trained model out of training data can be used to assess
algorithm complexity. The time length should be kept to a minimum so that a trained model can recognize activities
in the shortest amount of time possible.

5 Conclusion

This paper evaluates human activities recognition using several machine learning algorithms. On a simple dataset,
the performance of associated ML-HAR models for recognizing activities is also evaluated. With a complex dataset,
these models demonstrate limits in recognizing novel sorts of actions. Furthermore, the most of related research use
accuracy as their primary assessment criterion, overlooking the issue of adjustable parameters in algorithms, preventing
them from performing a fair comparison and evaluation of various ML-HARs. To deal with the problem, this research
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Figure 6: Diagram of components’ factor loadings

provides a benchmarking approach that entails many steps and makes use of real data to ensure an accurate assessment
of HAR performance using ML algorithms. Note that the assessment considers a variety of factors, including raw human
activity information and suggested performance measures. Benchmarking tests employing supervised and unsupervised
ML algorithms are also used to analyze the development of effective ML-HAR (for instance, DT, ANNNB, k-NN,
SVM, RF, XGB, K-means, EM, and SOM). Human actions from the M-Health care dataset are used to conduct the
experiments. The findings of the experiments reveal that there is no single machine learning algorithm capable of
recognizing all forms of activities. Standing still, Sitting and relaxing, Lying down, and WALKING are among the
most common human activities recognized by the XGB. The DT-HAR, K-NN-HAR, RF-HAR, and ANN-HAR models
also have good performance; however, the EM-HAR and SOM-HAR models perform poorly due to their high FN and
FP alarms. Researchers can use the suggested benchmarking approach to build a better AIDS model and compare
their outcomes to those of this research. Future research should concentrate on assuring the influence of selecting
features and taking into account new methodological approaches for constructing the deep learning-HAR model.
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