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Abstract

Over the past few decades, a lot of meta-heuristics have been developed to solve N-P hard problems. Genetic algorithm,
ant colony optimization, simulated annealing, electromagnetism algorithm and tabu search are some examples of meta-
heuristics algorithms. These kinds of algorithms have two main classes: population-based and Trajectory. Many of
these algorithms are inspired by various phenomena of nature. In this research, the author introduces a new population-
based method inspired by the lifestyle of lions and the genetic algorithm’s structure called the new genetic algorithm
(NGA). The social behaviour of lions and genetic operators like mutation and cross-over is the main structure of
NGA. Finally, the NGA is compared with the hybrid genetic and hybrid ant colony optimization as the best existing
algorithms in the literature. The experimental results have revealed that the NGA is competitive in terms of solution
quality to solve the vehicle routing and scheduling problems as two main categories of N-P hard problems.

Keywords: New genetic algorithm, N-P Hard problem, Scheduling, Vehicle routing problem, Genetic operator, Ant
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1 Introduction

Problems can be categorized into two main classes P and NP based on the computational theory. The problem of
the complexity class of P can be solved by a deterministic algorithm in polynomial time. Then it is relatively easy to
solve. Minimum spanning tree, shortest path problems, maximum flow network, maximum bipartite matching, and
linear programming continuous models belong to the P class. The problem of the complexity class of NP can be solved
by a nondeterministic algorithm in polynomial time.

A decision problem belonging to NP is NP-complete if all other problems of class NP are reduced in polynomial
time. NP-hard problems are optimization problems whose associated decision problems are NP-complete. Most of
the real-world optimization problems and many academic popular problems are NP-hard. Routing and covering
problems such as vehicle routing problems (VRP), Sequencing and scheduling problems such as flow-shop scheduling,
job-shop scheduling, Knapsack and packing/cutting problems and Assignment and location problems such as quadratic
assignment problem (QAP) are some cases of NP-hard problems [13].
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For NP-hard problems, provably efficient algorithms do not exist and therefore meta-heuristics in pure and hybrid
structures have wide applications to solve this kind of problem.

A meta-heuristic is described as an iterative generation process that guides a subordinate heuristic by combining
intelligently different concepts for exploring and exploiting the search space, learning strategies are used to structure
information to find efficiently near-optimal solutions [24].

In this paper, we introduce a population-based method called a new genetic algorithm (NGA) to solve NP-hard
problems. The rest of the paper is organized as follows: Section 2 introduces some efficient meta-heuristics developed
to solve NP-hard problems basically in VRP and scheduling area. The NGA is defined in section 3. Section 4 devotes
to verification and comparison study and finally section 5 concludes the research.

2 Meta-heuristics

Based on Blum and Andrea [3], meta-heuristics have some basic properties as follows:

� Meta-heuristics are strategies that ”guide” the search process.

� The goal is to efficiently explore the search space to find near-optimal solutions.

� Techniques which constitute meta-heuristic algorithms range from simple local search rules to complex learning
processes.

� Meta-heuristic algorithms are approximate and usually non-deterministic.

� They may incorporate mechanisms to avoid getting trapped in confined areas of the search space.

� The basic concepts of meta-heuristics let an abstract level description.

� Meta-heuristics are not problem-specific.

� Meta-heuristics may make use of domain-specific knowledge in the form of heuristics that are controlled by the
upper-level strategy.

� Today’s more advanced meta-heuristics use search experience (embodied in some form of memory) to guide the
search.

Two main categories of meta-heuristics are:

1. Trajectory methods like basic local search, simulated annealing, tabu search and variable neighbourhood search.

2. Population-based methods like genetic algorithm, ant colony optimization and particle swarm optimization.

Meta-heuristics in both trajectory and population categories are a good choice to solve the NP-hard problems like
scheduling and vehicle routing problems (VRP).

2.1 Scheduling

Scheduling is an optimization problem in computer science and operations research in which ideal jobs are assigned
to resources at particular times. Scheduling in many environments (flow-shop, job-shop, open-shop and etc.) is known
as an NP-hard problem and many researchers have attacked this area by meta-heuristics. In this research, we focus
on flow-shop.

One of the first pieces of research on the permutation flow-shop problem (PFSP) is due by Johnson [19] that
proposed a simple rule to obtain optimal sequences with two machines. PFSP is NP-complete [14], therefore researchers
have mainly focused on effective heuristics and meta-heuristics to solve it. Salient heuristics due to Campbell et al. [4]
(also called the CDS method) and the well-known NEH heuristic by Nawaz et al. [23] are some of the first heuristics
in this area. Meta-heuristics have also been attended like the simulated annealing by Osman and Potts [25], the tabu
search of Widmer and Hertz [36], and the genetic algorithm of Reeves [29].

Ruiz et al. [31] developed two heuristics for the PFSP that outperform some previous research. Ruiz and Stutzle
[32] introduced two simple local searches based on the iterated greedy algorithm that performed better than those of
Ruiz et al [31]. Benkalai et al. [2] addressed the problem of scheduling a set of independent jobs with set-up times on a
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set of machines in a permutation flow shop environment. A meta-heuristic known as the Migrating Birds Optimization
(MBO) was adapted for the minimization of the make-span in PFSP. Two versions of the algorithm are presented. Jin
and Price [18] proposed a new meta-heuristic algorithm that is based on a new enhanced destruction and construction
method and a novel repair method while adopting the architecture of the iterated greedy algorithm for the PFSP. Pan
et al. [26] addressed the DPFSP with the total flow-time criterion. To suit the needs of different CPU time demands
and solution quality, they presented three constructive heuristics and four meta-heuristics. Among all methods, one
of the most successful meta-heuristics to solve PFSP is a genetic algorithm like the old researches worked by Reeves
[29] and Sun and Hwang [34] and new ones worked by Mirabi [21], Zhang et al. [37] and Cui et al. [9].

Mirabi [21] developed one novel hybrid genetic algorithm (HGA) to solve PFSP. Proposed HGA used a modified
method to generate the initial solutions and applied an improved heuristic for improvement. Also, the author used
three genetic operators to make good new offspring. He compared HGA to some other heuristics and showed the
competitiveness of the proposed HGA. Zhang et al. [37] proposed a hybrid ant colony optimization algorithm to
solve the PFSP. The hybridization of ant colony optimization (ACO) with path relinking (PR), which combines the
advantages of two individual algorithms, is the key creative aspect of their research.

2.2 Vehicle routing problem

The vehicle routing problem (VRP) is a combinatorial optimization and integer programming problem which search
for the optimal set of routes for a fleet of vehicles that traverse to deliver a given set of customers. The vehicles leave
the depot, serve customers in the network, and on completion of their routes return to the depot.

In the recent fifty years since Dantzig and Ramser’s [11] research on this area has exploded dramatically. The VRP
has extensive variants, including green VRP, periodic VRP (PVRP, where the customers are served periodically),
VRP with pickup and delivery (VRPPD, where the customers may both receive and send products), VRP with time
windows (VRPTW, where the vehicles must arrive at the customers before the latest arrival time while arriving before
the earliest arrival time results in waiting), multi-depot VRP (MDVRP, where more than one depot is considered),
multi-depot PVRP (MDPVRP), and so on [11].

Da Costa et al. [10] proposed a Genetic Algorithm (GA) to address a Green Vehicle Routing Problem. Drummond
et al. [12] developed an island-based parallel evolutionary method for the PVRP, which evolves individuals representing
schedules (patterns), the fitness being obtained by constructing routes for each period with a saving heuristic. In 2007,
Alegre et al. [1] presented a scatter search procedure just for solving PVRP with many periods.

One challenging point in PVRPs is local optimum. Chao et al. [5] used a local search approach to overcome this
situation and showed it works efficiently when there is no vehicle capacity constraint. Another heuristic that was used
by Cordeau et al. [7] was Tabu search in a basic and unified format. Hemmelmayr et al. [16] applied the variable
neighbourhood search and outperformed previous approaches.

For the MDVRP, geometric aspects have been attended by a few researchers. Mutation operator introduced
by Thangiah and Salhi [35]. They target the depot assignment to ”borderline” customers, which are near several
depots. In this regard, some approaches are more efficient, such as methods based on neighbourhood search like the
Tabu search algorithms [6, 30] and simulated annealing [20]. Pisinger and Ropke [27] have attended the MDVRP
by an adaptive large neighbourhood search method, which implements the ruin and recreate paradigm with adaptive
selection operators. Ho et al. [17] presented two hybrid genetic algorithms (HGAs) for MDVRP. The major difference
between the HGAs was the initial solutions. Giosa et al. [15] developed new assignment algorithms for the MDVRP,
and Crevier et al. [8] addressed an extension of the MDVRP in which vehicles may be replenished at intermediate
depots along their routes. Stodola [33] deals with the modified MDVRP. The modification consisted of altering the
optimization criterion. The optimization criterion of the standard MDVRP is to minimize the total sum of routes of
all vehicles, whereas the criterion of modified MDVRP (M-MDVRP) is to minimize the longest route of all vehicles.

Mirabi [22] provided a new definition of periodic vehicle routing problems with single and multi-depots and also
developed a novel hybrid genetic algorithm to solve it. The proposed hybrid genetic algorithm applies a modified
approach to generate a population of initial chromosomes and uses an improved heuristic called the iterated swap
procedure to improve the initial solutions.

Reed et al. [28] demonstrated the use of the Ant Colony System (ACS) to solve the capacitated vehicle routing
problem associated with the collection of recycling waste from households, treated as nodes in a spatial network.
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3 The New Genetic Algorithm

Unlike other cats, lions live in groups, called pride. One pride consists of one male as a commander, up to three
males, related females, and their cubs. The size of pride depends on available food and water. Fewer resources result
in smaller pride. Commander is the strongest lion within the pride and is responsible for guarding their territory and
their cubs. He plays this role till another strong male defeats him and gains his pride. Female lions are the primary
hunters of the group.

They give birth to 2-3 cubs at a time. Male cubs must leave the pride at around two years old. They form small
groups until they are strong enough to challenge male lions of other pride.

This kind of treatment stimulates us to develop one approach called a new genetic algorithm (NGA) to solve a
wide range of problems. First of all, NGA needs an initial population of solutions therefore it is a population-based
one. After that, all solutions are divided into some groups (pride). Solutions for each group must be more than 2. The
best solution for each group (based on the objective function), is called commander. In the next steps, new solutions
(offspring) are generated by using a heuristic mutation operation or order crossover operation in each group.

We use heuristic mutation and order crossover operations like the ones done by Mirabi [21]. Figure 1 and 2 describe
these operations.

Figure 1: The order crossover operator

Figure 2: The heuristic mutation operator

Each new solution in each group challenges all commanders and if one defeats one of them (is better than it),
becomes the new commander of the related group and the previous commander and some worst solutions in the group
are eliminated.

Let us use the following notations for our algorithm:

m : number of all initial solutions (all populations of lions).

m must be more than 4 because we need at least two groups with a size of at least 2.

n : number of groups (pride). Each group has at least two solutions and therefore 2 ≤ n ≤ [m/2].

k : number of iterations that we need to generate new solutions in each group that challenge other commanders to
replacement.

The pseudo-code of NGA is as follows:

Input m, n and k

Describe fitness function (objective function)

Generated m initial solutions by random

Generate n pride numbered 1 to n
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For j = 1 : [m/n] + 1

For i = 1 : n

If there are unallocated solution,

Select one solution by random and allocate it to pride numbered i

End if

End for

End for

For i = 1 : n

Select the best solution in pride i based on the fitness function and called it as commander (commander=argmax
(fitness))

End for

For i = 1 : k

For j = 1 : n

Generate a new solutions in pride j randomly by heuristic mutation of commander or order crossover between
commander and one member of pride.

Compare the new solution with all commanders, if new solution is better than one of them (based on fitness
function) replace it with the related commander in the pride and drop previous commander and [m/3n] solutions with
the worst fitness function value.

End for

End for

Compare all commanders and select the best for the final solution.

4 Comparison Study

In this section, a computational study is carried out to compare the NGA with the best-developed heuristics in
both flow-shop scheduling and the VRP area. For flow-shop, two heuristics as follows were selected:

Hybrid genetic algorithm (HGA) developed by Mirabi [21]

Hybrid ant colony (HACO) developed by Zhang et al. [37]

and for VRP, the following methods were selected for comparison:

Hybrid genetic algorithm (HGA) developed by Mirabi [22]

Ant colony optimization (ACO) developed by Reed et al. [28]

For flow-shop scheduling, we classify the problem based on the number of jobs (N) and the number of machine
(M). We consider 28 classes of problems. In each class, 10 instances are randomly generated. Processing and set up
time are U(1, 99) and U(1, 9) respectively. Make-span is considered a fitness function and for the evaluation study, we
use the PM index defined as follows:

PM =
Heusol −Bestsol

Bestsol
, (4.1)

where the make-span obtained by a given algorithm is Heusol and Bestsol is the make-span of the best solution
obtained by all algorithms. The programs are coded in MATLAB. The standard approach in the experimental
comparison of evolutionary algorithms is to repeat several runs on the same problem because of the stochastic nature
of the algorithms. For equal conditions between three methods, all algorithms are run 10 independent times with a
stopping criterion based on a finite number of iterations.

In Table 1 Min, Max and the average PM of each method are shown. Also, the average time to solve 10 instances
is given for each method. The columns labelled ”Min” show, in subscript, the number of instances for which the
algorithm solution was equal to the corresponding Bestsol. As shown in Table 1, New Genetic Algorithm (NGA)
outperforms others based on PM value and HGA is a bit faster than NGA.
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Table 1: PM values for comparison studies between all algorithms (times are in second)

Class of

problem
N M

NGA HGA HACO

Min PM
Average

Max PM Min PM
Average

Max PM Min PM
Average

Max PM
PM Time PM Time PM Time

1 10 5 05 0.06 1.05 0.13 04 0.00 1.83 0.01 02 0.21 1.96 0.19

2 10 10 05 0.05 1.21 0.10 03 0.08 1.84 0.14 02 0.18 2.77 0.16

3 10 15 05 0.05 2.39 0.11 05 0.01 2.78 0.01 0.01 0.04 5.53 0.21

4 10 20 06 0.03 5.11 0.09 03 0.03 4.01 0.05 02 0.09 8.28 0.08

5 20 5 07 0.00 1.55 0.00 02 0.01 2.15 0.02 01 0.00 2.44 0.00

6 20 10 09 0.01 1.76 0.10 03 0.09 2.77 0.17 02 0.11 4.79 0.10

7 20 15 09 0.02 3.86 0.16 04 0.03 2.94 0.06 0.00 0.01 9.56 0.07

8 20 20 06 0.02 6.87 0.05 05 0.07 5.05 0.17 01 0.30 13.31 0.24

9 30 5 06 0.05 1.77 0.13 03 0.09 2.76 0.13 01 0.20 3.43 0.16

10 30 10 09 0.02 3.22 0.14 03 0.02 3.59 0.03 01 0.23 6.85 0.19

11 30 15 09 0.00 4.48 0.01 02 0.02 4.34 0.02 0.01 0.02 9.25 0.03

12 30 20 08 0.00 7.00 0.01 05 0.04 6.10 0.10 0.01 0.04 13.53 0.21

13 40 5 05 0.04 2.20 0.09 04 0.06 3.24 0.11 02 0.23 3.40 0.21

14 40 10 06 0.07 2.86 0.18 04 0.10 4.29 0.13 0.01 0.03 6.62 0.17

15 40 15 06 0.00 4.37 0.00 04 0.10 5.61 0.18 0.00 0.03 8.11 0.21

16 40 20 07 0.03 9.41 0.08 03 0.01 7.83 0.01 0.01 0.04 15.62 0.26

17 50 5 07 0.03 2.92 0.10 03 0.11 3.87 0.17 02 0.04 3.40 0.03

18 50 10 07 0.03 5.47 0.09 04 0.01 5.11 0.02 0.00 0.03 6.63 0.17

19 50 15 06 0.02 8.94 0.05 04 0.02 7.04 0.04 0.00 0.03 10.84 0.26

20 50 20 05 0.08 11.15 0.15 05 0.00 10.89 0.00 0.00 0.03 14.86 0.20

21 100 5 08 0.03 4.50 0.17 05 0.03 6.14 0.08 01 0.19 5.96 0.15

22 100 10 05 0.05 9.64 0.10 05 0.03 13.22 0.08 0.00 0.02 19.22 0.21

23 100 15 07 0.04 15.38 0.13 03 0.07 18.59 0.13 0.01 0.04 22.94 0.17

24 100 20 06 0.01 28.27 0.01 03 0.01 27.49 0.01 01 0.11 32.28 0.09

25 200 5 09 0.01 11.22 0.06 04 0.04 14.55 0.08 0.00 0.02 13.66 0.03

26 200 10 06 0.03 32.54 0.07 04 0.06 26.79 0.13 0.01 0.04 27.74 0.26

27 200 15 06 0.00 37.36 0.00 05 0.05 32.15 0.15 0.01 0.04 38.28 0.27

28 200 20 09 0.01 75.78 0.07 02 0.10 73.32 0.14 02 0.15 97.60 0.14

At this stage, the ANOVA test can be applied to show whether the results gained by all methods are statistically
similar or not. The ANOVA procedure tests these hypotheses:

H0 : µ1 = µ2 = µ3 = µ4, all results are the same

H1 : two or more results are different from the others

With the α = 0.05 significance level, computations are shown in Table 2.

Table 2: ANOVA test for all methods
Some of Square(SS) Degree of freedom(df) Mean Square(MS) VR F

Between groups
(or ”Factor”)

69828179.5 3 23276059.8
10.5 2.7

Within groups (or
”Error”)

239874388.7 108 2221059.2

Total 309702568.2 111

In Table 2 V R = 10.5 > F = 2.7, therefore the results in Table 1 are not the same and differences are statistically
significant. Also, Table 1 demonstrates that NGA and HGA are more competitors. For a detailed comparison between
NGA and HGA, we should check whether the differences between the solutions of the two algorithms are statistically
significant or not. For this, the hypothesis that the population corresponding to the differences has a mean (µ) zero
can be tested; specifically, test the (null) hypothesis µ = 0 against the alternative µ > 0. This test is performed like
what was done by Mirabi [21] between the two best methods based on Table 1 (NGA and HGA). It is assumed that
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the differences between solutions (makespan) are a Normal variable, and choose the significance level α = 0.05. If the
hypothesis is true, the random variable T = (X̄1 − X̄2)/

√
(S2

1/n1) + (S2
2/n2) has a t distribution with:

v = (S2
1/n1 + (S2

2/n2)
2/

(
(S2

1/n1)
2

n1−1 +
(S2

2/n2)
2

n2−1

)
degrees of freedom. The critical value of c is obtained from the

relation Prob (T > c) = α = 0.05. Table 3 shown this study. For more explanation, consider the first row of Table
2, corresponds to the sample size= n1 = n2 = 10, µ0 = 0, sample mean for NGA and HGA are X̄1 = 759.38 and
X̄2 = 766.46 respectively. Sample standard deviation for HGA and H3 are S1 = 2.88 and S2 = 2.55 respectively. Since
t = 1.73 < T = 5.81, we conclude that the difference is statistically significant.

Table 3: Detail comparison between NGA and HGA

Class of problem N M
Ave. MS or (X̄) Ave. SD or (S)

T v t sig.
NGA HGA NGA HGA

1 10 5 723.30 695.90 2.69 2.72 -22.66 18 1.73 Yes

2 10 10 1172.94 1134.85 2.14 1.90 -42.05 18 1.73 Yes

3 10 15 1154.80 1198.24 2.20 2.05 45.63 18 1.73 Yes

4 10 20 1478.15 1465.95 4.71 3.81 -6.37 17 1.74 Yes

5 20 5 1227.32 1288.74 3.49 3.39 39.90 18 1.73 Yes

6 20 10 1783.45 1715.23 4.32 4.44 -34.81 18 1.73 Yes

7 20 15 1763.38 1849.41 2.01 2.78 79.30 16 1.75 Yes

8 20 20 2059.69 2199.18 3.80 4.45 75.40 18 1.73 Yes

9 30 5 1744.00 1848.11 4.33 3.69 57.92 18 1.73 Yes

10 30 10 2202.29 2114.29 4.04 4.16 -48.02 18 1.73 Yes

11 30 15 2546.58 2639.54 4.04 4.15 50.72 18 1.73 Yes

12 30 20 1992.28 2181.83 5.54 5.68 75.55 18 1.73 Yes

13 40 5 1922.68 1964.97 5.44 4.85 18.35 18 1.73 Yes

14 40 10 2268.54 2391.76 3.11 3.80 79.37 17 1.74 Yes

15 40 15 2467.59 2533.96 2.94 2.67 52.85 18 1.73 Yes

16 40 20 2770.88 2880.01 5.86 6.11 40.76 18 1.73 Yes

17 50 5 2484.28 2561.98 3.58 5.02 39.86 16 1.75 Yes

18 50 10 2461.20 2652.10 6.73 7.21 61.18 18 1.73 Yes

19 50 15 3011.93 2839.50 7.60 8.31 -48.44 18 1.73 Yes

20 50 20 3455.95 3619.79 7.45 7.42 49.29 18 1.73 Yes

21 100 5 5136.03 4926.06 6.77 6.53 -70.55 18 1.73 Yes

22 100 10 5236.74 5402.69 6.93 7.65 50.83 18 1.73 Yes

23 100 15 5697.40 5890.75 9.59 12.26 39.29 17 1.74 Yes

24 100 20 5728.00 6011.89 10.12 11.04 59.93 18 1.73 Yes

25 200 5 9171.59 9497.92 9.84 10.36 72.19 18 1.73 Yes

26 200 10 10205.33 10317.50 20.76 24.22 11.12 18 1.73 Yes

27 200 15 9195.35 9488.75 15.10 14.62 44.15 18 1.73 Yes

28 200 20 9285.53 10419.70 17.20 19.23 139.01 18 1.73 No

29 400 5 20046.24 21173.59 21.42 21.16 118.38 18 1.73 Yes

30 400 10 19248.25 21429.31 27.42 24.13 188.83 18 1.73 Yes

31 400 15 26718.48 26183.87 31.37 30.01 -38.94 18 1.73 Yes

32 400 20 24331.50 25861.36 21.10 26.47 142.91 17 1.74 Yes

33 400 50 30101.09 31934.58 25.86 28.53 150.59 18 1.73 Yes

Ave:Average, MS:Makespan, SD:Standard deviation, Sig:Significant
Each class contains 10 independent instances

Table 3 demonstrated that NGA outperformed HGA in 76% of all classes and all of the differences are statistically
significant. Also, HGA outperformed NGA in 24% of all classes and in all cases, differences are statistically significant.

To do a deep comparison between NGA and HGA Tukey honestly significance difference test can be used. It is a
strong statistical tool to check significance by computing the confidence interval similarly to the confidence interval
for the difference of two means, but using the q distribution which avoids the problem of inflating α:
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x̄i − x̄j ± q(α, r, dfw)

√
MSw

2
×

(
1

ni
+

1

nj

)
Table 4 summarized the outputs of this test.

Table 4: Tukey test results for NGA and HGA

x̄HGA − x̄LA
Critical q
q(α, r, dfw)

95% Conf Interval for
µHGA − µLA

Significant at 0.05?

Min Max
HGA− LA 120.83 3.90 -89.06 89.11 Yes

Table 4 demonstrated that NGA completely outperforms HGA.

For VRP we considered two major classes single depot (SD) and two depots (multi depot or MD). Service time
and independent work time for each customer are assumed to be random integers from uniform distributions [10, 15]
and [30, 60] respectively. Two problem characteristics are the number of vehicles and the number of customers. Each
class of problem has 1, 3 or 5 vehicles and 20, 50 or 100 customers.

For each problem instance, 10 runs are done. As an example of the notation, consider the MD520 set of problems:
it consists of 10 runs of problem instances with two depots, 5 vehicles and 20 customers. All algorithms are stopped
at the same CPU time. The value of this CPU time for each class in second is calculated as follows:

(number of customer) ∗ (number of vehicle)/10

Table 5 shows comparison results.

Table 5: PM values for computational test of all methods

Instances
NGA IACO HGA

PM value PM value PM value
Min Ave. Max Min Ave. Max Min Ave. Max

SD120 06 0.02 0.06 04 0.06 0.12 0.03 0.06 0.10
SD150 05 0.03 0.07 04 0.08 0.15 0.08 0.16 0.21
SD1100 08 0.01 0.05 03 0.10 0.16 01 0.05 0.26
SD320 08 0.01 0.05 02 0.10 0.15 0.04 0.10 0.20
SD350 06 0.04 0.10 04 0.07 0.15 02 0.06 0.10
SD3100 05 0.04 0.15 00 0.10 0.17 01 0.09 0.18
SD520 09 0.00 0.03 02 0.10 0.18 01 0.04 0.14
SD550 04 0.08 0.16 02 0.09 0.18 0.05 0.14 0.17
SD5100 08 0.01 0.03 01 0.08 0.16 02 0.03\4 0.11
MD320 06 0.04 0.10 01 0.06 0.17 0.04 0.11 0.21
MD350 05 0.04 0.13 03 0.02 0.07 0.03 0.08 0.22
MD3100 06 0.04 0.12 04 0.06 0.11 0.03 0.08 0.18
MD520 06 0.03 0.09 06 0.01 0.06 0.09 0.18 0.27
MD550 07 0.01 0.06 05 0.03 0.07 0.03 0.07 0.18
MD5100 06 0.02 0.06 06 0.01 0.04 01 0.04 0.09

ANOVA test for significant difference between all methods are given in Table 6.

Base on Table 5, NGA and improved IACO are two most powerful method to find final solution. Table 7 and 8
shows detail comparison between these methods.

Table 7 demonstrated that NGA outperformed IACO in 73% of all classes and all of the differences are statistically
significant. Also, ACO outperformed NGA in 27% of all classes and in all cases, differences are statistically significant.
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Table 6: ANOVA test for all methods
Some of Square(SS) Degree of freedom(df) Mean Square(MS) VR F

Between groups
(or ”Factor”)

68999512.3 3 22999837.4
4.8 2.8

Within groups (or
”Error”)

267070448.9 56 4769115.2

Total 336069961.2 59

Table 7: t test to evaluate significance of differences

Instance
Average (X̄) Standard Deviation (S)

T Significance
NGA IACO NGA IACO

SD120 861.12 915.45 3.52 4.64 29.49 Yes
SD150 962.15 1111.31 6.94 12.26 33.48 Yes
SD1100 3058.82 3425.64 16.39 15.39 51.59 Yes
SD320 5877.92 6513.91 20.69 22.05 66.52 Yes
SD350 11696.41 12764.26 30.78 34.89 72.58 Yes
SD3100 27002.15 27099.83 49.37 51.38 4.34 Yes
SD520 40909.38 40460.98 62.18 61.15 -16.26 Yes
SD550 106180.59 110482.91 67.25 68.48 141.75 Yes
SD5100 198183.35 195964.18 64.84 67.39 -75.04 Yes
MD320 5804.31 5962.83 22.00 26.74 14.48 Yes

MD350 11404.94 12631.54 30.21 26.38 96.71 Yes
MD3100 27378.64 27492.01 49.71 47.45 5.22 Yes
MD520 41184.98 44304.38 55.66 58.92 121.71 Yes
MD550 92254.74 90701.83 72.98 57.66 -52.80 Yes
MD5100 204431.64 201865.34 71.42 88.58 -71.32 Yes

Each Ins contains 10 independent test

Table 8: Tukey test results for NGA and IACO

x̄ACO − x̄LA
Critical q
q(α, r, dfw)

95% Conf Interval for
µACO − µLA

Significant at 0.05?

Min Max
HGA− LA 300.35 2.75 -180.24 180.11 Yes

5 Conclusion

In this research, we introduced one population-based meta-heuristic method. The presented method is based on
the lifestyle of the Lion and the genetic algorithm’s structure; therefore we called it as New Genetic Algorithm (NGA).
The initial population of solutions distribute between some groups (pride) and the best solution within each group is
called commander. Each child in each group (earned by mutation or crossover) challenges all commanders to substitute
with them. After a finite number of iterations, the best commander is the final solution. For the verification test, we
consider two main N-P hard as flow-shop scheduling and VRP. We recalled two powerful methods from the literature
as hybrid genetic algorithm and ant colony optimization. Based on the comparison study, NGA works very competitive
to solve N-P hard problems.
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