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Abstract

In this paper, we first introduce the Halpern iteration process for approximating the solution of the fixed point problem
of a finite family of k-strictly pseudo-contractive mappings in Hadamard spaces. We also propose an extra gradient
Halpern iterative algorithm for approximating a common solution of a finite family of kj-strictly pseudocontractive
mappings and a pseudomonotone equilibrium problem in Hadamard space. We prove a strong convergence result
without imposing any strict (compactness) conditions for approximating the solutions to the aforementioned problems.
We state some consequences of our results and display some numerical examples to show the performance of our results.
Our results improve and generalize many recent results in the literature.
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1 Introduction

Let C be a nonempty, closed and convex subset of a CAT(0) space (see Section 2 for details) X and T : C → C be a
nonlinear mapping. A point p ∈ C is called a fixed point of T if Tp = p. We denote by F (T ) the set of fixed points of
T. A mapping T : C → C is said to be

(i) nonexpansive, if

d(Tx, Ty) ≤ d(x, y) ∀ x, y ∈ C,
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(ii) k-strictly pseudo-contractive, if p ∈ F (T ) and k ∈ [0, 1), then

d2(Tx, p) ≤ d2(x, p) + kd2(x, Tx), ∀ x ∈ C.

Note that if k = 0 in (ii) above, then we obtain (i), which implies that the class of k-strictly pseudo-contractive
mappings contains the class of nonexpansive mappings. The class of strictly pseudo-contractive mappings have been
considered by many authors in Hilbert and Banach spaces as well as Hadamard spaces (see [19] and other references
contained in).

Fixed point theory has been the center of attractions in the area of convex and nonlinear analysis. The study of
fixed point theory in generalized metric spaces (particularly CAT(0) spaces) began with the work of Kirk [31]. After
that, numerous authors have continued to obtain interesting results on fixed point theory in metric spaces and its
several generalizations (see [4, 18, 21] and other references therein.)

On the other hand, the equilibrium problem (EP) is one of the most important optimization problems that unifies
other optimization problems and other problems of interest in many applications. The EP has been extensively studied
in the framework of Hilbert and Banach spaces (see [5] and other references contained in). Recently, Khatibzadeh and
Mohebbi [28] extended the study of monotone and pseudo-monotone EP to Hadamard spaces.

Let X be a Hadamard space, K ⊂ X and f : K ×K → R be a bifunction. f is said to be monotone, if

f(x, y) + f(y, x) ≤ 0, ∀ x, y ∈ X,

and pseudo monotone, if

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0, ∀ x, y ∈ X.

An EP for f and K consists of finding x∗ ∈ K such that

f(x∗, y) ≥ 0, ∀ y ∈ C. (1.1)

The point x∗ is called an equilibrium point. We denote the set of all equilibrium points for EP by S(f,K). To
study the EP, it is required that the the bifuntion f satisfy the following conditions:

(B1) f(x, .) is convex and lower semicontinuous for all x ∈ X,
(B2) f(., y) is ∆-upper semicontinuous for all y ∈ X,
(B3) f is Lipschitz-type continuous, i.e. there exist two positive constants c1 and c2 such that

f(x, y) + f(y, z) ≥ f(x, z)− c1d
2(x, y)− c2d

2(y, z), ∀ x, y, z ∈ X. (1.2)

(B4) f is pseudo-monotone.

Khatibzadeh and Mohebbi [28] studied the existence of solutions of (1.1) associated with pseudomonotone bifunc-
tions. They employed the proximal point algorithm to approximate the equilibrium point of f and established that the
sequence generated by the algorithm converges. In 2019, Khatibzadeh and Mohebbi [29] introduced the extragradient
method to approximate the equilibrium point of pseudo-monotone function of (1.1) in Hadamard spaces. Precisely,
they proposed the following extragraident method for EP in Hadamard spaces as follows:

yn ∈ Argmin
y∈C

{
f(xn, y) +

1

2λn
d2(xn, y)

}
, (1.3)

xn+1 ∈ Argmin
y∈C

{
f(yn, y) +

1

2λn
d2(yn, y)

}
. (1.4)

It was also established that the sequence generated by (1.3) ∆-converges to a solution of (1.1). In the same vein,
Moharami and Eskandani [37] proposed a hybrid extragradient method to approximate a common element of the set of
solutions of an EP and a common zero of a finite family of monotone operators in Hadamard spaces. They established
the convergence theorems of their hybrid extagradient methods under suitable assumptions.

Motivated by the works of the aforementioned authors in literature, we propose a Halpern extragradient method
for approximating the solution of fixed point problem of a finite family of k-strictly pseudo-contractive mappings and
pseudo-monotone EP in Hadamard space. Our method strongly converges to a common element in the intersection
of the set of fixed points of pseudo-contractive mappings and the set of equilibrium points of the pseudo-monotone
function f. We display a numerical example to show the the behaviour of our proposed method. Our result improve
and generalize the results of [1, 2, 13, 19, 39, 40] and many recent results in the literature.
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2 Preliminaries

Let X be a metric space and x, y ∈ X. A geodesic from x to y is a map (or a curve) c from the closed interval
[0, d(x, y)] ⊂ R to X such that c(0) = x, c(d(x, y)) = y and d(c(t), c(t′)) = |t− t′|, for all t, t′ ∈ [0, d(x, y)]. The image
of c is called a geodesic segment joining from x to y. The geodesic segment is denoted by [x, y] when it is unique.
The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be
uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A subset D of a geodesic space
X is said to be convex, if for any two points x, y ∈ D, the geodesic joining x and y is contained in D, that is, if
c : [0, d(x, y)] → X is a geodesic such that x = c(0) and y = c(d(x, y)), then c(t) ∈ D, for all t ∈ [0, d(x, y)]. A geodesic
triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists of three vertices (points in X) with unparameterized
geodesic segments between each pair of vertices. For any geodesic triangle there is comparison (Alexandrov) triangle
∆̄ ⊂ R2, such that d(xi, xj) = dR2(x̄i, x̄j), for i, j ∈ {1, 2, 3}. A geodesic space X is a CAT(0) space if the distance
between an arbitrary pair of points on a geodesic triangle ∆ does not exceed the distance between its corresponding
pair of points on its comparison triangle ∆̄. If ∆ and ∆̄ are geodesic and comparison triangles in X respectively, then
∆ is said to satisfy the CAT(0) inequality for all points x, y of ∆ and x̄, ȳ of ∆̄ if

d(x, y) = dR2(x̄, ȳ). (2.1)

Let x, y, z be points in X and y0 be the midpoint of the segment [y, z], then the CAT(0) inequality implies

d2(x, y0) ≤
1

2
d2(x, y) +

1

2
d2(x, z)− 1

4
d(y, z). (2.2)

Berg and Nikolaev [9] introduced the notion of quasi-linearization in a CAT(0) space as follows: Let a pair

(a, b) ∈ X ×X which is denoted by
−→
ab be a vector. Then, the quasilinearization map ⟨., .⟩ : (X ×X)× (X ×X) → R

is defined by

⟨
−→
ab,

−→
cd⟩ = 1

2
(d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), for all a, b, c, d ∈ X. (2.3)

It is easy to see that ⟨
−→
ab,

−→
ab⟩ = d2(a, b), ⟨

−→
ba,

−→
cd⟩ = −⟨

−→
ab,

−→
cd⟩, ⟨

−→
ab,

−→
cd⟩ = ⟨−→ae,

−→
cd⟩+ ⟨

−→
eb,

−→
cd⟩ and ⟨

−→
ab,

−→
cd⟩ = ⟨

−→
cd,

−→
ab⟩,

for all a, b, c, d, e ∈ X. Furthermore, a geodesic space X is said to satisfy the Cauchy-Schwartz inequality, if

⟨
−→
ab,

−→
cd⟩ ≤ d(a, b)d(c, d),

for all a, b, c, d ∈ X. It is well known that a geodesically connected space is a CAT(0) space if and only if it satisfies
the Cauchy-Schwartz inequality [18]. Also, it is known that complete CAT(0) spaces are called Hadamard spaces.

In 2010, Kakavandi and Amini [26] introduced the dual space of a Hadamard space X as follows: Consider the
map Θ : R×X ×X → C(X,R) which is define by

Θ(t, a, b)(x) = t⟨
−→
ab,−→ax⟩, (t ∈ R, a, b, x ∈ X),

where C(X,R) is the space of all continuous real-valued functions on X. Then the Cauchy-Schwartz inequality implies
that Θ(t, a, b) is a Lipschitz function with Lipschitz semi-norm L(Θ(t, a, b)) = |t|d(a, b) (t ∈ R, a, b ∈ X), where
L(ϕ) = sup{(ϕ(x) − ϕ(y))/d(x, y) : x, y ∈ X, x ̸= y} is the Lipschitz semi-norm for any function ϕ : X → R. A
pseudometric D on R×X ×X is defined by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b)−Θ(s, c, d)), (t, s ∈ R, a, b, c, d ∈ X).

In a Hadamard space X, the psuedometric space (R×X×X,D) can be considered as a subset of the pseudometric
space of all real-valued Lipschitz functions (Lip(X,R), L). It is well known from [26] that D((t, a, b), (s, c, d)) = 0 if

and only if t⟨
−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩, for all x, y ∈ X. Thus, D induces an equivalence relation on R ×X ×X, where the

equivalence class of (t, a, b) is defined as

[t
−→
ab] := {s

−→
cd : D((t, a, b), (s, c, d)) = 0}.

The set X∗ = {[t
−→
ab] : (t, a, b) ∈ R×X ×X} is a metric space with the metric D([t

−→
ab], [s

−→
cd) := D((t, a, b), (s, c, d)).

The pair (X∗,D) is called the dual space of the metric space (X, d). It is shown in [26] that the dual of a closed and
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convex subset of a Hilbert space H with nonempty interior is H and t(b − a) ≡ [t
−→
ab] for all t ∈ R and a, b ∈ H. We

also note that X∗ acts on X ×X by

⟨x∗,−→xy⟩ = t⟨
−→
ab,−→xy⟩, (x∗ = [t

−→
ab] ∈ X∗, x, y ∈ X).

Let {xn} be a bounded sequence in X and r(., {xn}) : X → [0,∞) be a continuous mapping defined by

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius of {xn} is given by

r({xn}) : inf{r(x, xn) : x ∈ X},

while the asymptotic center of {xn} is the set

A({xn}) = x ∈ X : r(x, {xn}) = r({xn}).

It is well known from [17, 32] that in a complete CAT(0) space X, A({xn}) consists of exactly one point. A
sequence {xn} in X is said to be ∆-convergent to a point x ∈ X if A({xnk

}) = {x} for every subsequence {xnk
} of

{xn}. In this case, we write ∆− lim
n→∞

xn = x.

Definition 2.1. Let C be a nonempty, closed convex subset of a CAT(0) space X. The metric projection PC : X → C
which assigns to each x ∈ X the unique point PCx is defined by

d(x, PCx) = inf{d(x, y) : y ∈ C}.

Lemma 2.2. [14, 18] Let X be a CAT(0) space. Then for all w, x, y, z ∈ X and all t ∈ [0, 1], we have

1. d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z),
2. d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y),
3. d2(z, tx⊕ (1− t)y) ≤ t2d2(z, x) + (1− t)2d2(z, y) + 2t(1− t)⟨−→zx,−→zy⟩.

Lemma 2.3. [18] Every bounded sequence in a complete CAT(0) space has a △-convergence subsequence.

Definition 2.4. Let C be a nonempty, closed and convex subset of a Hadamard space X. A mapping T : C → C is
said to be ∆-demiclosed, if for any bounded sequence {xn} in X such that ∆- lim

n→∞
xn = x and lim

n→∞
d(xn, Txn) = 0,

then x = Tx.

Lemma 2.5. [19] Let C be a nonempty, closed convex subset of an Hadamard space X and T : X → X be a k-strictly
pseudo-contractive mapping, then I − T is demiclosed at the origin.

Lemma 2.6. [15] Let C be a nonempty, closed convex subset of a CAT(0) space X, x ∈ X and u ∈ C. Then u = PCx
if and only if ⟨−→xu,−→uy⟩ ≤ 0 for all y ∈ C.

Lemma 2.7. [11] Let X be a CAT(0) space, {u1, u2, · · · , uN} ⊂ X and {β1, β2, · · · , βN} ⊂ (0, 1) with
N∑
i=0

βi = 1.

Then,

d2

(
N∑
i=1

⊕βiui, x

)
≤

N∑
i=1

βid
2(ui, x)−

N∑
i,j=1,i̸=j

βiβjd
2(ui, uj).

Lemma 2.8. [6, 30] Let {an} be a sequence of non-negative real numbers, {γn} be a sequence of real numbers in
(0, 1) with conditions

∑∞
n=1 γn = ∞ and {dn} be a sequence of real numbers. Assume that

an+1 ≤ (1− γn)an + γndn, n ≥ 1.

If lim sup
k→∞

dnk
≤ 0 for every subsequence {ank

} of {an} satisfying the condition:

lim sup
k→∞

(ank
− ank+1) ≤ 0, then lim

n→∞
an = 0.



Strictly pseudo-contractive mappings and pseudomonotone equilibrium problem 15

3 Main results

Lemma 3.1. Let X be a Hadamard space and Tj : X → X, j = 1, 2, .., N be a finite family of kj− strictly pseudo-
contractive mappings for some 0 < kj < 1 such that Γ := ∩N

j=1F (Tj) ̸= ∅. For arbitrary x1, u ∈ X, let the sequence
{xn} be generated iteratively by {

un = γn,0xn ⊕
∑N

j=1 ⊕γn,jTjxn;

xn+1 = αnu⊕ (1− αn)un;
(3.1)

where γn,0 ⊂ [a, b] for some a, b ∈ (kj , 1) and αn ∈ (0, 1) satisfying
∑N

i=0 γn,j = 1. Then, {xn} is bounded.

Proof . Let z ∈ Γ, then we obtain from (3.1) and Lemma 2.7 that

d2(un, z) = d2(γn,0xn ⊕
N∑
j=1

⊕γn,jTjxn, z)

≤ γn,0d
2(xn, z) +

N∑
j=1

γn,jd
2(Tjxn, z)− γn,0

N∑
j=1

γn,jd
2(xn, Tjxn)

≤ γn,0d
2(xn, z) +

N∑
j=1

γn,j(d
2(xn, z) + kjd

2(xn, Tjxn))− γn,0

N∑
j=1

γn,jd
2(xn, Tjxn)

= d2(xn, z)− (γn,0 − kj)

N∑
j=1

γn,jd
2(xn, Tjxn). (3.2)

This implies that

d(un, z) ≤ d(xn, z). (3.3)

Using (3.1) and (3.3), we have that

d(xn+1, z) = d(αnu⊕ (1− αn)un, z)

≤ αnd(u, z) + (1− αn)d(un, z)

≤ αnd(u, z) + (1− αn)d(xn, z)

≤ max{d(u, z), d(xn, z)}. (3.4)

By induction, we obtain that {xn} is bounded. Consequently, {un} is also bounded. □

Theorem 3.2. Let X be a Hadamard space and Tj : X → X, j = 1, 2, .., N be a finite family of kj− strictly pseudo-
contractive mappings for some 0 < kj < 1 such that Γ := ∩N

j=1F (Tj) ̸= ∅. For arbitrary x1, u ∈ X, let the sequence
{xn} be generated iteratively by (3.1), where {αn} is a sequence in (0, 1) satisfying

1. lim
n→∞

αn = 0 and
∞∑

n=1
αn = ∞;

2.
N∑
j=0

γn,j = 1 and γn,0 ⊂ [a, b] for some a, b ∈ (kj , 1).

Then, {xn} converges strongly to x∗ = PΓu, where PΓ is the metric projection of X onto Γ.

Proof . Let z ∈ Γ, then we have from (3.1), (3.2) and Lemma 2.2 (3) that

d2(xn+1, z) = d2(αnu⊕ (1− αn)un, z)

≤ α2
nd

2(u, z) + (1− αn)
2d2(un, z) + 2αn(1− αn)⟨−→uz,−−→unz⟩

≤ α2
nd

2(u, z) + (1− αn)d
2(xn, z)− (1− αn)(γn,0 − kj)

N∑
j=1

γn,jd
2(xn, Tjxn)

+ 2αn(1− αn)⟨−→uz,−−→unz⟩ (3.5)

≤ α2
nd

2(u, z) + (1− αn)d
2(xn, z) + 2αn(1− αn)⟨−→uz,−−→unz⟩

= (1− αn)d
2(xn, z) + αnbn, (3.6)



16 Abass, Oyewole, Aremu, Mebawondu, Narain

where bn = αnd
2(u, z) + 2(1− αn)⟨−→uz,−−→unz⟩. From Lemma 2.8, it suffices that

lim sup
k→∞

(d(xnk
, z)− d(xnk+1

, z)) ≤ 0. (3.7)

To prove (3.7), suppose {d(xnk
, z)} is a subsequence of {d(xn, z)}, then

lim sup
k→∞

(
d2(xnk

, z)− d2(xnk+1
, z)

)
= lim sup

k→∞

(
(d(xnk

, z)− d(xnk+1
, z))(d(xnk

, z) + d(xnk+1
, z))

)
≤ 0. (3.8)

Now from (3.5), (3.7) and condition (i) of (3.1), we have that

lim sup
k→∞

(
(1− αnk

)(γnk,0 − kj)

N∑
j=1

γnk,jd
2(xnk

, Tjxnk
)

)
≤ lim sup

k→∞

(
α2
nk
d2(u, z) + (1− αnk

)d2(xnk
, z)

− d2(xnk+1, z)

+ lim sup
k→∞

(2αnk
(1− αnk

)⟨−→uz,−−→unk
z⟩
)

= lim sup
k→∞

(
d2(xnk

, z)− d2(xnk+1
, z)

)
≤ 0. (3.9)

Hence, we obtain that

lim
k→∞

d(xnk
, Tjxnk

) = 0. (3.10)

Using (3.1) and (3.10), we have that

d(unk
, xnk

) ≤
N∑
j=1

γnk,jd(xnk
, Tjxnk

) → 0 as k → ∞. (3.11)

Also, using (3.1) and (3.11), we have that

lim
k→∞

d(xnk+1
, xnk

) = 0. (3.12)

Since {xnk
} is bounded on an Hadamard space X, it follows from Lemma 2.3 that there exists a subsequence {xnkj

}
of {xnk

} such that △− limj→∞{xnkj
} = x∗. Also, using (3.11) and Lemma 2.3, there exists a subsequence {unkj

} of

{unk
} such that △ − limj→∞{unkj

} = x∗ . Now, applying (3.10) and Lemma 2.5, we obtain that x∗ ∈ ∩N
j=1F (Tj),

which also implies that x∗ ∈ Γ. Next, we prove that {xn} converges strongly to x∗. To prove this, we first show
that limk→∞⟨−→uz,−−→unk

z⟩ ≤ 0. Let x∗ = PΓu. Since {unk
} is bounded, we choose a subsequence {unkj

} of {unk
} which

∆-converges to x∗ such that

lim
k→∞

⟨−→uz,−−→unk
z⟩ = lim

j→∞
⟨−→uz,−−−→unkj

z⟩

≤ ⟨−→uz,
−→
x∗z⟩. (3.13)

Applying Lemma (2.6) and (3.11), we obtain that

lim
k→∞

⟨−→uz,−−→unk
z⟩ ≤ ⟨−→uz,

−→
x∗z⟩

≤ 0. (3.14)

From Lemma 2.8 and (3.5), we obtain

d2(xnk+1
, x∗) ≤ (1− αnk

)d2(xnk
, x∗) + αnk

(
αnk

d2(u, x∗) + 2(1− αnk
)⟨
−−→
ux∗,

−−−→
unk

x∗⟩
)
. (3.15)

It suffices from condition (i) of (3.1) and (3.14) that limk→∞ bnk
≤ 0. Applying Lemma 2.8 to (3.15), we obtain that

d(xn, x
∗) → 0 as n → ∞. Therefore, we conclude that {xn} converges strongly to x∗ = PΓu. □ We now consider a

Halpern extragradient method for approximating a common solution to the fixed point problem of k-strictly pseudo-
contractive mappings and EP with a pseudo-monotone function f .
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Theorem 3.3. LetK be a nonempty, closed and convex subset of a Hadamard spaceX and assume that the bifunction
f satisfies B1, B2, B3 and B4. Let Tj : X → X be a finite family of kj-strictly pseudocontractive mappings for some
0 < kj < 1 such that Γ := {∩N

j=1F (Tj) ∩ S(f,K)} ≠ ∅. Let the sequence {xn} be generated iteratively by

Step 1: solve the minimization problem and let wn be defined as

wn ∈ Argminy∈K{f(xn, y) +
1

2λn
d2(xn, y)}. (3.16)

Step 2: solve the following minimization problem and let zn be defined as

zn ∈ Argminy∈K{f(wn, y) +
1

2λn
d2(xn, y)}. (3.17)

Step 3: determine the next approximation un as

un = γn,0zn ⊕
N∑
j=1

γn,jTjzn.

Step 4: Compute the next iterate xn+1 as

xn+1 = αnu⊕ (1− αn)un.

Step 5: n := n + 1 and go back to step 1, where 0 < ρ ≤ λn ≤ µ < { 1
2c1

, 1
2c2

} for n = 0, 1, 2, .. and {αn} is a
sequence in (0, 1) satisfying

1. lim
n→∞

αn = 0 and
∞∑

n=1
αn = ∞;

2.
∑N

j=0 γn,j = 1 and γn,0 ⊂ [a, b] for some a, b ∈ (kj , 1). Then, {xn} converges strongly to x∗ = PΓu, where PΓ is
the metric projection of X onto Γ.

In order to prove Theorem 3.3, we need to establish the following result.

Lemma 3.4. Assume that {xn}, {wn} and {zn} are generated by (3.36) and z ∈ S(f,K), then we have

d2(zn, z) ≤ d2(xn, z)− (1− 2c1λn)d
2(xn, wn)− (1− 2c2λn)d

2(wn, zn). (3.18)

Proof . Let z ∈ S(f,K), since zn is the solution of the minimization problem in (3.17), by letting y = vzn ⊕ (1− v)z
such that v ∈ [0, 1), we have

f(wn, zn) +
1

2λn
d22(xn, zn) ≤ f(wn, y) +

1

2λn
d2(xn, y)

= f(wn, vzn ⊕ (1− v)z) +
1

2λn
d2(xn, vzn ⊕ (1− v)z)

≤ vf(wn, zn) + (1− v)f(wn, z) +
1

2λn
{vd2(xn, zn) + (1− v)d2(xn, z)

− v(1− v)d2(zn, z)}. (3.19)

Since f(z, wn) ≥ 0, then pseudo-monotonicity property of f implies that f(wn, z) ≤ 0. Hence, we can re-write
(3.19) as

f(wn, zn) ≤
1

2λn
{d2(xn, z)− d2(xn, wn)− vd2(zn, z)}.

Now, if v → 1−, we have

f(wn, zn) ≤
1

2λn
{d2(xn, z)− d2(xn, zn)− d2(zn, z)}. (3.20)
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Also, since {wn} solves the minimization problem in (3.16), by letting y = vwn ⊕ (1− v)zn such that v ∈ [0, 1), we
have

f(xn, wn) +
1

2λn
d2(xn, wn) ≤ f(xn, y) +

1

2λn
d2(xn, y)

= f(xn, vwn ⊕ (1− v)zn) +
1

2λn
d2(xn, vyn ⊕ (1− v)zn)

≤ vf(xn, wn) + (1− v)f(xn, zn) +
1

2λn
{vd2(xn, wn) + (1− v)d2(xn, zn)

− v(1− v)d2(wn, zn)}, (3.21)

which implies that

f(xn, wn)− f(xn, zn) ≤
1

2λn
{d2(xn, zn)− d2(xn, wn)− vd2(wn, zn)}.

Now, if v → 1−, we get

f(xn, wn)− f(xn, zn) ≤
1

2λn
{d2(xn, zn)− d2(xn, wn)− d2(wn, zn)}. (3.22)

Using the fact that f is Lipschitz-continuous with constants c1 and c2, and by applying B3, we have that

−c1d
2(xn, wn)− c2d

2(wn, zn) + f(xn, zn)− f(xn, wn) ≤ f(wn, zn). (3.23)

From (3.22) and (3.23), we get

(
1

2λn
− c1)d

2(xn, wn) + (
1

2λn
− c2)d

2(wn, zn)−
1

2λn
d2(xn, zn) ≤ f(wn, zn). (3.24)

We therefore conclude from (3.20) and (3.24) that

d2(zn, z) ≤ d2(xn, z)− (1− 2c1λn)d
2(xn, wn)− (1− 2c2λn)d

2(wn, zn).

□

Proof . Let z ∈ Γ. Using Lemma 3.4, Lemma 2.7 and step 3 of (3.36), we have that

d2(un, z) = d2(γn,0zn ⊕
N∑
j=1

⊕γn,jTjzn, z)

≤ γn,0d
2(zn, z) +

N∑
j=1

γn,jd
2(Tjzn, z)− γn,0

N∑
j=1

γn,jd
2(zn, Tjzn)

≤ γn,0d
2(zn, z) +

N∑
j=1

γn,j(d
2(zn, z) + kjd

2(zn, Tjzn))− γn,0

N∑
j=1

γn,jd
2(zn, Tjzn)

= d2(xn, z)− (γn,0 − kj)

N∑
j=1

γn,jd
2(zn, Tjzn)

≤ d2(xn, z)− (1− 2c1λn)d
2(xn, wn)− (1− 2c2λn)d

2(wn, zn)

− (γn,0 − kj)

N∑
j=1

γn,jd
2(zn, Tjzn). (3.25)

This implies that

d(un, z) ≤ d(xn, z). (3.26)
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Following the same process as in (3.4), we have that {xn} is bounded. Consequently, {un}, {wn} and {zn} are all
bounded. From (3.36), Lemma 2.2 (3) and (3.25), we obtain

d2(xn+1, z) = d2(αnu⊕ (1− αn)un, z)

≤ α2
nd

2(u, z) + (1− αn)
2d2(un, z) + 2αn(1− αn)⟨−→uz,−−→unz⟩

≤ α2
nd

2(u, z) + (1− αn)d
2(xn, z)− (1− αn)(1− 2c1λn)d

2(xn, wn)

− (1− αn)(1− 2c2λn)d
2(wn, zn)− (1− αn)(γn,0 − kj)

N∑
j=1

γn,jd
2(zn, Tjzn)

+ 2αn(1− αn)⟨−→uz,−−→unz⟩
≤ α2

nd
2(u, z) + (1− αn)d

2(xn, z) + 2αn(1− αn)⟨−→uz,−−→unz⟩. (3.27)

Using (3.9), (3.27) and condition (i) of (3.1), we have that

lim sup
k→∞

(
(1− αnk

)(1− 2c2λnk
)d2(wnk

, znk
)

)
≤ lim sup

k→∞

(
α2
nk
d2(u, z) + (1− αnk

)d2(xnk
, z)− d2(xnk+1, z)

+ lim sup
k→∞

(2αnk
(1− αnk

)⟨−→uz,−−→unk
z⟩
)

= lim sup
k→∞

(
d2(xnk

, z)− d2(xnk+1
, z)

)
≤ 0. (3.28)

Hence, we obtain from (3.28) and the fact that (1− 2c2λnk
) > 0 that

lim
k→∞

d(wnk
, znk

). (3.29)

Following the same approach in (3.28), we have that

lim
k→∞

d(wnk
, xnk

) = 0. (3.30)

Also, applying (3.27) in (3.28), we get

lim
k→∞

d(znk
, Tjznk

) = 0. (3.31)

Using (3.29) and (3.30), we get

lim
k→∞

d(znk
, xnk

) = 0. (3.32)

On replacing n by nk in (3.20) and (3.24), and taking the limit , we obtain that

lim
k→∞

f(wnk
, znk

) = 0. (3.33)

Since {znk
} is bounded, using Lemma 2.3, there exists a subsequence {znkj

} of {znk
} such that△−limj→∞{znkj

} =

x∗. Now, since {zn} solves the minimization problem in (3.17) and by letting z = vzn ⊕ (1− v)y such that v ∈ [0, 1)
and y ∈ K, we have

f(wn, zn) +
1

2λn
d2(xn, zn) ≤ f(wn, z) +

1

2λn
d2(xn, z)

= f(wn, vzn ⊕ (1− v)y) +
1

2λn
d2(xn, vzn ⊕ (1− v)y)

≤ vf(wn, zn) + (1− v)f(wn, y) +
1

2λn
{vd2(xn, zn)

+ (1− v)d2(xn, y)− v(1− v)d2(zn, y)}.
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This implies that

f(wn, zn)− f(wn, y) ≤
1

2λn
{d2(xn, y)− d2(xn, zn)− vd2(zn, y)}.

Now, if t → 1−1, we obtain

1

2λn
{d2(xn, zn) + d2(zn, y)− d2(xn, y)} ≤ f(wn, y)− f(wn, zn), (3.34)

which implies that

−1

2λn
d(xn, zn){d(zn, y) + d(xn, y)} ≤ f(wn, y)− f(wn, zn). (3.35)

Since {ynkj
} of {ynk

} such that △− limj→∞{ynkj
} = x∗. Using (3.32), (3.33), replacing n with nk in (3.35) and

taking limsup as k → ∞, we get

0 ≤ lim sup
j→∞

f(ynkj
, y), ∀ y ∈ K.

Now, since f(., y) is △-upper semicontinuous, we get

f(x∗, y) ≥ 0,∀ y ∈ K.

Hence, x∗ ∈ S(f,K). Therefore, we conclude that x∗ ∈ Γ. Also, following the same argument as in (3.14) and (3.15),
we conclude that {xn} converges strongly to x∗ = PΓu. □

Corollary 3.5. Let X be a Hadamard space and Tj : X → X, j = 1, 2, .., N be a finite family of nonexpansive
mappings such that Γ := ∩N

j=1F (Tj) ̸= ∅. For arbitrary x1, u ∈ X, let the sequence {xn} be generated iteratively by
(3.1), where {αn} is a sequence in (0, 1) satisfying

1. limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

2.
∑N

j=0 γn,j = 1 and γn,0 ⊂ (0, 1).

Then, {xn} converges strongly to x∗ = PΓu, where PΓ is the metric projection of X onto Γ.

Corollary 3.6. Let C be a nonempty, closed and convex subset of a real Hilbert space H and Tj : C → C, j =
1, 2, .., N be a finite family of kj− strictly pseudo-contractive mappings for some 0 < kj < 1 such that Γ :=
∩N
j=1F (Tj) ̸= ∅. For arbitrary x1, u ∈ X, let the sequence {xn} be generated iteratively by{

un = γn,0xn +
∑N

j=1 γn,jTjxn;

xn+1 = αnu+ (1− αn)un;
(3.36)

where {αn} is a sequence in (0, 1) satisfying

1. limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

2.
∑N

j=0 γn,j = 1 and γn,0 ⊂ [a, b] for some a, b ∈ (kj , 1).

Then, {xn} converges strongly to x∗ = PΓu, where PΓ is the metric projection of H onto Γ.

We highlight our contributions as follows:

1. We considered the pseudomonotone EP in a more general Hadamard space, where [20, 42] considered the Hilbert
spaces.

2. The class of mappings considered in this article generalizes the ones considered in [3, 13].

3. Our method of proof is simple and unique.
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Example 3.7. Let X = R, T1(x) = −2x be 1
3 -strict pseudocontractive mapping and T2(x) = −5x be 2

3− strict
pseudocontractive mapping with {0} = F (T1) = F (T2). Suppose that f(x, y) = 2xy(y − x) + xy|y − x| with λn = 0.5

and γn,0 = 3n
2n2+3n+7 , γn,1 = 2n2

2n2+3n+7 , γn,2 = 7
2n2+3n+7 and µn = 0.56 and αn = 1

2n+1 . It can be observed that all
the conditions of (3.36) have been satisfied. A simple computation shows that (3.36) takes the following form.

Step 1: solve the minimization problem and let wn be defined as

wn ∈ Argminy∈K{f(xn, y) +
1

2λn
d2(xn, y)}, (3.37)

Step 2: solve the following minimization problem and let zn be defined as

zn ∈ Argminy∈K{f(wn, y) +
1

2λn
d2(xn, y)}, (3.38)

Step 3: determine the next approximation un as

un = γn,0zn ⊕
2∑

j=1

γn,jTjzn,

Step 4: Compute the next iterate xn+1 as

xn+1 =
1

2n+ 1
u⊕ 2n

2n+ 1
un,

Step 5: n := n+ 1 and go back to step 1,

Remark
To check the efficiency of our main result, we run a numerical simulation with operators and sequences as defined in
our Algorithm. The convergence is shown in the figures presented above with a stopping criterion ||xn+1 − xn|| ≤ ϵ,
where ϵ = 10−4.

4 Conclusion

In this paper, we proposed and analyzed the strong convergence theorem of an extragradient Halpern iterative
method for solving the fixed point problem of a finite family of k-strictly pseudo-contractive mappings and a pseu-
domonotone equilibrium problem in Hadamard space. Strong convergence result of these two iterative algorithms were
proved. Furthermore, the method of proof employed in this paper is quite different from the usual two cases approach
(see [1, 2, 3, 7, 8, 11, 13, 22, 24]). Consequences and numerical examples were displayed to show the applicability of
our result.
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