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Abstract

A novel technique called the Variational Adomian decomposition method (VIADM) is used to approximate an ana-
lytical solution for several types of non-linear fractional differential equations. Some examples are presented to back
up our findings. The solution procedure and results indicated that the proposed method is very effective, reliable,
and straightforward. The results show how effective and precise the present technology is at resolving various nonlin-
ear problems in applied science. The MATLAB software carried out all the computations and graphics. Fractional
derivatives are mentioned in Caputo Sense. Moreover, a graphical representation was made for the solution of some
examples. For integer and fractional order problems, solution graphs are shown.
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1 Introduction

Mathematical modelling of several phenomena problems refers to fractional non-linear differential equations in
various areas of engineering, fluid mechanics and other applied sciences. Fractional Calculus (FC) has been applied and
may be described effectively using fractional calculus mathematical techniques, in recent decades, [5, 6, 10, 11]. Because
at most fractional non-linear differential equations (FDEs) don’t have accurate analytic solutions, the numerical and
approximation techniques should be tested. Adomian decomposition (ADM) [1, 8], Variational Iteration method
[3, 4, 7, 13], Homotopy perturbation (HAM) [2, 9, 14] and others are examples of modern analytic approaches The
VIM and the ADM are the most obvious ways of the solutions FDEs for providing the analytic solutions, in addition,
numerical-approximate solutions alone linearisation (discretization) for non-linear equations.

In this work, we will provide a novel approach of (VIADM) for the solution of (FDEs) along with the initial and
boundary conditions [12].

2 Variational Iteration Adomian Decomposition Method for Solving PDEs with Frac-
tional Order

Consider the fractional differential equation as follows:
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CDα
t y(x, t) + Ly(x, t) +Ny(x, t)− f(x, t) = 0, (2.1)

where, CDα
t means the Caputo Fractional order derivative, N,L are the Nonlinear terms and linear differential Operator

respectively, and f refers the source term.

Therefore, the construct correction functional using VIM for Eq. (2.1) is provided by:

yn+1(x, t) = yn(x, t) +

∫ t

0

λ(x, s)[CDα
t yn(x, s) + L(ỹn(x, s)) +N(ỹn(x, s))− f(x, s)]ds, (2.2)

where, ỹ(x, t) is a restricted variation. To solve Eq. (2.2) by VIM, λ (Lagrange Multiplier)is determined via integration
by parts. To choose y0 may be selected by a function which satisfies the initial and boundary conditions. Then the
related Variational Iteration formula is given by:

yn+1(x, t) = yn(x, t) + Jα
t [λ(x, s)[

CDα
t (yn(x, s)) + L(ỹn(x, s)) +N(ỹn(x, s))− f(x, s)]]. (2.3)

The continuous functions y(x, s) and f(x, s) and m − 1 < α ≤ m. In the Caputo Sense, α means a parameter
explaining the order of the fractional derivative and Jα

t means Riemann-Liouvile integral operator of fractional order
α = 1 + β −m. Then, Eq. (2.3) becomes:

yn+1(x, t) = yn(x, t) +
1

Γ(α)

∫ t

0

(t− s)α−1λ(x, s)

[
∂β

∂tβ
yn(x, s) + L(ỹn(x, s)) +N(ỹn(x, s))− f(x, s)

]
ds

0 < β ≤ 1 (2.4)

by approximate CDα
t y by

(
∂β

∂tβ
y
)
. To find λ(x, s), suppose α = 1, β = m, the correction functional of Eq. (2.4) may

be written as follows approximately:

yn+1(x, t) = yn(x, t) +

∫ t

0

λ(x, s)

[
L(ỹn(x, s)) +N(ỹn(x, s))− f(x, s) +

∂m

∂tm
yn(x, s)

]
ds,

where, yn is considered as a restricted variation, and δỹn = 0

δyn+1(x, t) = δyn(x, t) + δ

∫ t

0

λ(x, s)

[
∂m

∂tm
yn(x, s) + L(ỹn(x, s)) +N(ỹn(x, s))− f(x, s)

]
ds (2.5)

Then, consequently Eq. (2.5) with m = 1 will be reduced to:

δyn+1(x, t) = δyn(x, t) + δ

∫ t

0

λ(x, s)

(
∂

∂t
yn(x, s) + L(ỹn(x, s)) +N(ỹn(x, s))− f(x, s)

)
ds. (2.6)

By using the method of integration by parts on Eq. (2.6) will give the following formula:

δyn+1(x, t) = δyn + λ((x, s))δyn|s=t +

∫ t

0

λ′(x, s)δynds

and then

δyn+1 = (1 + λ(x, s))δyn +

∫ t

0

λ′(x, s)δyn(x, s)ds = 0.

As a result, the stationary conditions are obtained:

λ′(x, s) = 0 and 1 + λ(x, s)|s=t = 0.

Thus, the general Lagrange multiplier may be defined as λ(x, s) = −1.

So, the following iteration formula for Eq. (2.2) is obtained by:

yn+1(x, t) = yn(x, t)− Jα
t

[
∂

∂t
yn(x, s) + Lyn(x, s) +Nyn(x, s)− f(x, s)

]
.
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Now, for m = 2, after substituting the value of m, we get:

α = β − 1, β = m 1 < α ≤ 2.

The Eq. (2.3) becomes:

yn+1(x, t) = yn(x, t) +
1

Γ(β − 1)

∫ t

0

(t− s)β−2λ(x, s)

[
∂m

∂tm
ys(x, s) + L(ỹn(x, s)) +N(ỹn(x, s))− f(x, s)

]
ds (2.7)

By taking the first variation of Eq. (2.7) with respect to yn and taking thus δyn = 0 and δy′n = 0, yields to:

δyn+1(x, t) = δyn(x, t) + δ

{
1

Γ(β − 1)

∫ t

0

(t− s)β−2λ(x, s)

[
∂m

∂tm
yn(x, s) + L(ỹn(x, s))

+N(ỹn(x, s))− f(x, s)] ds}

where, yn is considered as a restricted variation and hence:

δyn+1(x, t) = δyn(x, t) +
1

Γ(β − 1)

∫ t

0

(t− s)β−2λ(t, s)δ

(
∂2

∂t2
yn(t, s)

)
ds (2.8)

Carrying the integration by parts twice, then Eq. (2.8) will be:

δyn+1(x, t) = δyn(x, t) + λ(t, s)δy′n(t, s)|t0 − λ′δyn(t, s)|t0 +
∫ t

0

λ′′(t, s)δyn(t, s)ds

and

δyn+1(x, t) = (1− λ′)δyn(t, s)|t=s + λδy′n(t, s)|t=s +

∫ t

0

λ′′(t, s)δyn(t, s)ds.

Since δyn is arbitrary, and from the theory of Calculus of variation, and the following Euler equation is obtained:

λ′′(t, s) = 0 (2.9)

with the stationary conditions:
1− λ′(t, s)|t=s = 0, λ(t, s)|t=s = 0. (2.10)

Solving Eqs. (2.9) - (2.10), will give the following solution:

λ(t, s) = s− t.

So, the following iteration formula (the correction functional for Eq. (2.7) will reads as follows:

yn+1(x, t) = yn(x, t) +
1

Γ(β − 1)

∫ t

0

(t− s)β−2(s− t)

[
∂β

∂tβ
yn(x, s) + L(yn(x, s)) +N(yn(x, s))− f(x, s)

]
ds. (2.11)

Thus,

yn+1(x, t) = yn(x, t) +
β − 1

Γ(β)

∫ t

0

(t− s)β−1(s− t)

[
∂β

∂tβ
yn(x, s) + L(yn(x, s)) +N(yn(x, s))− f(x, s)

]
ds.

So, the following iteration formula becomes:

yn+1(x, t) = yn(x, t)− (β − 1)Jα
t

[
∂β

∂tβ
yn(x, s) + L(yn(x, s)) +N(yn(x, s))− f(x, s)

]
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3 Applications and Results

In this part, certain numerical examples will be investigated in order to verify the accuracy for the suggested
approach given in the previous section.

Example 3.1. Consider

CDα
0,ty −

∂2y

∂x2
− y = 0 (3.1)

with the initial conditions:
y(x, 0) = 1 + sinx, yt(x, 0) = 0.

First, the correction functional will be found by utilizing VIM to get the solution of Eq. (3.1)

yn+1(x, t) = yn(x, t) +

∫ t

0

λ(x, s)

[
∂α

∂tα
yn(x, s)−

∂2ỹn(x, s)

∂x2
− ỹn(x, s)

]
ds.

Taking the correction functional stationary and δỹn = 0 and δy′n = 0, we get:

δyn+1(x, t) = δyn(x, t) +

∫ t

0

δλ(x, s)

[
∂α

∂tα
yn(x, s)−

∂2ỹn(x, s)

∂x2
− ỹn(x, s)

]
ds. (3.2)

Second, on the iteration of Eq. (3.2), apply Adomian polynomials for nonlinear terms, Eq. (3.2) becomes:

δyn+1(x, t) = δyn(x, t) +

∫ t

0

δλ(x, s)

[
∂α

∂tα
yn(x, s)−

∂2(ỹn(x, s))

∂x2
−

∞∑
i=0

Ai

]
ds (3.3)

where,
∑∞

i=0 Ai represents Adomian polynomials and y =
∑∞

i=0 Ai to find λ, approximate
(

∂α

∂tα

)
by y′′ and using the

method of integration by parts twice, then Eq. (3.3)

δyn+1(x, t) = δyn(x, t) + δλy′n(x, s)|s=t − δλ′yn(x, s)|s=t +

∫ t

0

δλ′′yn(x, s)ds = 0

= (1− λ′)|s=tδyn(x, t) + λ(x, s)|s=tδy
′
n(t, s) +

∫ t

0

λ′′δyn(x, s)ds = 0.

Since δyn is arbitrary, and using theory of calculus of variation, get

λ′′(x, s)|s=t = 0

and
λ(x, s)|s=t = 0, 1− λ′(x, s)|s=t = 0.

Simplifying the equations, and solving the above equations will give the following solution λ = s − t and can be
get the variational iteration formula from Eq. (3.3) as follows:

yn+1(x, t) = yn(x, t) +

∫ t

0

(s− tα)

[
∂αyn(x, s)

∂tα
− ∂2yn(x, s)

∂x2
−

∞∑
i=0

Ai

]
ds.

Start with the initial approximation:
y0 = 1 + sinx.

By using Eq. (3.3), we have the following iteration formula

yn+1(x, t) = yn(x, t) +

∫ t

0

(s− t)
1

Γ(α)
(t− s)α−1

[(
∂αyn
∂tα

)
− ∂2yn

∂x2
−

∞∑
i=0

Ai

]
ds.
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Then

y1(x, t) = y0(x, t)−
(α− 1)

Γ(α)

∫ t

0

(t− s)α

[(
∂αyn
∂tα

)
− ∂2yn

∂x2
−

∞∑
i=0

Ai

]
ds

= y0(x, t) +
tα

Γ(α+ 1)

[(
∂αy0
∂tα

)
− ∂2y0

∂x2

]
= 1 + sinx+

1

Γ(α+ 1)
tα

y2(x, t) = y1(x, t) +
tα

Γ(α+ 1)

[(
∂αy1
∂tα

)
− ∂2y1

∂x2
− y1

]
= sinx+

1

Γ(α+ 1)
tα +

1

Γ(2α+ 1)
t2α + 1.

Thus,

yn+1(x, t) = sinx+
1

Γ(α+ 1)
tα +

1

Γ(2α+ 1)
t2α + ...+

1

Γ(nα+ 1)
tnα + 1.

To find the validity of the approximated solution, when α = 2, the exact solution is:

y(x, t) = sinx+ cosh t.

Therefore,

yn+1(x, t) = 1 + sinx+
t2

Γ(3)
+

t4

Γ(5)
+

t6

Γ(7)
+ ... = sinx

(
1 +

t2

2!
+

t4

4!
+

t6

6!
+

t8

8!
+ ...

)
= sinx+ cosh t.

The following Figures show the exact and obtained results of solutions (approximate solutions) at α = 1.6, 1.8, 2,
here we use four terms to approximate the exact solution, the proposed method VIADM has a high convergence order
and higher accuracy we get. Similarly, in figures the 3D exact and obtained results are plotted at α = 1.6, 1.8, 2. All
the exact and approximate results on the Graphs have shown are very closed and explain the reliability of the present
technique.

Figure 1: Show the Exact and approximate solution for α = 1.6, 1.8, 2

Example 3.2. Consider the nonhomogeneous linear Klein-Gordon equation with fractional order:

∂αy

∂tα
− ∂2y

∂x2
+ y = x3t3 + 6x3t− 6xt3 t > 0, 1 < x ≤ 2 (3.4)
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Figure 2: Show the 3D Absolute solution plots at α = 2

Figure 3: Show the 3D Absolute solution plots at α = 1.8

with
y(x, 0) = 0, yt(x, 0) = 0.

According to the VIADM, to the above equation, the iteration formula for Eq. (3.4) is given by:

yn+1(x, t) = yn(x, t)− (α− 1)Jα
t

[
∂αy

∂tα
− ∂2y

∂x2
+ y − 6x3t− x3t3 + 6xt3

]
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and applying the Adomian polynomials to the nonlinear terms, we get:

yn+1(x, t) = yn(x, t)− (α− 1)Jα
t

[
∂αy

∂tα
− ∂2y

∂x2
+ y −

∞∑
i=0

Ai −
∞∑
i=0

Bi +

∞∑
i=0

Ci

]
,

where,
∞∑
i=0

Ai = 6x3t

∞∑
i=0

Bi = x3t3

∞∑
i=0

Ci = 6xt3.

If we begin with:
y0(x, t) = y0(x, 0) + tyt(x, 0) = 0,

we can obtain

y1(x, t) = (α− 1)

[
6x3 t1+α

Γ(2 + α)
+ x3 6tα+3

Γ(α+ 4)
− 36x

tα+3

Γ(α+ 4)

]
y2(x, t) = 6x3 tα+1

Γ(α+ 2)
+ 6x3 tα+3

Γ(α+ 4)
− 36x

tα+3

Γ(α+ 4)
,

and

(α− 1)2
[
6x3 t2α+1

Γ(2α+ 2)
− 36x

t2α+1

Γ(2α+ 2)
+ 6x3 t2α+3

Γ(2α+ 4)
− 72

t2α+3

Γ(2α+ 4)

]
Then, the general solution when α = 2 is given by:

y(x, t) = x3t3 + x3 6t5

Γ(6)
− 36

xt5

Γ(6)
+ 36

xt5

Γ(6)
− 36x

6t7

Γ(8)
− 6x3 t5

Γ(6)
− 6x3 t7

Γ(8)
+ 36

xt7

Γ(8)
+ ...

By canceling some noise terms, yields the true solution of Eq. (3.4)

y(x, t) = x3t3

4 Conclusions

Fractional nonlinear differential equations with initial and boundary conditions are investigated analytically. Frac-
tional derivatives are given in the Caputo Sense for every case. The solutions graphs are provided to demonstrate the
best relevance of the suggested method. The graphs show that the proposed approach works well for solving problems
of both integer and fractional order. To check the validity and efficiency of the available method, certain instances
of the analytical solution are measured. The findings show that when the issues converge towards integer order, the
accuracy of the suggested approach improves.
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