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In this paper, an analytical solution is presented for the stagnation-point flow of MHD 
viscous Walters’ B fluid towards a vertical stretching surface with elastic-deformation, 
thermal radiation and chemical reaction. The higher non-linear ordinary differential 
equations for the heat and mass transfer are obtained from partial differential equations 
via similarity transformation techniques and solved by the modern analytical method. The 
behaviors of the various embedded parameter are addressed and the result justifies 
among others that the fluid exhibits Newtonian properties in the absence of local 
Weissenberg number. On the other hand, the presence of local Weissenberg number 
makes the model possess the Non-Newtonian properties with great industrial application 
such as plastic film, artificial fibers, and higher molecular-weight liquid used in industries 
and engineering field, while greater cooling problems commonly encountered in 
industries and engineering discipline for the cooling of the system or electronics 
components is observed with higher values of thermal buoyancy effect. 
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1. Introduction 

The boundary layer behavior of Newtonian fluid has 

gained significant attention in the years past due to its 

various scientific and engineering applications. Little 

among such applications is the boundary layer resistor 

in aerodynamics and fabrication of adhesive tapes. 

Singh et al. [1] worked on convective heat and mass 

transfer with the volumetric rate of heat generation/ 

absorption and the finding indicated among others that 

the rate of mass transfer is boosted with reverse 

phenomena with the rate of heat transfer over the 

enhancement on generation /absorption. Wu et al. [2] 

presented non-linear exact and asymptotic solutions of 

the Brinkman type of Navier–Stokes equation where 

the introduction of the Darcy term, makes the pressure 

field differs greatly from the classical stagnation-point 

flow. Akinbo and Olajuwon [3-5] investigated by 

means of Homotopy Analysis Method as well as 
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Galerkin Weighted Residual Method the 

hydromagnetic flow via a vertical plate. The result 

revealed among others that the presence of convective 

heat parameter pave way for the penetration of 

thermal impact to the quiescent fluid. 

Ellahi et al. [6] investigated the pressure-driven 

flow of aluminum oxide-water-based nanofluid with 

the combined impact of entropy generation and 

radiative electro-magnetohydrodynamics flow 

through a porous media via an asymmetric wavy 

channel where the residual errors are found to be 

minima at 20th order of iterations. Shehzad et al. [7] 

investigated internal energy loss due to entropy 

generation for non-Darcy Poiseuille flow of silver-

water nanofluid where the enhancement in entropy 

was evident due to a rise in the pressure gradient. 

Zeeshan et al. [8] observed decelerating nanofluid 

velocity via the enhancing modified magnetic field. 

However, the modern development in science and 

https://dx.doi.org/10.22075/jhmtr.2022.21722.1313
mailto:akinbomaths@gmail.com
https://orcid.org/0000-0003-3200-6266


28 B.J. Akinbo / JHMTR 9 (2022) 27- 38 

technology, finds Newtonian fluid not totally reliable 

while investigating higher molecular-weight liquid in 

the field, therefore, pioneered the existence of non-

Newtonian fluid. 

Shehzad et al. [9] examined electroosmotic flow of 

magnetohydrodynamics Power-law Al2O3-PVC 

nanofluid of Couette-Poiseuille flow model. It was 

reported that the flow and temperature exhibit the 

same enhanced reaction for improving the ratio of 

Helmholtz-Smoluchowski electro-osmotic velocity to 

maximum velocity as well as electro-osmotic field.  

Mahapatra and Gupta [10] reported while 

investigating viscoelastic fluid towards a stretching 

surface that the flow near the stretching surface 

corresponds to an inviscid stagnation-point flow when 

the surface stretching velocity is equal to the free 

stream. 

Hayat et al. [11] justified that the Newtonian fluid 

case can be retrieved by setting Weissenberg number 

to zero while investigating the heat transfer analysis in 

the flow of Walters’ B fluid with a convective boundary 

condition. 

Hakeem et al. [12] revealed the importance of 

radiation among others in cooling processes while 

investigating the effect of heat radiation in a Walters-

liquid B fluid over a stretching sheet with non-uniform 

heat source/sink and elastic deformation. 

Dhanalaxim [13] examined heat transfer in a 

viscoelastic fluid over a stretching sheet with frictional 

heating and work due to deformation. 

Mishra et al. [14] reported that the presence of 

chemical reaction and lewis number diminish the 

temperature profile while studying heat and mass 

transfer on MHD Walters B’ Nanofluid flow induced by 

a stretching porous surface. 

Qayyum et al. [15] revealed that more heat is 

produced through the random motion of the fluid 

particles within the frame of large Brownian motion 

when examining the effect of a chemical reaction on 

MHD stagnation-point flow of Walters-B Nanofluid 

with Newtonian heat and mass condition. 

Hayat et al. [16] examined the mixed convection in 

the stagnation-point flow adjacent to a vertical surface 

in a viscoelastic fluid. 

Other Authors like Pillai et al. [17], Abel and 

Mahesha [18], Abel et al. [19,20] and Cortell [21] 

equally contributed to the latest development of the 

subject matter. 

Keeping in mind the above-mentioned 

investigation, much attention has not been given to the 

combined impact of thermophysical parameters on the 

stagnation point flow of Walters’ B fluid in the 

literature. On the account of this sequel, the aim of this 

study is to address the gap by extending the work in 

Makinde [22] to include the stagnation-point flow of a 

Walters’ B fluid towards a vertical surface, embedded 

in a porous medium with elastic-deformation and 

chemical reaction. Walters’ B fluid is a subclass of non-

Newtonian fluid which is essential for polymer 

processing. 

2. Mathematical Formulation 

Consider the steady-state stagnation-point flow of a 

viscous incompressible hydromagnetic Walters’ B fluid 

through a porous medium along with a vertical 

isothermal stretching sheet in the presence of 

volumetric rate of heat generation and uniform 

magnetic field 𝐵0. In assumption, the fluid 

characteristics variation due to the temperature and 

chemical species concentration are limited to fluid 

density. Since the magnetic Reynolds number is noted 

to be very small in comparison with the applied 

magnetic field, therefore, the induced magnetic field is 

not taken into account. It is assumed that the velocity 

of the stretching sheet is 𝑢𝑤(𝑥) = 𝑎𝑥 and ambient fluid 

velocity 𝑈∞(𝑥) = 𝑐𝑥. The 𝑥 − 𝑎𝑥𝑖𝑠 is measured along 

with the plate and 𝑦 − 𝑎𝑥𝑖𝑠 is normal to it. The flow is 

being confined at 𝑦 > 0 and potential fluid drops from 

𝑦 − 𝑎𝑥𝑖𝑠 impinge on the surface, thereby making a 

division at stagnation point into two equal streams and 

the viscous flow heeds to the surface. The plate 

temperature (ambient temperature) and the surface 

concentration (ambient concentration) are 

respectively denoted by 𝑇𝑤(> 𝑇∞) and 𝐶𝑤(> 𝐶∞). 

The equations for Walters’ B fluid in tensorial form 

can be expressed (see Hayat et al. [11] and Nadeem et 

al. [23]) as; 

𝑆∗ = 2𝜂0 − 2𝑘0

𝛿𝑒

𝛿𝑡
  (1) 

Where 𝑒 is the rate of the strain tensor, 
𝛿𝑒

𝛿𝑡
 is the 

covariant differentiation of the rate of strain tensor in 

relation to the material motion, expressed as  
𝛿𝑒

𝛿𝑡
=

𝜕𝑒

𝜕𝑡
+ 𝑉. ∇𝑒 − 𝑒∇𝑉 − (∇𝑉)𝑇 . 𝑒,  

while ղ0 = ∫ 𝑁(𝜏)𝑑𝜏
∞

0
 and 𝑘0 = ∫ 𝜏𝑁(𝜏)𝑑𝜏

∞

0
 denote 

the limiting viscosity at low shear rates and short 

memory coefficient respectively with 𝑁(𝜏) being the 

distribution function with relaxation time 𝜏. On the 

account of the short memory, the term involving 

𝑘0 = ∫ 𝜏𝑛𝑁(𝜏)𝑑𝜏
∞

0
 (𝑎𝑡 𝑛 ≥ 2) are neglected. 

 
Figure 1. Flow configuration and coordinate system 
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Subject to the above expression with the 

appropriate approximation, the boundary layer 

equations for Walters’ B fluid under this present 

investigation can be written as 

  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (2) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑈∞

𝑑𝑈∞

𝑑𝑥
+ ѵ

𝜕2𝑢

𝜕𝑦2 

          −𝑘0 [𝑢
𝜕3𝑢

𝜕𝑥𝜕𝑦2 + 𝑣
𝜕3𝑢

𝜕𝑦3 +
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2 −
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
] 

          − (
𝜎𝐵0

2𝑢

𝜌
+

ѵ

𝐾
) (𝑢 − 𝑈∞) + 𝑔 𝛽𝑇(𝑇 − 𝑇∞) 

          +𝑔 𝛽𝑐(𝐶 − 𝐶∞) 

(3) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 −
𝛼

𝑘

𝜕𝑞𝑟

𝜕𝑦
+

ѵ

𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

2

 

         −
𝛿𝑘0

𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

𝜕

𝜕𝑦
[𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
] + 𝑄0(𝐶 − 𝐶∞) 

(4) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2 − 𝑟(𝐶 − 𝐶∞) (5) 

Here, 𝑄0 is taken in line with Singh et al. [1] and 

Makinde [22], as the volumetric rate of heat generation 

and the suitable boundary condition are given as  

𝑢 = 𝑢𝑤 = 𝑎𝑥, 𝑣 = 0, 𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤   𝑎𝑡   𝑦 = 0 (6) 

𝑢 → 𝑈∞ = 𝑐𝑥,   𝑇 → 𝑇∞,   𝐶 → 𝐶∞        𝑎𝑠   𝑦 → ∞ (7) 

where 𝑢 and 𝑣 as used above, stands for velocity 

components along 𝑥 and 𝑦 respectively, 𝑇 denotes 

temperature while 𝐶 stands for concentration. The 

radiative heat flux under the application of Roseland 

approximation is considered (Zeeshan et al. [24] and 

Alamri et al. [25]) as 

𝑞𝑟 =
−4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
 (8) 

where 𝜎∗ (and 𝑘∗) connote the Sterfan-Boltzmann 

constant (and mean of the absorption coefficient). We 

take on the term  𝑇4 as a linear function of temperature 

by subjecting 𝑇4 to Taylor series about 𝑇∞ and ignoring 

the higher-order terms gives 

𝑇4 ≈ 4𝑇∞
3 𝑇 − 3𝑇∞

4  (9) 

Thus, applying (9) in (8), results in 

𝜕𝑞𝑟

𝜕𝑦
=  − 

16𝜎∗𝑇∞
3

3𝑘∗

𝜕2𝑇

𝜕𝑦2  (10) 

the continuity equation (2) is trivially satisfied with 

𝑢 = 𝜕𝜓 𝜕𝑦⁄  and  𝑣 = − 𝜕𝜓 𝜕𝑥⁄   while the similarity 

solution of the governing equations are obtained by 

invoking (10) in (4) with the following transformation 

variables 

𝜂 = 𝑦√
𝑎

ѵ
 ,    𝜓 = 𝑥√𝑎ѵ𝑓(ղ), 

𝜃(𝜂) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
,   ∅(ղ) =

𝐶 − 𝐶∞

𝐶𝑤 − 𝐶∞
 

(11) 

Here, 𝜃(𝜂) represents dimensionless temperature, 

∅(𝜂) body-forth dimensionless concentration while 𝜂 

stands for the independent similarity variable. Thus 

𝑑3𝑓

𝑑𝜂3 + 𝑓(𝜂)
𝑑2𝑓

𝑑𝜂2 − (
𝑑𝑓

𝑑𝜂
)

2

+ 

𝑊𝑒 [(
𝑑2𝑓

𝑑𝜂2)

2

− 2
𝑑𝑓

𝑑𝜂

𝑑3𝑓

𝑑𝜂3 + 𝑓(𝜂)
𝑑4𝑓

𝑑𝜂4] 

−(𝑀𝑛 + 𝑃𝑠) (
𝑑𝑓

𝑑𝜂
− 𝐴) + 𝐴2 + 𝜆𝑇𝜃(𝜂) 

+𝜆𝑀∅(𝜂) = 0 

(12) 

(1 +
4

3
𝑅𝑎)

𝑑2𝜃

𝑑𝜂2 + 𝑃𝑟𝑓(𝜂)
𝑑𝜃

𝑑𝜂
+ 𝑃𝑟𝐸𝑐 (

𝑑2𝑓

𝑑𝜂2)

2

 

−𝛿𝑊𝑒𝑃𝑟𝐸𝑐 [
𝑑𝑓

𝑑𝜂
(

𝑑2𝑓

𝑑𝜂2
)

2

− 𝑓(𝜂)
𝑑2𝑓

𝑑𝜂2

𝑑3𝑓

𝑑𝜂3
] + 𝑄∅(𝜂) 

(13) 

𝑑2∅

𝑑𝜂2
+ 𝑆𝑐𝑓(𝜂)

𝑑∅

𝑑𝜂
− 𝑅𝑆𝑐∅(𝜂) = 0 (14) 

Satisfying the following boundary conditions 

𝑑𝑓(𝜂=0)

d𝜂
= 1,         f(η = 0) = 0, 

θ(η = 0) = 1,     ∅(η = 0) = 1 
(15) 

𝜕𝑓(𝜂 → ∞)

∂𝜂
= 𝐴, 𝜃(𝜂 → ∞) = 0, ∅(𝜂 → ∞) = 0 (16) 

Where 𝛿 is the elastic deformation parameter, 𝑅 =
𝑟

𝑎
 is 

the rate of chemical reaction, 𝑀𝑛 =
𝜎𝐵0

2

𝜌𝑎
 is the magnetic 

field, 𝑊𝑒 =
𝑎𝑘0

ѵ
 is the local Weissenberg Number, 𝜆𝑇 =

𝐺𝑟𝑥

(𝑅𝑒𝑥)2 is the thermal buoyancy parameter, 𝜆𝑀 =
𝐺𝑐𝑥

(𝑅𝑒𝑥)2 is 

the mass buoyancy parameter, 𝐺𝑟𝑥 =
𝑔𝛽𝑇(𝑇𝑤−𝑇∞)𝑥3

ѵ2  is 

the thermal Grashof Number, 𝐺𝑐𝑥 =
𝑔𝛽𝐶(𝐶𝑤_−𝐶∞)𝑥3

ѵ2  is 

the solutal Grashof Number, 𝑅𝑒𝑥 =
𝑢(𝑥)

ѵ
 is the Reynolds 

Number,  𝑃𝑟 =
ѵ𝜌𝐶𝑝

𝑘
 is the Prandtl number, 𝑆𝑐 =

ѵ

𝐷
 is 

the Schmidt number, 𝑃𝑠 =
ѵ

𝐾𝑎
  is the porosity 

parameter, 𝑅𝑎 =
4𝜎∗𝑇∞

3

𝑘∗𝑘
 is the radiation parameter, 

𝐸𝑐 =
𝑢𝑤

2

𝐶𝑝(𝑇𝑤−𝑇∞)
 is the Eckert number, 𝑄 =

𝑄0(𝐶𝑤−𝐶∞)ѵ

𝑎(𝑇𝑤−𝑇∞)𝛼
 

denotes internal heat generation/Absorption and 𝐴 is 
the ratio rate. 

Owing to the engineering application of the study, 

the expression for skin friction coefficient, local 

Nusselt number, and Local Sherwood number are 

respectively put into consideration as  
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𝐶𝑓 =
2𝜏𝑤

𝜌𝑢𝑤
2 ,     𝑁𝑢 =

𝑥𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)
 

𝑎𝑛𝑑    𝑆ℎ =
𝑥𝑞𝑚

𝐷(𝐶𝑤 − 𝐶∞)
 

(17) 

Here, 𝜏𝑤 typifies the shear stress on the plate, 𝑞𝑤 
body-forth surface heat while 𝑞𝑚 denotes the surface 
mass. 

𝜏𝑤  = [𝜇
𝜕𝑢

𝜕𝑦
− 𝑘0 (𝑢

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑣

𝜕2𝑢

𝜕𝑦2
+ 2

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
)]

𝑦=0

 

𝑞𝑤 = [−𝑘
𝜕𝑇

𝜕𝑦
]

𝑦=0

= [−
4𝜎

3𝑘∗

𝜕𝑇4

𝜕𝑦
]

𝑦=0

, 

𝑞𝑚 = [−𝐷
𝜕𝐶

𝜕𝑦
]

𝑦=0

 = 0 

(18) 

Considering equations (17) and (18) with (11) 
result in 

𝑅𝑒𝑥

1
2𝐶𝑓 = (1 − 𝑊𝑒)𝑓′′(0), 

𝑅𝑒𝑥

−
1
2 𝑁𝑢 = − (1 +

4

3
𝑅𝑎) 𝜃′(0), 

𝑅𝑒𝑥

−
1
2𝑆ℎ = −∅′(0) 

(19) 

3. Method of Solution 

Homotopy Analysis Method is adopted over others 

such as Variation Iterations Method, Adomial 

Decomposition and Differential Transformation 

Method, e.t.c, being a modern method and very 

efficient in solving both bounded and unbounded 

domain of nonlinear differential equations. Subject to 

the rule of solution and boundary conditions (15) and 

(16), the initial guess 

𝑓0(𝜂) = 𝐴 ∗ 𝜂 + (1 − 𝐴)[1 − 𝑒𝑥𝑝(−𝜂)], 

𝜃0(𝜂) = 𝑒𝑥𝑝(−𝜂), ∅0(𝜂) = 𝑒𝑥𝑝(−𝜂) 
(20) 

and the auxiliary linear operations 𝐿𝑓, 𝐿𝜃 , and 𝐿∅ which 

are respectively taken as; 

𝐿𝑓[𝑓(𝜂; 𝑟)] =
𝜕3𝑓(𝜂; 𝑟)

𝜕𝜂3 −
𝜕𝑓(𝜂; 𝑟)

𝜕𝜂
, 

𝐿𝜃[𝜃(𝜂; 𝑟)] =
𝜕2𝜃(𝜂; 𝑟)

𝜕𝜂2 − 𝜃(𝜂; 𝑟), 

𝐿∅[(𝜂; 𝑟)] =
𝜕2∅(𝜂; 𝑟)

𝜕𝜂2 − ∅(𝜂; 𝑟) 

(21) 

satisfy the following properties 

𝐿𝑓[𝐶1 + 𝐶2 𝑒𝑥𝑝(𝜂) + 𝐶3 𝑒𝑥𝑝(−𝜂)] = 0, 

𝐿𝜃[𝐶4 + 𝐶5 𝑒𝑥𝑝(−𝜂)] = 0 

𝐿∅[𝐶6 + 𝐶7 𝑒𝑥𝑝(−𝜂)] = 0 

(22) 

where 𝐶1, 𝐶2, . . . , 𝐶7 stand for constants. 

3.1. Zero-Order Deformation 

(1 − 𝑟)𝐿𝑓[𝑓(𝜂; 𝑟) − 𝑓0(𝜂)] = 

𝑟ℏ𝑓𝐻𝑓(𝜂)𝑁𝑓[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟), ∅(𝜂; 𝑟)] 
(23) 

(1 − 𝑟)𝐿𝜃[𝑓(𝜂; 𝑟) − 𝜃0(𝜂)] = 

𝑟ℏ𝜃𝐻𝜃(𝜂)𝑁𝜃[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟), ∅(𝜂; 𝑟)] 
(24) 

(1 − 𝑟)𝐿∅[𝑓(𝜂; 𝑟) − ∅0(𝜂)] 

= 𝑟ℏ∅𝐻∅(𝜂)𝑁∅[𝑓(𝜂; 𝑟), ∅(𝜂; 𝑟)] 
(25) 

here, ℏ ≠ 0 and 𝐻 ≠ 0 denotes the auxiliary functions 

and 𝑟 ∈ [0,1] represent embedded parameter, under 

the conditions stated below. 

𝜕𝑓(ղ; 𝑟)

𝜕𝜂
│𝜂=0 = 1,   𝑓(𝜂 = 0, 𝑟) = 0,   

𝜃(𝜂 = 0, 𝑟) = 1,     ∅(𝜂 = 0, 𝑟) = 1 
(26) 

𝜕𝑓(𝜂; 𝑟)

𝜕𝜂
│𝜂→∞ = 𝐴, 

  𝜃(𝜂 → ∞, 𝑟) = 0, ∅(𝜂 → ∞, 𝑟) = 0 

(27) 

The nonlinear operators  𝑁𝑓, 𝑁𝜃 , and 𝑁∅ are 

respectively expressed as  

𝑁𝑓[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟), ∅(𝜂; 𝑟)] =
𝜕3𝑓

𝜕𝜂3
+ 𝑓(𝜂)

𝜕2𝑓

𝜕𝜂2
 

− (
𝜕𝑓

𝜕𝜂
)

2

+ 𝛽 [(
𝜕2𝑓

𝜕𝜂2)

2

− 2
𝜕𝑓

𝜕𝜂

𝜕3𝑓

𝜕𝜂3 + 𝑓(𝜂)
𝜕4𝑓

𝜕𝜂4] 

−(𝑀𝑛 + 𝑃𝑠) (
𝜕𝑓

𝜕𝜂
− 𝐴) + 𝐴2 + 𝜆𝑇𝜃(𝜂) 

+𝜆𝑀∅(𝜂) = 0 

(28) 

𝑁𝜃[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟)] =  (1 +
4

3
𝑅𝑎)

𝜕2𝜃

𝜕𝜂2  

+𝑃𝑟𝑓(𝜂)
𝜕𝜃

𝜕𝜂
+ 𝑃𝑟𝐸𝑐 (

𝜕2𝑓

𝜕𝜂2)

2

− 

𝛿𝑊𝑒𝑃𝑟𝐸𝑐 [
𝜕𝑓

𝜕𝜂
(

𝜕2𝑓

𝜕𝜂2
)

2

− 𝑓(𝜂)
𝜕2𝑓

𝜕𝜂2

𝜕3𝑓

𝜕𝜂3
] + 𝑄∅(𝜂) 

(29) 

𝑁∅[𝑓(𝜂; 𝑟), ∅(𝜂; 𝑟)] = 

𝜕2∅

𝜕𝜂2 + 𝑆𝑐𝑓(𝜂)
𝜕∅

𝜕𝜂
− 𝑅𝑆𝑐∅(𝜂) = 0 

(30) 

Introducing 𝑟 = 0 and 𝑟 = 1, we have 

𝑓(𝜂; 0) = 𝑓0(𝜂),   𝜃(𝜂; 0) = 𝜃0(𝜂), 

∅(𝜂; 0) = ∅_0 (𝜂) 
(31) 

𝑓(𝜂; 1) = 𝑓(𝜂), 𝜃(𝜂; 1) = 𝜃(𝜂), ∅(𝜂; 1) = ∅(𝜂) (32) 

As 𝑟 rise from zero to one, the function 

𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟) and ∅(𝜂; 𝑟) approaches 𝑓0(𝜂), 𝜃0(𝜂) and 

∅0(𝜂) to be solutions 𝑓(𝜂), 𝜃(𝜂) and ∅(𝜂). In Taylor 

series, the expansion for 𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟) and ∅(𝜂; 𝑟) are 

respectively consider as 
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𝑓(𝜂; 𝑟) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)𝑟𝑚

∞

𝑚=1

 , 

𝜃(𝜂; 𝑟) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)𝑟𝑚

∞

𝑚=1

   

∅(𝜂; 𝑟) = ∅0(𝜂) + ∑ ∅𝑚(𝜂)𝑟𝑚

∞

𝑚=1

  

   𝑓𝑚(𝜂) =
1

𝑚!

𝜕𝑚𝑓(𝜂; 𝑟)

𝜕𝜂𝑚
│𝑟=0,   

𝑓𝑚(𝜂) =
1

𝑚!

𝜕𝑚𝜃(𝜂; 𝑟)

𝜕𝜃𝑚 │𝑟=0,    

  𝑓𝑚(𝜂) =
1

𝑚!

𝜕𝑚∅(𝜂; 𝑟)

𝜕∅𝑚 │𝑟=0  

(33) 

the convergence of the equation (33) concurred with 

the auxiliary parameter ℏ . supposing ℏ  is taken in such 

a way that the series (33) converge at 𝑟 = 1, then 

𝑓(𝜂) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)

∞

𝑚=1

,  

𝜃(𝜂) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)

∞

𝑚=1

, 

∅(𝜂) = ∅0(𝜂) + ∑ ∅𝑚(𝜂)

∞

𝑚=1

 

(34) 

The mth-order deformation are expressed as 

𝐿𝑓[𝑓𝑚(𝜂) − 𝜒𝑚𝑓𝑚−1(𝜂)] = ℏ𝑅𝑚
𝑓 (𝜂), 

𝐿𝜃[𝜃𝑚(𝜂) − 𝜒𝑚𝜃𝑚−1(𝜂)] = ℏ𝑅𝑚
𝜃 (𝜂) 

𝐿∅[∅𝑚(𝜂) − 𝜒𝑚∅𝑚−1(𝜂)] = ℏ𝑅𝑚
∅ (𝜂) 

(35) 

𝜕𝑓(ղ)

∂𝜂
│𝜂=0 = 0, 𝑓(𝜂 = 0) = 0, 

  
𝜕𝑓(𝜂)

∂𝜂
│𝜂→∞ = 0, 

𝜃(𝜂 = 0) = 0,          ∅(𝜂 = 0) = 0, 

𝜃(𝜂 → ∞) = 0,        ∅(𝜂 → ∞) = 0 

(36) 

𝑅𝑚
𝑓 (𝜂) =

𝑑3𝑓𝑚−1(𝜂)

𝑑𝜂3 + ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2  

− ∑
𝑑𝑓𝑛(𝜂)

𝑑𝜂

𝑚−1

𝑛=0

𝑑𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂
 

−𝛽 [2 ∑
𝑑𝑓𝑛(𝜂)

𝑑𝜂

𝑚−1

𝑛=0

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2

− ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑4𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂4

− ∑
𝑑2𝑓𝑛(𝜂)

𝑑𝜂2

𝑚−1

𝑛=0

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2 ] 

−(𝑀𝑛 + 𝑃𝑠)
𝑑𝑓𝑚−1(𝜂)

𝑑𝜂
+  𝜆𝑇𝜃𝑚−1 + 𝜆𝑀 ∅𝑚−1(𝜂) 

(37) 

 

𝑅𝑚
𝜃 (𝜂) = (1 +

4

3
𝑅𝑎)

𝑑2𝜃𝑚−1(𝜂)

𝑑𝜂2
 

+𝑃𝑟 ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑𝜃𝑚−1−𝑛(𝜂)

𝑑𝜂
 + 𝑄∅𝑚−1(𝜂) 

+𝑃𝑟𝐸𝑐 ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑2𝑓𝑛(𝜂)

𝑑𝜂2

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2
 (38) 

−𝛿𝑊𝑒𝑃𝑟𝐸𝑐 [ ∑
𝑑2𝑓𝑚−1−𝑙(𝜂)

𝑑𝜂2

𝑚−1

𝑙=0

(∑
𝑑2𝑓𝑙−𝑗(𝜂)

𝑑𝜂2

𝑑𝑓𝑗(𝜂)

𝑑𝜂

𝑙

𝑗=0

)

− ∑ 𝑓𝑚−1−𝑙(𝜂)

𝑚−1

𝑙=0

(∑
𝑑2𝑓𝑙−𝑗(𝜂)

𝑑𝜂2

𝑑3𝑓𝑗(𝜂)

𝑑𝜂3

𝑙

𝑗=0

)] 

𝑅𝑚
∅ (𝜂) =

𝑑2∅𝑚−1(𝜂)

𝑑𝜂2
− 𝑅𝑆𝑐∅𝑚−1(𝜂) 

+𝑆𝑐 ∑ 𝑓𝑚−1−𝑛(𝜂)

𝑚−1

𝑛=0

𝑑𝑓𝑛(𝜂)

𝑑𝜂
 

(39) 

and      𝜒𝑚 = 0   𝑓𝑜𝑟   𝑚 ≤ 1,      𝜒𝑚 = 1   𝑓𝑜𝑟   𝑚 > 1 

Therefore, the general solutions of equations (35-

36) are 

𝑓𝑚(𝜂) = 𝑓𝑚
∗ (𝜂) + 𝐶1 + 𝐶2 𝑒𝑥𝑝(−𝜂) + 𝐶3 𝑒𝑥𝑝(𝜂) (40) 

𝜃𝑚(𝜂) = 𝜃𝑚
∗ (𝜂) + 𝐶4 + 𝐶5 𝑒𝑥𝑝(𝜂) (41) 

∅𝑚(ղ) = ∅𝑚
∗ (𝜂) + 𝐶6 + 𝐶7 𝑒𝑥𝑝(𝜂) (42) 

3.2. Convergence of the HAM Solution 

Keeping in mind the Liao [26] and Akinbo and 

Olajuwon [27-28] suggestions, the non-zero auxiliary 

parameters ℏ𝑓 , ℏ𝜃 and ℏ∅ significantly help in adjusting 

the convergence region of the series solution. On the 

account of the following embedded parameters 𝑅𝑎 =

0.7, 𝐸𝑐 = 1.0, 𝑊𝑒 = 0.1, 𝑀𝑛 = 0.1, 𝑃𝑠 = 0.1, 𝜆𝑇 = 0.1, 

𝜆𝑀 = 0.1, 𝑃𝑟 = 0.72, 𝑆𝑐 = 0.62, 𝛿 = 1.0, 𝐴 = 0.2, 𝑅 =

0.1 and 𝑄 = 0.1, the acceptable values of ℏ𝑓 , ℏ𝜃 and ℏ∅ 

are captured at a region where ℏ − curve becomes 

parallel, such as  −0.7 ≤ ℏ𝑓 ≤ −0.1,  −1.3 ≤ ℏ𝜃 ≤

−0.1 and −1.3 ≤ ℏ∅ ≤ −0.2 (See Fig. 2). 

 
Figure 2. ℏf, ℏθ, ℏ∅-curves for f ′′(0), θ′(0) and ∅′(0) 

respectively 
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Table 1. Convergence of solution with the CPU time 

Order of 
Approximations 

CPU 
time 

𝑓′′(0) −𝜃′(0) −∅′(0) 

4 13.20 -1.4312 0.1097 0.5044 

10 133.76 -1.4566 0.0592 0.4959 

12 227.49 -1.4569 0.0567 0.4960 

14 366.97 -1.4570 0.0556 0.4961 

16 613.84 -1.4570 0.0550 0.4961 

18 1988.01 -1.4570 0.0548 0.4962 

20 1529.74 -1.4570 0.0547 0.4962 

22 2243.73 -1.4570 0.0546 0.4962 

24 3205.39 -1.4570 0.0546 0.4962 

Table 1 reveals the convergence of the iterations with 

the unbounded domain. As presented in the table, the 

momentum equation demonstrated a quick 

convergence at 14th-order  of iterations while 

concentration and energy equations meet the far-field 

boundary conditions at 18th-order and 22th-order of 

iterations respectively. 

Table 2 presents individual errors of the series 

solution via Homotopy Analysis Method with the 

indicated parameters. Clearly from the table, as the 

order of approximation increases, the residual errors 

reduced. 

4. Validation of the study 

This work is first compared under the domain 
adopted in Singh et al. [1]  by setting 𝑊𝑒 = 0, 𝐸𝑐 = 0, 
𝑅 = 0, 𝑀𝑛 = 0 and 𝛿 = 0 as well as Makinde [22] by 
setting 𝑊𝑒 = 0, 𝐸𝑐 = 0, 𝑅 = 0 and 𝛿 = 0. The results 
demonstrated a perfect agreement with each other as 
shown in table 3. 

Table 2. Residual errors of the series solution 

𝑚 𝐸𝑟𝑚
𝑓

 𝐸𝑟𝑚
𝜃 𝐸𝑟𝑚

∅ 

4 1.806 × 10−4 2.606 × 10−4 2.567 × 10−6 
10 1.889 × 10−7 1.93 × 10−6 2.174 × 10−9 
12 3.406 × 10−8 4.283 × 10−7 7.985 × 10−10 
14 3.551 × 10−9 9.228 × 10−8 2.345 × 10−10 

16 1.238 × 10−9 1.901 × 10−8 1.844 × 10−10 
18 2.016 × 10−10 3.706 × 10−9 1.015 × 10−11 

20 4.684 × 10−10 9.308 × 10−10 8.333 × 10−11 

22 1.899 × 10−10 3.435 × 10−10 9.734 × 10−11 

24 1.972 × 10−11 4.127 × 10−10 1.818 × 10−12 

Table 3. Comparison of the result with Singh et al. [1] and Makinde [22] 

Q 
𝑓′′(0) −𝜃′(0) −∅′(0) 𝑓′′(0) −𝜃′(0) −∅′(0) 𝑓′′(0) −𝜃′(0) −∅′(0) 

[1] [1] [1] [22] [22] [22] Present Present Present 

-1 1.8444 1.3908 0.4631 1.844462 1.390856 0.463174 1.844459 1.390845 0.463168 

0 1.9995 0.6392 0.4789 1.999553 0.639244 0.478964 1.999546 0.639238 0.478955 

1 2.1342 -0.0730 0.4917 2.134287 -0.073040 0.491749 2.134277 -0.073036 0.491736 

Table 4. Numerical values of the local Skin-friction coefficient, Local Nusselt number, and Local  
Sherwood number/Validation via Galerkin weighted residual method(GWRM) at 𝐴 = 0.2 

 HAM GWRM 

𝑊𝑒  𝑀𝑛  𝜆𝑇   𝜆𝑀    𝑃𝑟     𝑆𝑐      𝑅𝑎   𝐸𝑐    𝑄      𝑅     𝛿     𝑃𝑠     𝑅𝑒𝑥

1
2𝐶𝑓            𝑅𝑒𝑥

−
1
2 𝑁𝑢         𝑅𝑒𝑥

−
1
2𝑆ℎ     𝑅𝑒𝑥

1
2𝐶𝑓            𝑅𝑒𝑥

−
1
2 𝑁𝑢        𝑅𝑒𝑥

−
1
2𝑆ℎ 

0.1  0.1   0.1  0.1   0.72  0.62  0.7  1.0    0.1  0.1  1.0  0.1 
0.3 
0.5 
       1.0 
       2.0 
               1.0 
               2.0 
                      1.0 
                      2.0 
                               3.0 
                               7.1 
                                      0.24 
                                      0.78 
                                                 2.0 
                                                 3.0 
                                                          2.0 
                                                          4.0 
                                                                  0.5 
                                                                  1.0 
                                                                         0.5 
                                                                         1.0 
                                                                                 5.0 
                                                                                 10 
                                                                                          1.0 
                                                                                          2.0 

−0.824082     0.352957       0.535467 
−0.756115     0.344329       0.520938 
−0.689258     0.324723       0.499130 
−1.092921     0.234870       0.511914 
−1.333624     0.134420       0.494694 
−0.283947     0.611390       0.601486 
   0.283302     0.698849       0.651050 
−0.362700     0.540106       0.583043 
   0.127342     0.621100       0.621915 
−0.840791     0.664945       0.529531 
−0.848918     0.735177       0.527523 
−0.811240     0.314469       0.310631 
−0.827473     0.360216       0.610984 
−0.820059     0.581937       0.537417 
−0.818199     0.738754       0.538306 
−0.822501     0.148371       0.535896 
−0.818961    −0.254804     0.536739 
−0.817206    −0.063367     0.537653 
−0.808664    −0.576160     0.540218 
−0.829733     0.364052       0.734193 
−0.833985     0.372047       0.924503 
−0.825254     0.454292       0.535233 
−0.826457     0.581634       0.534937 
−1.092921     0.234870       0.511914 
−1.333624     0.134420       0.494694 

−0.824076     0.352955      0.535458 
−0.756120     0.344326      0.520926 
−0.689249     0.324719      0.499129 
−1.092915     0.234867      0.511912 
−1.333622     0.134419      0.494687 
−0.283938     0.611386      0.601479 
   0.283290     0.698846      0.651046 
−0.362681     0.540112      0.583041 
   0.127338     0.621101      0.621920 
−0.840787     0.664939      0.529528 
−0.848916     0.735175      0.527520 
−0.811236     0.314466      0.310626 
−0.827465     0.360214      0.610982 
−0.820048     0.581935      0.537415 
−0.818195     0.738749      0.538314 
−0.822500     0.148366      0.535888 
−0.818957     −0.254801   0.536736 
−0.817205     −0.063358   0.537648 
−0.808658     −0.576159   0.540215 
−0.829725      0.364045     0.734185 
−0.833983      0.372038     0.924501 
−0.825246      0.454290     0.535227 
−0.826449      0.581632     0.534935 
−1.092920      0.234869     0.511911 
−1.333622      0.134417     0.494689 
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5. Discussion of Results 

This section presents the dynamics of the different 
patients for a better understanding of the study. The 
parameters are discussed by keeping 𝑅𝑎 = 0.7, 𝐸𝑐 = 1, 
𝑊𝑒 = 0.1, 𝑀𝑛 = 0.1, 𝑃𝑠 = 0.1, 𝜆𝑇 = 0.1, 𝜆𝑀 = 0.1, 
𝑃𝑟 = 0.72, 𝑆𝑐 = 0.62, 𝛿 = 1.0, 𝐴 = 0.2, 𝑅 = 0.1 and 
𝑄 = 0.1, fixed for each varying parameter. It is noticed 
from table 4 that almost all the values of the local skin-

friction 𝑅𝑒𝑥

1
2𝐶𝑓 are negatives. This pioneer drags forces 

on the plate and impedes the flow. However, the local 

Nusselt number  𝑅𝑒𝑥

−
1
2 𝑁𝑢 and Sherwood number 

 𝑅𝑒𝑥

−
1
2𝑆ℎ improves for large values of Radiation 

parameter (𝑅𝑎), thermal and mass buoyancy 
parameter (𝜆𝑇 , 𝜆𝑀). This in turns, strengthen the 
surface heat and mass transfer with the opposite 
results as Weissenberg number (𝑊𝑒) and Magnetic 
Parameter (𝑀𝑛) varied. Moreover, It is also observed 
from the table that the rate of heat transfer is 
strengthened at higher values of Prandtl number (𝑃𝑟), 
Radiation parameter (𝑅𝑎) and elastic deformation (𝛿) 
while the presence of a chemical reaction (𝑅) > 0 and 
(𝑆𝑐) > 0 magnifies the rate of mass transfer. The 
results through Homotopy Analysis Method agreed 
when compared with Galerkin Weighted Residual 
Method (see table 4). 

The impact of magnetic interaction 𝑀𝑛 > 0 is 

reported in Fig. (3-4). The introduction of a transverse 

magnetic field in an electrically conducting fluid 

pioneer a resistive force called Lorentz force which 

inturns slow down the motion of the fluid and lower its 

layer thickness. However, the presence of Lorentz 

force gives rise to more frictional heating which 

ultimately strengthens the fluid temperature and its 

layer thickness. 

 
Figure 3. Reaction of Mn on velocity f ′(η)  

 

 
Figure 4. Reaction of Mn on temperature 𝜃(𝜂) 

Fig. (5-6) are plotted to justify the behavior of 

thermal buoyancy parameter (𝜆𝑇) on velocity and 

temperature profiles while Fig. (7-8) reveals the effect 

of mass buoyancy parameter (𝜆𝑀) on velocity and 

concentration profiles. It is observed that the fluid 

motion is magnified for higher values of (𝜆𝑇 , 𝜆𝑀) (see 

Fig. 5 and Fig. 7) which inturns magnified its layer 

thickness with the opposite influence on temperature 

and concentration profiles respectively (see Fig. 6 and 

Fig. 8). It is noteworthy that (𝜆𝑇 , 𝜆𝑀)  > 0 corresponds 

to cooling problem and greater concentration is 

noticed at the plate surface in comparison with the free 

stream concentration. 

 
Figure 5. Reaction of 𝜆𝑇 on velocity 𝑓′(𝜂) 

 
Figure 6. Reaction of of 𝜆𝑇 on temperature 𝜃(𝜂)  

 
Figure 7. Reaction of λM on velocity f ′(η) 

 
Figure 8. Reaction of 𝜆𝑀 on concentration ∅(𝜂) 
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Fig. (9-10) analyzes the behaviors of local 

Weissenberg number (𝑊𝑒) on velocity and 

temperature profiles. Large values of 𝑊𝑒 consequently 

improve the viscoelasticity through the tensile stress 

and depress the velocity of the fluid and its layer 

thickness. However, more energy is stirred-up within 

the boundary which thusly increases the thermal layer 

thickness, owing to an increase in temperature of the 

fluid. 

Fig. 11 elucidates the behavior of Prandtl number 

(𝑃𝑟) on dimensionless temperature. Prandtl number is 

inversely proportional to thermal conductivity. Higher 

values of 𝑃𝑟 correspond to polymers since the polymer 

possesses lower thermal diffusivities (Shahid et al. 

[29]), thereby pioneering the falling of the temperature 

distribution across the boundary layer and lowering its 

layer thickness. Fig. 12 illustrates the influence of 

Schmidt number (𝑆𝑐) on the concentration profile. The 

low molecular diffusivity brings about an increase in 𝑆𝑐 

that consequently diminishes the diffusion properties 

of the fluid which consequently decreases the 

concentration profile, this, in turn, result in a thinning 

concentration boundary layer. 

Fig. 13 presents the thermal boundary layer, being 

strengthened, owing to an elevation in temperature 

profile for higher values of Eckert number (𝐸𝑐) in the 

presence of elastic deformation that occurs as a result 

of energy stored in the liquid due to the frictional 

heating (see ref. [12]). However, the presence of elastic 

deformation (𝛿) displayed a very little decreasing 

negligible effect on temperature profile (see Fig. 14). 

 
Figure 9. Reaction of 𝑊𝑒 on velocity f ′(η) 

 
Figure 10. Reaction of 𝑊𝑒 on temperature 𝜃(𝜂)  

 
Figure 11. Reaction of 𝑃𝑟 on temperature 𝜃(𝜂) 

 
Figure 12. Reaction of 𝑆𝑐 on concentration ∅(𝜂) 

 
Figure 13. Reaction of 𝐸𝑐 on temperature 𝜃(𝜂) 

 
Figure 14. Reaction of 𝛿 on temperature 𝜃(𝜂) 
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The presence of Radiation parameter (𝑅𝑎) > 0 

pioneer heat from the radiation processes in the 

operating fluid, which consequently magnified the 

temperature field as well as thermal layer thickness 

(see Fig 15). 

Fig. 16 depicts the behaviors of heat source 

parameter (𝑄) on the temperature profile. As 

expected, the temperature profile overshoot for higher 

values of 𝑄. This in turn enhances the thermal layer 

thickness and enables the thermal effect to fall deeper 

into the quiescent fluid. 

Fig. (17-18) are presented to describe the behavior 

of the porosity parameter (𝑃𝑠) on dimensionless 

velocity as well as temperature fields. Increase in the 

magnitude of 𝑃𝑠 demonstrated high porosity in the 

medium, which in turn slows down the motion of the 

fluid and reduces its layer thickness. However, the 

reverse phenomenon is observed in the temperature 

profile as a slow movement of the fluid particles 

generates more heat that consequently strengthens 

the thermal boundary layer thickness. 

Various values of chemical reaction (𝑅) as reported 

in Fig. 19 decline the concentration profile which 

results in a decrease in its layer thickness. Here, 𝑅 > 0 

decays concentration buoyancy impact and decreases 

concentration field. Fig. 20 captures the behavior of 

ratio parameter (𝐴) on velocity field. Moreover, the 

motion of the fluid and the momentum layer are 

boosted at different values of 𝐴 but portrayed opposite 

behavior at 𝐴 < 1 and 𝐴 > 1. However, at 𝐴 = 1, the 

fluid and the stretching velocity are one, which inturns 

justify that the boundary layer is not in existence. 

 
Figure 15. Reaction of 𝑅𝑎 on temperature 𝜃(𝜂) 

 

Figure 16. Reaction of 𝑄 on temperature 𝜃(𝜂) 

 
Figure 17. Reaction of 𝑃𝑠 on velocity 𝑓′(𝜂) 

 
Figure 18. Reaction of of 𝑃𝑠 on temperature 𝜃(𝜂) 

 
Figure 19. Reaction of 𝑅 on concentration ∅(𝜂) 

 

Figure 20. Reaction of 𝐴 on velocity 𝑓′(𝜂) 
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Conclusion 

In this work, HAM is adopted at the 20th-order of 

approximation to solve the governing equations 

corresponding to Momentum, Energy, and 

Concentration equations, describing the stagnation-

point flow of a Walters’ B fluid towards a vertical 

surface embedded in a porous medium with elastic-

deformation and chemical reaction. The reason for this 

order of approximation is to meet the far-field 

conditions. The parameters encountered are discussed 

accordingly through graphs and tables and the 

following conclusions are drawn.  

• Higher values of chemical reaction deteriorate 

the concentration buoyancy effect and lower the 

concentration boundary layer thickness. 

• The temperature distribution is strengthened 

due to the slow movement of the fluid particles 

with the interaction of the porosity parameter 

and enhances the thermal boundary layer 

thickness. 

• The fluid exhibits Newtonian properties in the 

absence of local Weissenberg number, while the 

presence of Weissenberg number pioneers 

viscoelasticity through the tensile stress and 

depresses the momentum boundary layer 

thickness. The non-Newtonian fluid has great 

industrial applications among which are plastic 

film, artificial fibers, and higher molecular-

weight liquid used in the Science discipline. 

• The fluid temperature gain more strength for 

large values of viscous dissipation as heat 

energy is stored in the liquid due to the frictional 

heating 

• Higher values of thermal buoyancy parameter 

contribute to the cooling problem while mass 

buoyancy parameter shows a greater 

concentration at the plate surface than free 

stream concentration. The cooling process plays 

an important role in the Science and 

Engineering disciplines such as the cooling of 

electronic components. 

Nomenclature 

𝑀𝑛 Magnetic field 

𝑊𝑒 Local Weissenberg number 

𝜆𝑇 Thermal buoyancy parameter 

𝜆𝑀 Mass buoyancy parameter 

𝑃𝑟 Prandtl number 

𝑆𝑐 Schmidt number 

𝑃𝑠 permeability parameter 

𝑅𝑎 Radiation parameter 

𝐸𝑐 Eckert number 

𝑄 Internal heat generation/Absoption 

𝑈∞ Ambient velocity [𝑚𝑠−′] 

𝑢𝑤 Stretching velocity [𝑚𝑠−′] 

𝛼 Thermal diffusivity [𝑚2. 𝑠−′] 

𝛽𝑐  Concentration expansion coefficient [𝑚3𝑘𝑔−′] 

𝜂 Similarity variable 

𝜃 Dimensionless temperature 

ѵ Kinematic viscosity [𝑚2. 𝑠−′] 

𝜓 Stream Function [𝑚2. 𝑠−′] 

𝜌 Density [𝑘𝑔𝑚−3] 

𝑞𝑟 Radiation heat flux [W m2⁄ ] 

𝐶𝑝 Specific heat at constant pressure [𝐽. 𝑘𝑔−′. 𝐾−′] 

𝛽𝑇 Temperature expansion coefficient [1 𝑘⁄ ] 

𝑔 Acceleration due to gravity [𝑠𝑚−2] 

𝜎 Fluid electrical conductivity [𝑆. 𝑚−′] 

ℎ𝑓 Heat transfer coefficient [
W

m2 K] 

K Permeability of the porous medium [𝑚2] 

𝑘0 Elastic parameter 

𝑇 Fluid temperature [𝐾] 

𝐶 Fluid Concentration [𝑚 𝑘𝑔−3] 

𝑘∗ Mean of the absorption coefficient [𝑚−1] 

𝜎∗ Sterfan-Boltzmann constant [W ⋅ m−2 ⋅ K−4] 

𝑘 Thermal conductivity [𝑊. 𝑚−′. 𝐾−′] 

𝐷 Diffusion coefficient [m2 𝑠−′] 

𝜇 Dynamic viscosity (𝑘𝑔𝑚−′𝑠−′) 
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