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Abstract

There are many integral transforms that are widely used to solve many problems arising in applied mathematics and
engineering. The main goal of this paper is to use a new general integral transform to solve fractional differential
equations with the fractional derivative in the sense of Caputo. In addition, several illustrative examples are given to
demonstrate the accurateness and effectiveness of this approach. The obtained results confirm the applicability and
high accuracy of the proposed approach to solving fractional differential equations.
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1 Introduction

Fractional differential equations are generalizations of differential equations from integer order to non-integer
order. Recently, fractional differential equations have attracted the attention of many researchers due to a wide range
of applications in many fields of pure and applied mathematics such as: physics, fluid mechanics, viscoelasticity,
electrochemistry, electrodynamics, nonlinear biological systems and other fields of science and engineering, see, for
example [5, 6, 7, 21]. Consequently, considerable attentions have been given to the solutions of fractional differential
equations of physical interest.

There are various types of tools and techniques for solving the problems involving differential equations, among
them integral transform method such as: Laplace transform method [15], Sumudu transform method [23], Elzaki
transform method [4], Natural transform method [13], Aboodh transform method [1], Pourreza transform method
[2], Kamal transform method [9], Mohand transform method [16], Shehu transform method [17], Complex integral
transform method[18] etc,. The advantage of this method is that it transforms the differential problem to an algebraic
problem that can be easily solved.

The purpose of this paper is to use a new general integral transform to obtain an analytical solution of fractional
differential equations with Caputo fractional derivative.
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This paper is organized as follows. In Section 2, we give some basic definitions and important properties of the
theory of fractional calculus. In Section 3, we present the definition and fundamental properties of the new general
integral transform. In Section 4, we present our main results related to the solutions of Caputo fractional-order
differential equations using the new general integral transform method. Finally, in Section 5 some conclusions are
presented.

2 Preliminaries and basic definitions

In this section, we present the important basic definitions and properties of theory of fractional calculus, which
will be used later in this paper. For more details about the theory of fractional calculus can be found in [14], [19].

Definition 2.1. [14] The Euler gamma function, which is generalization of factorial function from set of integers to
the set of complex numbers, defined as

Γ(z) =

∞∫
0

tz−1e−tdt, z ∈ C,with Re(z) > 0. (2.1)

Definition 2.2. [14] The Riemann-Liouville fractional integral of function u : (0,+∞) → R, for α ∈ R+ is defined
as

Iαu(t) =


1

Γ(α)

t∫
0

(t− τ)
α−1

u(τ)dτ, α > 0,

f(t), α = 0.

(2.2)

Definition 2.3. [14] The Caputo fractional derivative of function u : (0,+∞) → R is defined as

Dαu(t) =


1

Γ(n− α)

t∫
0

(t− τ)
n−α−1

u(n)(τ)dτ, for α ̸= n ∈ R− N,

u(n)(t), for α = n ∈ N.
(2.3)

Definition 2.4. [14] Mittag-Leffler function is the generalization of exponential function denoted by Eα (z) (for one
parameter), Eα,β (z) (for two parameters) defined as

Eα (z) =

+∞∑
k=0

zk

Γ(kα+ 1)
, α ∈ R+, z ∈ C. (2.4)

Eα,β (z) =

+∞∑
k=0

zk

Γ(kα+ β)
, α, β ∈ R+, z ∈ C. (2.5)

3 A new general integral transform

In this section, we present the definition and some fundamental properties of the new general integral transform.

Definition 3.1. [8] Let u(t) be a integrable function defined for t ≥ 0, p(s) ̸= 0 and q(s) are positive real functions,
we define the general integral transform T of u(t) by the formula

T [u(t)] = T (s) = p(s)

∫ +∞

0

u(t)e−q(s)tdt, (3.1)

provided the integral exists for some q(s).

Some basic properties of the new general integral transform are given as follows

Property 1: The new general integral transform is also a linear operator

T [au1(t) + bu2(t)] = aT [u1(t)] + bT [u2(t)] , a, b ∈ R.
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Property 2: If u(t) is nth differentiable and p(s) and q(s) are positive real functions, then

T
[
u(n)(t)

]
= qn(s)T (s)− p(s)

n−1∑
k=0

qn−1−k(s)u(k)(0).

Property 3: (Convolution) Let u1(t) and u2(t) have new general integral transform T1(s) and T2(s). Then the
new general integral transform of the convolution of u1 and u2 is

T [(u1 ∗ u2) (t)] = T

[∫ +∞

0

u1(t)u2(t− τ)dτ

]
=

1

p(s)
T1(s)T2(s).

Property 4: Some special new general integral transform

T (1) =
p(s)

q(s)
,

T (t) =
p(s)

q2(s)
,

T

(
tn

n!

)
=

p(s)

qn+1(s)
, n = 0, 1, 2, ...

Property 5: The new general integral transform of tα is given by

T [tα] =
p(s)

qα+1(s)
Γ (α+ 1) , α > 0.

The advantages of the new general integral transform are that it covers all classes of integral transforms. Hence,
all the transforms in the class of Laplace transform, introduced during the last few decades, are a special case of
the new general integral transform. This transform can be applied to solve differential equations with constant and
variable coefficients and it can be easily applied to solve fractional-order differential equations. Furthermore, from the
definition of the new general integral transform, several new integral transforms can be defined by choosing new forms
for p(s) and q(s).

4 Main Result

In this section, we present our main results related to the solutions of Caputo fractional-order differential equations
using the new general integral transform method and give some illustrative examples to demonstrate the accuracy and
efficiency of the proposed method. To achieve our goal, we have to prove the following two theorems which are crucial
to the results we obtained.

Theorem 4.1. If T (s) is the new general integral transform of the function u(t), then the new general integral
transform of Riemann-Liouville fractional integral of order α > 0, is

T [Iαu(t)] =
1

qα(s)
T (s). (4.1)

Proof . The Riemann-Liouville fractional integral for the function u(t) defined by (2.2), can be expressed as the
convolution

Iαu(t) =
1

Γ(α)
tα−1 ∗ u(t). (4.2)

By applying the new general integral transform to both sides of the equation (4.2) and using properties (3) and
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(5), we get

T [Iαu(t)] = T

[
1

Γ(α)
tα−1 ∗ u(t)

]
=

1

p(s)
T

[
tα−1

Γ(α)

]
T [u(t)]

=
1

p(s)

p(s)

qα(s)
T (s)

=
1

qα(s)
T (s).

The proof is complete. □

Theorem 4.2. If n ∈ Z+ where n− 1 < α ≤ n and T (s) be the new general integral transform of the function u(t),
then, the new general integral transform of the Caputo fractional derivative of order α > 0, is

T [Dαu(t)] = qα(s)T (s)− p(s)

n−1∑
k=0

qα−1−k(s)u(k)(0). (4.3)

Proof . We put
v(t) = u(n)(t).

Then, equation (2.3), can be expressed as follows

Dαu(t) =
1

Γ(n− α)

t∫
0

(t− τ)n−α−1u(n)(τ)dτ

=
1

Γ(n− α)

t∫
0

(t− τ)n−α−1v(τ)dτ

= In−αv(t). (4.4)

By applying the new general integral transform on both sides of equation (4.4) and using the Theorem 4.1, we get

T [Dαu(t)] = T
[
In−αv(t)

]
=

1

qn−α(s)
V(s), (4.5)

where V(s) is the new general integral transform of the function v(t).

According to properties (1) and (2), we have

T [v(t)] = T
[
u(n)(t)

]
,

and

V(s) = qn(s)T (s)− p(s)

n−1∑
k=0

qn−1−k(s)u(k)(0).

Therefore, the equation (4.5) becomes

T [Dαu(t)] =
1

qn−α(s)

(
qn(s)T (s)− p(s)

n−1∑
k=0

qn−1−k(s)u(k)(0)

)

= qα(s)T (s)− p(s)

n−1∑
k=0

qα−1−k(s)u(k)(0).

The proof is complete. □



A new general integral transform for solving Caputo fractional-order differential equations 71

Corollary 4.3. • If p(s) = 1 and q(s) = s, then the Laplace transform of the Caputo fractional derivative [10] is
obtained

L [Dαu(t)] = sαL [u(t)]−
n−1∑
k=0

sα−(k+1)u(k)(0).

• If p(s) = s and q(s) = 1
s , then the Elzaki transform of the Caputo fractional derivative [12] is obtained

E [Dαu(t)] =
1

sα
E [u(t)]− s

n−1∑
k=0

1

sα−1−k
u(k)(0)

=
1

sα
E [u(t)]−

n−1∑
k=0

s2−α+ku(k)(0).

• If p(s) = 1
s and q(s) = s, then the Aboodh transform of the Caputo fractional derivative [22] is obtained

A [Dαu(t)] = sαA [u(t)]− 1

s

n−1∑
k=0

sα−1−ku(k)(0)

= sαA [u(t)]−
n−1∑
k=0

sα−2−ku(k)(0).

• If p(s) = q(s) = 1
s , then the Sumudu transform of the Caputo fractional derivative [11] is obtained

S [Dαu(t)] =
1

sα
S [u(t)]− 1

s

n−1∑
k=0

1

sα−1−k
u(k)(0)

= s−α

[
S [u(t)]−

n−1∑
k=0

sku(k)(0)

]
.

• If p(s) = 1
v and q(s) = s

v , then the natural transform of the Caputo fractional derivative [20] is obtained

N+ [Dαu(t)] =
( s
v

)α
N+ [u(t)]− 1

v

n−1∑
k=0

( s
v

)α−1−k

u(k)(0)

=
( s
v

)α
N+ [u(t)]−

n−1∑
k=0

sα−(k+1)

vα−k
u(k)(0).

• If p(s) = 1 and q(s) = s
v , then, the Shehu transform of the Caputo fractional derivative [3] is obtained

H [Dαu(t)] =
( s
v

)α
H [u(t)]−

n−1∑
k=0

( s
v

)α−1−k

u(k)(0).

Our main results are given by the following theorems.

Theorem 4.4. Let 1 < α ≤ 2 and a, b ∈ R. Then the Caputo fractional-order differential equation

Dαu(t) + au′(t) + bu(t) = 0, (4.6)

with the initial conditions
u(0) = c0, u

′(0) = c1, (4.7)
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has a solution given by

u(t) = c0

+∞∑
k=0

(−b)k

k!

+∞∑
l=0

Γ (k + l + 1) (−a)lt(α−1)l+αk

Γ ((α− 1) l + αk + 1) l!

+c1

+∞∑
k=0

(−b)k

k!

+∞∑
l=0

Γ (k + l + 1) (−a)lt(α−1)l+αk+1

Γ ((α− 1) l + αk + 2) l!

+c0a

+∞∑
k=0

(−b)k

k!

+∞∑
l=0

Γ (k + l + 1) (−a)lt(α−1)l+αk+α−1

Γ ((α− 1) l + αk + α) l!
.

Proof . Taking the new general integral transform of equation (4.6) and using the Theorem 4.2, we have

T [Dαu(t) + au′(t) + bu(t)] = 0,

qα(s)T (s)− p(s)qα−1(s)u(0)− p(s)qα−2(s)u′(0) + aq(s)T (s)− ap(s)u(0) + bT (s) = 0,

(qα(s) + aq(s) + b) T (s) = p(s)qα−1(s)c0 + p(s)qα−2(s)c1 + ap(s)c0,

T (s) =
c0p(s)q

α−1(s) + c1p(s)q
α−2(s) + c0ap(s)

qα(s) + aq(s) + b
. (4.8)

Since

1

qα(s) + aq(s) + b
=

q−1(s)

qα−1(s) + a+ bq−1(s)

=
q−1(s)

(qα−1(s) + a)

(
1 +

bq−1(s)

qα−1(s) + a

)
=

q−1(s)

(qα−1(s) + a)

(
1 +

bq−1(s)

qα−1(s) + a

)−1

=
q−1(s)

(qα−1(s) + a)

∞∑
k=0

(−1)k
(

bq−1(s)

qα−1(s) + a

)k

=

+∞∑
k=0

(−b)k
q−k−1(s)

(qα−1(s) + a)
k+1

=

+∞∑
k=0

(−b)k
q−k−1(s)

(qα−1(s) (1 + aq1−α(s)))
k+1

=

+∞∑
k=0

(−b)kq−αk−α(s)
((

1 + aq1−α(s)
)k+1

)−1

=

+∞∑
k=0

(−b)kq−αk−α(s)

+∞∑
l=0

(
k + l

l

)(
−aq1−α(s)

)l
=

+∞∑
k=0

(−b)k
∞∑
l=0

(
k + l

l

)
(−a)lql−αl−αk−α(s).

Therefore, by using equation (4.8), we have

T (s) =
(
c0p(s)q

α−1(s) + c1p(s)q
α−2(s) + c0ap(s)

)
×

(
+∞∑
k=0

(−b)k
+∞∑
l=0

(
k + l

l

)
(−a)lql−αl−αk−α(s)

)

= c0p(s)

+∞∑
k=0

(−b)k
+∞∑
l=0

(
k + l

l

)
(−a)lql−αl−αk−1(s) + c1p(s)

+∞∑
k=0

(−b)k
+∞∑
l=0

(
k + l

l

)
(−a)lql−αl−αk−2(s)

+c0ap(s)

+∞∑
k=0

(−b)k
+∞∑
l=0

(
k + l

l

)
(−a)lql−αl−αk−α(s). (4.9)
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Now, applying the inverse new general integral transform to equation (4.9), we get

u(t) = c0

+∞∑
k=0

(−b)k

k!

+∞∑
l=0

(k + l)!(−a)l

Γ ((α− 1) l + αk + 1)

t(α−1)l+αk

l!

+c1

+∞∑
k=0

(−b)k

k!

+∞∑
l=0

(k + l)!(−a)l

Γ ((α− 1) l + αk + 2)

t(α−1)l+αk+1

l!

+c0a

+∞∑
k=0

(−b)k

k!

+∞∑
l=0

(k + l)!(−a)l

Γ ((α− 1) l + αk − 1)

t(α−1)l+αk+α−1

l!

Therefore, the solution of equations (4.6) and (4.7), is

u(t) = c0

+∞∑
k=0

(−b)k

k!

∞∑
l=0

Γ (k + l + 1) (−a)lt(α−1)l+αk

Γ ((α− 1) l + αk + 1) l!

+c1

+∞∑
k=0

(−b)k

k!

∞∑
l=0

Γ (k + l + 1) (−a)lt(α−1)l+αk+1

Γ ((α− 1) l + αk + 2) l!

+c0a
+∞∑
k=0

(−b)k

k!

∞∑
l=0

Γ (k + l + 1) (−a)lt(α−1)l+αk+α−1

Γ ((α− 1) l + αk + α) l!
.

The proof is complete. □

Example: The Caputo fractional-order differential equation

D
5
4u(t) + u′(t) + u(t) = 0,

with the initial conditions
u(0) = c0, u

′(0) = c1,

has a solution given by

u(t) = c0

+∞∑
k=0

(−1)k

k!

+∞∑
l=0

Γ (k + l + 1) (−1)lt
l
4+

5k
4

Γ
(
l
4 + 5k

4 + 1
)
l!

+c1

+∞∑
k=0

(−1)k

k!

+∞∑
l=0

Γ (k + l + 1) (−1)lt
l
4+

5k
4 +1

Γ
(
l
4 + 5k

4 + 2
)
l!

+c0

+∞∑
k=0

(−1)k

k!

+∞∑
l=0

Γ (k + l + 1) (−1)lt
l
4+

5k
4 + 1

4

Γ
(
l
4 + 5k

4 + 5
4

)
l!

.

Lemma 4.5. If a = 0 in equation (4.6), then the equation

Dαu(t) + bu(t) = 0, 1 < α ≤ 2,

with the initial conditions
u(0) = c0, u

′(0) = c1,

has a solution given by

u(t) = c0

+∞∑
k=0

(−btα)k

Γ (αk + 1)
+ c1t

+∞∑
k=0

(−btα)k

Γ (αk + 2)
= c0Eα (−btα) + c1tEα,2 (−btα) .

where Eα (−btα) and Eα,2 (−btα) are the Mittag-Leffler functions defined by equations (2.4) and (2.5) respectively.
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Example: The Caputo fractional-order differential equation

D
3
2u(t) + 2u(t) = 0,

with the initial conditions
u(0) = c0, u

′(0) = c1,

as a solution given by

u(t) = c0

+∞∑
k=0

(
−2t

3
2

)k
Γ
(
3
2k + 1

) + c1t

+∞∑
k=0

(
−2t

3
2

)k
Γ
(
3
2k + 2

) = c0E 3
2

(
−2t

3
2

)
+ c1tE 3

2 ,2

(
−2t

3
2

)
.

Theorem 4.6. Let 0 < α ≤ 1 and b ∈ R. Then the Caputo fractional-order differential equation

Dαu(t)− bu(t) = 0, (4.10)

with the initial condition
u(0) = c0, (4.11)

has a solution given by

u(t) = c0

+∞∑
k=0

(btα)k

Γ (αk + 1)
= c0Eα (btα) ,

where Eα (btα) is the Mittag-Leffler function defined by equation (2.4).

Proof . Taking the new general integral transform of equation (4.10) and using the Theorem 4.2, we have

T [Dαu(t)− bu(t)] = 0,

qα(s)T (s)− p(s)qα−1(s)u(0)− bT (s) = 0,

(qα(s)− b) T (s) = p(s)qα−1(s)c0,

T (s) =
c0p(s)q

α−1(s)

qα(s)− b

=
c0p(s)q

−1(s)

1− bq−α(s)

= c0p(s)q
−1(s)

(
1− bq−α(s)

)−1

= c0p(s)q
−1(s)

+∞∑
k=0

(
bq−α(s)

)k
= c0p(s)

+∞∑
k=0

bkq−αk−1(s). (4.12)

Now, applying the inverse new general integral transform to equation (4.12), we get

u(t) = c0

+∞∑
k=0

bktkα

Γ (αk + 1)
= c0

+∞∑
k=0

(btα)
k

Γ (αk + 1)
= c0Eα (btα) .

The proof is complete. □

Example: The Caputo fractional-order differential equation

D
4
5u(t)− 4u(t) = 0,

with the initial condition
u(0) = c0,

as a solution given by

u(t) = c0

+∞∑
k=0

(
4t

4
5

)k
Γ
(
4
5k + 1

) = c0E 4
5

(
4t

4
5

)
.
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Theorem 4.7. Let 1 < α ≤ 2 and a, b ∈ R. Then the Caputo fractional-order differential equation

u′′(t) + aDαu(t) + bu(t) = 0, (4.13)

with the initial conditions
u(0) = c0, u

′(0) = c1, (4.14)

has a solution given by

u(t) = c0

+∞∑
k=0

(−b)kt2k

k!

+∞∑
l=0

Γ (k + l + 1) (−at2−α)l

Γ ((2− α) l + 2k + 1) l!

+c1

+∞∑
k=0

(−b)kt2k+1

k!

+∞∑
l=0

Γ (k + l + 1) (−at2−α)l

Γ ((2− α) l + 2k + 2) l!

+c0a

+∞∑
k=0

(−b)kt2k−α+2

k!

+∞∑
l=0

Γ (k + l + 1) (−at2−α)l

Γ ((2− α) l + 2k − α+ 3) l!

+c1a

+∞∑
k=0

(−b)kt2k−α+3

k!

+∞∑
l=0

Γ (k + l + 1) (−at2−α)l

Γ ((2− α) l + 2k − α+ 4) l!
.

Proof . Taking the new general integral transform of equation (4.13) and using the Theorem 4.2 , we have

T [u′′(t) + aDαu(t) + bu(t)] = 0,

q2(s)T (s)− p(s)q(s)u(0)− p(s)u′(0) + a(qα(s)T (s)− p(s)qα−1(s)u(0)− p(s)qα−2(s)u′(0)) + bT (s) = 0,(
q2(s) + aqα(s) + b

)
T (s) = p(s)q(s)c0 + p(s)c1 + ap(s)qα−1(s)c0 + ap(s)qα−2(s)c1 = 0,

T (s) =
c0p(s)q(s) + c1p(s) + c0ap(s)q

α−1(s) + c1ap(s)q
α−2(s)

q2(s) + aqα(s) + b
. (4.15)

Since

1

q2(s) + aqα(s) + b
=

q−α(s)

q2−α(s) + a+ bq−α(s)

=
q−α(s)

(q2−α(s) + a)

(
1 +

bq−α(s)

q2−α(s) + a

)
=

q−α(s)

(q2−α(s) + a)

(
1 +

bq−α(s)

q2−α(s) + a

)−1

=
q−α(s)

(q2−α(s) + a)

∞∑
k=0

(−1)k
(

bq−α(s)

q2−α(s) + a

)k

=

+∞∑
k=0

(−b)k
q−αk−α(s)

(q2−α(s) + a)
k+1

=

+∞∑
k=0

(−b)k
q−αk−α(s)

(q2−α(s) (1 + aqα−2(s)))
k+1

=

+∞∑
k=0

(−b)kq−2k−2(s)
((

1 + aqα−2(s)
)k+1

)−1

=

+∞∑
k=0

(−b)kq−2k−2(s)

+∞∑
l=0

(
k + l

l

)(
−aqα−2(s)

)l
=

+∞∑
k=0

(−b)k
∞∑
l=0

(
k + l

l

)
(−a)lq(α−2)l−2k−2(s).



76

Therefore, by using equation (4.15), we have

T (s) =
(
c0p(s)q(s) + c1p(s) + c0ap(s)q

α−1(s) + c1ap(s)q
α−2(s)

)
×

(
+∞∑
k=0

(−b)k
∞∑
l=0

(
k + l

l

)
(−a)lq(α−2)l−2k−2(s)

)

= c0p(s)

+∞∑
k=0

(−b)k
∞∑
l=0

(
k + l

l

)
(−a)lq(α−2)l−2k−1(s)

+c1p(s)

+∞∑
k=0

(−b)k
∞∑
l=0

(
k + l

l

)
(−a)lq(α−2)l−2k−2(s)

+c0ap(s)

(
+∞∑
k=0

(−b)k
∞∑
l=0

(
k + l

l

)
(−a)lq(α−2)l−2k+α−3(s))

)

+c1ap(s)

(
+∞∑
k=0

(−b)k
∞∑
l=0

(
k + l

l

)
(−a)lq(α−2)l−2k+α−4(s))

)
. (4.16)

Now, applying the inverse new general integral transform to equation (4.16), we get

u(t) = c0

+∞∑
k=0

(−b)k

k!

+∞∑
l=0

(k + l)!(−a)l

Γ ((2− α) l + 2k + 1)

t(2−α)l+2k

l!

+c1

+∞∑
k=0

(−b)k

k!

+∞∑
l=0

(k + l)!(−a)l

Γ ((2− α) l + 2k + 2)

t(2−α)l+2k+1

l!

+c0a

+∞∑
k=0

(−b)k

k!

+∞∑
l=0

(k + l)!(−a)l

Γ ((2− α) l + 2k − α+ 3)

t(2−α)l+2k−α+2

l!

+c1a

+∞∑
k=0

(−b)k

k!

+∞∑
l=0

(k + l)!(−a)l

Γ ((2− α) l + 2k − α+ 4)

t(2−α)l+2k−α+3

l!
.

Therefore, the solution of equations (4.13) and (4.14), is

u(t) = c0

+∞∑
k=0

(−b)kt2k

k!

+∞∑
l=0

Γ (k + l + 1) (−at2−α)l

Γ ((2− α) l + 2k + 1) l!

+c1

+∞∑
k=0

(−b)kt2k+1

k!

+∞∑
l=0

Γ (k + l + 1) (−at2−α)l

Γ ((2− α) l + 2k + 2) l!

+c0a

+∞∑
k=0

(−b)kt2k−α+2

k!

+∞∑
l=0

Γ (k + l + 1) (−at2−α)l

Γ ((2− α) l + 2k − α+ 3) l!

+c1a

+∞∑
k=0

(−b)kt2k−α+3

k!

+∞∑
l=0

Γ (k + l + 1) (−at2−α)l

Γ ((2− α) l + 2k − α+ 4) l!
.

The proof is complete. □

Example: The Caputo fractional-order differential equation

u′′(t) +
√
2D

5
3u(t) + 5u(t) = 0,

with the initial conditions
u(0) = c0, u

′(0) = c1,
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has a solution given by

u(t) = c0

+∞∑
k=0

(−5)kt2k

k!

+∞∑
l=0

Γ (k + l + 1)
(
−
√
2t

1
3

)l
Γ
(
1
3 l + 2k + 1

)
l!

+c1

+∞∑
k=0

(−5)kt2k+1

k!

+∞∑
l=0

Γ (k + l + 1)
(
−
√
2t

1
3

)l
Γ
(
1
3 l + 2k + 2

)
l!

+c0
√
2

+∞∑
k=0

(−5)kt2k+
1
3

k!

+∞∑
l=0

Γ (k + l + 1)
(
−
√
2t

1
3

)l
Γ
(
1
3 l + 2k + 4

3

)
l!

+c1
√
2

+∞∑
k=0

(−5)kt2k+
4
3

k!

+∞∑
l=0

Γ (k + l + 1)
(
−
√
2t

1
3

)l
Γ
(
1
3 l + 2k + 7

3

)
l!

.

5 Conclusion

In this paper, a new genaral integral transform was applied to solve Caputo fractional-order differential equations.
Many theorems related to this approach were proved. Various illustrative examples were presented to show the
accuracy and effectiveness of the proposed approach. The obtained results demonstrated that the proposed approach
is very efficient, useful, and easy to use for solving fractional differential equations.
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