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Abstract

We consider a nonlinear initial boundary value problem in a two-dimensional rectangle. We derive variational for-
mulation of the problem which is in the form of an evolutionary variational inequality in a product Hilbert space.
Then, we establish the existence of a unique weak solution to the problem and prove the continuous dependence of the
solution with respect to some parematers. We proceed with the study of an associated control problem for which we
prove the existence of an optimal pair. Finally, we consider a perturbed optimal control problem for which we prove
a convergence result.
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1 Introduction

Our aim in this paper is to provide the variational analysis of an initial boundary value problem by using arguments
of evolutionary variational inequalities and history-dependent operators. The theory of variational inequalities started
in early sixty, based on arguments of monotonicity and convexity. Classical references in the mathematical and
numerical analysis of variational inequalities are [3, 12, 10, 13, 5, 6], for instance. Various applications in Mechanics
and, more specifically, in Contact Mechanics could be found in the books [1, 2, 4, 10, 21, 16, 11, 15, 8, 7] and in
the special issue [14]. Evolutionary variational inequalities are inequalities which involve the time derivative of the
solution and, therefore, they require an initial condition. Existence and uniqueness results for such inequalities can
be found in the books [19, 21, 8, 9], for instance. Recently, there is an interest in the study of a special class of
inequalities, the so-called history-dependent variational inequalities. There are inequalities in which various functions
or operators depend on the history of the solution. Their study is motivated by important application in problems
involving constitutive laws for materials with memory, total slip or total slip rate friction laws. Existence, uniqueness
and regularity uniqueness results for such kind of inequalities can be found in [20, 21, 22], for instance.

The problem we are interested in this paper leads, in a primal variational formulation, to an evolutionary variational
inequality. In contrast, its dual variational formulation is in a form of a histroy-dependent variational inequality. To
introduce this problem let L, h and T be given positive constants and denote Ω = (0, L)× (−h, h). From now on we
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use the notation (x, y) for a generic point in Ω and the subscripts x and y will represent the partial derivative with
respect to the variables. The problem under consideration is the following [18].

Problem P. Find the functions u = u(x, y, t) : [0, L]× [−h, h]× [0, T ] → R and w = (x, t) : [0, L]× [0, T ] → R such
that

λu̇xx + Euxx + µu̇yy +Guyy + qB = 0 for all (x, y) ∈ Ω, t ∈ [0, T ], (1.1)

µẇxx +Gwxx + (λ− µ)u̇xy + (E −G)uxy + fB = 0 for all (x, y) ∈ Ω, t ∈ [0, T ], (1.2)

u(0, y, t) = w(0, t) = 0 for all y ∈ [−h, h], t ∈ [0, T ], (1.3)

λu̇x(L, y, t) + Eux(L, y, t) = 0 for all y ∈ [−h, h], t ∈ [0, T ], (1.4)

µ(u̇y(L, y, t) + ẇx(L, y, t)) +G(uy(L, y, t) + wx(L, y, t)) = 0 for all y ∈ [−h, h], t ∈ [0, T ]. (1.5)

µ(u̇y(x, h, t) + ẇx(x, t)) +G(uy(x, h, t) + wx(x, t)) = qN (x, t) for all x ∈ [0, L], t ∈ [0, T ], (1.6)

(λ− 2µ)u̇x(x, h, t) + (E − 2G)ux(x, h, t) = fN (x, t) for all x ∈ [0, L], t ∈ [0, T ]. (1.7)

|(λ− 2µ)(u̇x(x,−h, t) + (E − 2G)(ux(x,−h, t)| ≤ g, (1.8)

−(λ− 2µ)(u̇x(x,−h, t)− (E − 2G)(ux(x,−h, t) = g
ẇ(x, t)

|ẇ(x, t)|
if ẇ(x, t) ̸= 0, for all x ∈ [0, L], t ∈ [0, T ],

µ(u̇(x,−h, t) + ẇ(x, t)) +G(uy(x,−h, t) + wx(x, t)) = 0 for all x ∈ [0, L], t ∈ [0, T ], (1.9)

u(x, y, 0) = u0(x, y), w(x, 0) = w0(x), for all x ∈ [0, L], y ∈ [−h, h]. (1.10)

Problem P describes the equilibrium of a viscoelastic plate submitted to the action of body forces and tractions
and to nonlinear contact conditions on part of its boundary. Here Ω represents the cross section of the plate, u is the
horizontal displacement and w is the vertical displacement. The constants λ and µ are positive viscosity coefficients
and E and G are positive elastic coefficients. A brief description of equations and boundary condition in Problem P,
including their mechanical significance, follows.

First, equations (1.1) and (1.2) represent the equilibrium equation in which the functions qB = qB(x, y, t) :
Ω × [0, T ] → R and fB = fB(x, y, t) : Ω × [0, T ] → R are the horizontal and the vertical components of the body
forces. Condition (1.3) shows that the plate is fixed on the boundary x = 0 and conditions (1.4), (1.5) show that
the boundary x = L is free of tractions. Next, conditions (1.6), (1.7) represent the traction conditions. Here, the
functions qN = qN (x, t) : [0, L] × [0, T ] → R and fN = fN (x, t) : [0, L] × [0, T ] → R denote the horizontal and the
vertical components of the traction forces which act on the top y = h of the plate. Condition (1.8) represents the a
multivalued contact condition on the bottom x = −h in which g ≥ 0 is given. Condition (1.9) represents the frictionless
condition and, finally, (1.10) represents the initial condition, in which the functions u0 and w0 are the initial horizontal
and vertical displacement, respectively.

The rest of paper is structured as follows. In Section 2 we list the assumptions on the data and derive the variational
formulation of problem P. In Section 3 we state and prove our main result, Theorem 2.1, which states the unique
weak solvability of the problem, see Theorem 11.3 in [9]. The proof is based on arguments of evolutionary variational
inequalities. In Section 3 we state and prove a convergence result, Theorem 3.1. It states the continuous dependence
of the solution with respect to the data. Finally, in Section 4 we state and prove the solvability of an optimal control
problem associated the contact Problem P. Then, we derive a convergence result related to this optimal problem,
Theorem 4.3.

2 Variational formulation

We start with some notation and preliminaries. Given a real Hilbert space Y we denote by ⟨·, ·⟩Y its inner product
and by ∥ · ∥Y the associate norm, i.e. ∥y∥2Y = ⟨u, u⟩Y for all y ∈ Y . For a normed space Y we denote by C([0, T ];Y )
the space of the continuous functions defined on [0, T ] with values to Y , equiped with the canonic norm. Moreover,
∥ · ∥L(Y,Z) denotes the norm in the space of linear continuous operators on Y with values on the normed space Z.
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Everywhere below we use the standard notation for Lebesgue and Sobolev spaces. In addition, recalling that
Ω = (0, L)× (−h, h), we introduce the spaces

V = {u ∈ H1(Ω) : u(0, ·) = 0}, W = {w ∈ H1(0, L) : w(0) = 0}. (2.1)

Note that equalities u(0, ·) = 0 and w(0) = 0 in the definitions of the spaces V and W are understood in the sense of
traces. The spaces V and W are real Hilbert spaces with the canonical inner products defined by

⟨u, ψ⟩V =

∫∫
Ω

(uψ + uxψx + uyψy) dxdy ∀u, ψ ∈ V, (2.2)

⟨w,φ⟩W =

∫ L

0

(wφ+ wxφx) dx ∀w,φ ∈W. (2.3)

We also consider the product space X = V ×W equipped with the cannonical inner product given by

⟨u,v⟩X = ⟨u, ψ⟩V + ⟨w,φ⟩W ∀u = (u,w), v = (ψ,φ) ∈ X, (2.4)

On the data of Problem P we make the following hypotheses.

λ > 0, E > 0, µ > 0, G > 0. (2.5)

fB ∈ L2(0, T ;L2(Ω)), qB ∈ L2(0, T ;L2(Ω)). (2.6)

fN ∈ L2(0, T ;L2(0, L)), qN ∈ L2(0, T ;L2(0, L)). (2.7)

g ≥ 0. (2.8)

u0 ∈ V, w0 ∈W. (2.9)

Under these assumptions we define the operators A,B : X → X, functional j : X → R, the function f : [0, T ] → X
by equalities

⟨Au,v⟩X = λ

∫∫
Ω

uxψx dxdy + µ

∫∫
Ω

(uy + wx)(ψy + φx) dxdy, (2.10)

⟨Bu,v⟩X = E

∫∫
Ω

uxψx dxdy +G

∫∫
Ω

(uy + wx)(ψy + φx) dxdy, (2.11)

j(v) = g

∫ L

0

|φ| dx, (2.12)

⟨f(t),v⟩X =

∫∫
Ω

qB(t)ψ dxdy +

∫∫
Ω

fB(t)φdxdy +

∫ L

0

qN (t)ψ dx+

∫ L

0

fN (t)φdx, (2.13)

for all u = (u,w), v = (ψ,φ) ∈ X, t ∈ [0, T ]. We also consider the initial data u0 ∈ X given by

u0 = (u0, v0). (2.14)

Note that the definitions above we do not specify the dependence of various functions on the variables x and y.

The variational formulation of the Problems P follows from a tedious calculus, based on standard arguments. For
this reason we skip the details and we restrict ourselves to describe the main steps of this calculus. We proceed
formally. Thus, we assume in what follows that u = (u(x, y, t), w(x, t)) represents a regular solution to the problem P,
v = (ψ(x, y), φ(x)) is an arbitraty element of X and t ∈ [0, T ] is fixed. Then, multiplying (1.1) by ψ − u̇, integrating
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the result over Ω and using the boundary conditions (1.3), (1.4) and the definition (2.1) of the space V we deduce that

λ

∫∫
Ω

u̇x(x, y, t)(ψx(x, y)− u̇x(x, y, t)) dxdy + µ

∫∫
Ω

u̇y(x, y, t)(ψy(x, y)− u̇y(x, y, t)) dxdy

+E

∫∫
Ω

ux(x, y, t)(ψx(x, y)− u̇x(x, y, t)) dxdy +G

∫∫
Ω

uy(x, y, t)(ψy(x, y)− u̇y(x, y, t)) dxdy

=

∫ L

0

(Guy(x, h, t) + µu̇y(x, h, t))(ψ(x, h)− u̇(x, h, t)) dx

−
∫ L

0

(Guy(x,−h, t) + µu̇y(x,−h, t))(ψ(x,−h)− u̇(x,−h, t)) dx

+

∫∫
Ω

qB(t)(ψ(x, t)− u̇(x, y, t))dxdy. (2.15)

Assume now that x ∈ [0, L] is fixed. We integrate equation (1.2) with respect to y on [−h, h] and deduce that

2hµ ẇxx(x, t) + 2hGwxx(x, t) + (λ− µ)

∫ h

−h

u̇xy(x, y, t) dy + (E −G)

∫ h

−h

uxy(x, y, t) dy +

∫ h

−h

fB(t)dy = 0. (2.16)

Then, using the boundary conditions (1.7), (1.8) and notation

σ(x,−h, t) = (λ− 2µ)u̇x(x,−h, t) + (E − 2G)ux(x,−h, t), (2.17)

after some elementary calculus we find that

(λ− µ)

∫ h

−h

u̇xy(x, y, t) dy + (E −G)

∫ h

−h

uxy(x, y, t) dy = fN (x, t)− σ(x,−h, t) + µ(u̇x(x, h, t)− u̇x(x,−h, t))

+G(ux(x, h, t)− ux(x,−h, t)). (2.18)

Next, we subtract equalities (2.18) and (2.16) to deduce that

−2hGwxx(x, t)− 2hµ ẇxx(x, t) = fN (x, t)− σ(x,−h, t) + µ(u̇x(x, h, t)− u̇x(x,−h, t))

+G(ux(x, h, t)− ux(x,−h, t)) +
∫ h

−h

fB(t) dy. (2.19)

To proceed, we multiply equality (2.19) with φ− ẇ, then we integrate the result on [0, L] and perform integration
by parts to obtain that

G

∫∫
Ω

wx(x, t)(φx(x, t)− ẇx(x, t)) dxdy + µ

∫∫
Ω

ẇx(x, t)(φx(x, t)− ẇx(x, t)) dxdy,

=

∫ L

0

−σ(x,−h, t)(φ(x, t)− ẇ(x, t)) dx+ µ

∫ L

0

(u̇x(x, h, t)− u̇x(x,−h, t))(φ(x, t)− ẇ(x, t)) dx

+G

∫ L

0

ux(x, h, t)− ux(x,−h, t))(φ(x, t)− ẇ(x, t)) dx

+2hGwx(L, t)(φ(L, t)− ẇ(L, t)) + 2hµ ẇx(L, t)(φ(L, t)− ẇ(L, t))

+

∫ L

0

fN (φ(x, t)− ẇ(x, t)) dx+

∫∫
Ω

fB(φ(x, t)− ẇ(x, t)) dxdy. (2.20)

We now add equalities (2.15) and (2.20) and use integration by parts and the boundary conditions (1.6), (1.9) to
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obtain

E

∫∫
Ω

ux(x, y, t)(ψx(x, y)− u̇x(x, y, t)) dxdy +G

∫∫
Ω

uy(x, y, t)(ψy(x, y)− u̇y(x, y, t)) dxdy

+λ

∫∫
Ω

u̇x(x, y, t)(ψx(x, y)− u̇x(x, y, t)) dxdy + µ

∫∫
Ω

u̇y(x, y, t)(ψy(x, y)− u̇y(x, y, t)) dxdy

+G

∫∫
Ω

wx(x, t)(φx(x)− ẇx(x, t)) dxdy + µ

∫∫
Ω

ẇx(x, t)(φx(x, t)− ẇx(x, t)) dxdy

+G

∫∫
Ω

wy(x, t)(φx(x)− ẇx(x, t)) dxdy + µ

∫∫
Ω

ẇy(x, t)(φx(x, t)− ẇx(x, t)) dxdy,

=

∫∫
Ω

qB(t)(ψ(x, t)− u̇(x, y, t)) dxdy +

∫ L

0

fN (φ(x, t)− ẇ(x, t)) dx

+

∫∫
Ω

fB(φ(x, t)− ẇ(x, t))dxdy −
∫ L

0

σ(x,−h, t)(φ(x, t)− ẇ(x, t)) dx

+

∫ L

0

qN (x, t)(ψ(x, t)− u̇(x, h, t) dx− µ

∫ L

0

ẇx(x, t)(ψ(x, t)− u̇(x, h, t) dx

−G
∫ L

0

wx(x, t)(ψ(x, t)− u̇(x, h, t) dx+ µ

∫ L

0

ẇx(x, t)(ψ(x, t)− u̇(x,−h, t) dx

+G

∫ L

0

wx(x, t)(ψ(x, t)− u̇(x,−h, t) dx. (2.21)

Also, note that

−µ
∫ L

0

ẇx(x, t)(ψ(x, t)− u̇(x, h, t) dx+ µ

∫ L

0

ẇx(x, t)(ψ(x, t)− u̇(x,−h, t) =− µ

∫∫
Ω

ẇx(x, t)(ψy(x, t)− u̇y(x, y, t)) dxdy

(2.22)

and

−G
∫ L

0

wx(x, t)(ψ(x, t)− u̇(x, h, t) dx+G

∫ L

0

wx(x, t)(ψ(x, t)− u̇(x,−h, t) dx

= −G
∫∫

Ω

wx(x, t)(ψy(x, t)− u̇y(x, y, t)) dxdy. (2.23)

Substituting (2.22) and (2.23) in (2.21) and using the definitions (2.10), (2.11), (2.13) we obtain

⟨Au̇(t),v − u̇(t)⟩X + ⟨Bu(t),v − u̇(t)⟩X +

∫ L

0

σ(x,−h, t)(φ(x, t)− ẇ(x, t)) dx = ⟨f(t),v − u̇(t)⟩X , (2.24)

for all v ∈ X, t ∈ [0, T ]. Finally, using the boundary condition (1.8) and notation (2.17), it is easy to check that

σ(x,−h, t)(φ(x, t)− ẇ(x, t)) dx ≤ g|φ(x, t)| − g|ẇ(x, t)| ∀x ∈ [0, L].

We integrate this inequality on [0, L] and use notation (2.12) to deduce that∫ L

0

σ(x,−h, t)(φ(x, t)− ẇ(x, t)) dx ≤ j(v)− j(u̇(t)). (2.25)

We now combine equality (2.24) with inequality (2.25) and then use the initial conditions (1.10) and notation
(2.14). As a result we obtain the variational formulation of problem P.

Problem PV . Find a function u : [0, T ] → X such that

⟨Au̇(t),v − u̇(t)⟩X + ⟨Bu(t),v − u̇(t)⟩X + j(v)− j(u̇(t)) ≥ ⟨f(t),v − u̇(t)⟩X , (2.26)

u(0) = u0. (2.27)
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for all v ∈ X, t ∈ [0, T ]. Note that Problem PV represents an evolutionary variational inequality. Its unique solvability
will presented in the next section. Here we restrict ourselves to mention that the solution of this inequality will be
called a weak solution to Problem P. We also mention that in Section 4 we provide a second variational formulation
of Problem P, the so-called dual variational formulation, which, in fact, is equivalent with Problem PV .

Our existence and uniqueness result in the study of Problem PV is the following.

Theorem 2.1. Assume (2.5)–(2.9). Then Problem PV has a unique solution with regularity u ∈ C1([0, T ];X).

The proof is carried out in several steps. The first one consists to investigate the properties of the operators A and
B and, with this concern, we have the following results.

Lemma 2.2. Assume that (2.5) holds. Then the operator A is linear, symmetric continuous and coercive, i.e. it
satisfies

⟨Av,v⟩X ≥ mA∥v∥2X for all v ∈ X, with mA > 0. (2.28)

Lemma 2.3. Assume that (2.5) holds. Then the operator B is linear, symmetric and coercive, i.e. it satisfies

⟨Bv,v⟩X ≥ mB∥u∥2X for all v ∈ X, with mB > 0. (2.29)

The proof of Lemmas 2.2 and 2.3 are identical and are based on standard arguments. Nevertheless, for the
convenience of the reader we present, for instance, the proof of Lemma 2.2.

Proof . The linearity and symmetry of the operator A are obvious. Moreover, an elementary computation shows that

⟨Av,v⟩X ≤ (λ+ 2µ) ∥u∥X∥v∥X ∀u, v ∈ X. (2.30)

which implies that A is continuous. Inequality (2.28) is a direct consequence of the two-dimensional version of Korn’s
inequality. Indeed, consider an arbitrary element v = (ψ(x, y), φ(x)) ∈ X. Then, the small strain tensor associated to
the two-dimensional displacement field v is given by

ε(v) =

 ψx
1
2 (ψy + φx)

1
2 (ψy + φx) 0

 .

We have

∥ε(v)∥2 = ε(v) · ε(v) = ψ2
x +

1

2
(ψy + φx)

2 a.e. on Ω. (2.31)

Note also that the function v vanishes on the boundary x = 0 of the rectangle Ω which is, obviously, of positive
one-dimensional measure and, in addition, since X can be identified as a subspace of H1(Ω)2, we have v ∈ H1(Ω)2.
Therefore, using Korn’s inequality we obtain that there exists a constand cK > 0 which depends on h such that∫∫

Ω

∥ε(v)∥2 dxdy ≥ cK ∥v∥2H1(Ω)2 . (2.32)

We now combine (2.31) and (2.32) to deduce that∫∫
Ω

(
ψ2
x +

1

2
(ψy + φx)

2
)
dxdy ≥ cK

∫∫
Ω

(
ψ2 + ψ2

x + ψ2
y + φ2 + φ2

x

)
dxdy

and then, using (2.2)–(2.4), we obtain that∫∫
Ω

(
ψ2
x +

1

2
(ψy + φx)

2
)
dxdy ≥ c̃K∥v∥2X . (2.33)

where c̃K depends on cK and L. On the other hand, using the definition (2.10) of the operator A and inequality (2.33)
we deduce that

⟨Av,v⟩X ≥ min(λ, 2µ)

∫∫
Ω

(
ψ2
x +

1

2
(ψy + φx)

2
)
dxdy. (2.34)
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We now combine (2.33), (2.34) and assumption (2.5) to see that inequality (2.28) holds with mA = c̃K min(λ, 2µ) > 0,
which concludes the proof. □

We are now in a position to provide the proof of Theorem 2.1.

Proof . Using assumption (2.8) it is easy to see that the functional j is a continuous seminorm on the space X.
Therefore, it follows from here that j is a convex lower semicontinuous function on X. In addition, assumptions (2.6),
(2.7) and definition (2.13) imply that f ∈ C([0, T ];X). Moreover, assumption (2.9) shows that the initial data satisfy
u0 ∈ V . Finally, Lemma 2.2 shows that A : X → X is a strongly monotone Lipschitz continuous operator and Lemma
2.3 implies that B : X → X is Lipschitz continuous operator. Theorem 2.1 is now a direct consequence of Theorem
11.3 in [9]. □

3 A continuous dependence result

In this section we study the dependence of the solution with respect the parametres E, G and g. To this end we
assume that (2.5)–(2.9) hold and we consider some positive constants Eρ, Gρ and gρ which represent a perturbation
of E, G and g, respectively. Here ρ denotes a positive parameter which will converge to zero. We define the operator
Bρ and the function jρ by equalities

⟨Bρu,v⟩X = Eρ

∫∫
Ω

uxψx dxdy +Gρ

∫∫
Ω

(uy + wx)(ψy + φx) dxdy, (3.1)

jρ(v) = gρ

∫ L

0

|φ(x)| dx (3.2)

for all u = (u,w), v = (ψ,φ) ∈ X. Then, we consider the following variational problem.

Problem Pρ
V . Find a function uρ : [0, T ] → X such that

⟨Au̇ρ(t),v − u̇ρ(t)⟩X + ⟨(Bρuρ)(t),v − u̇ρ(t)⟩X + jρ(v)− jρ(u̇ρ(t)) ≥ ⟨f(t),v − u̇ρ(t))⟩X (3.3)

uρ(0) = u0, (3.4)

for all v ∈ X, t ∈ [0, T ]. Using Theorem 2.1 it follows that Problem PV has a unique solution u ∈ C1(0, T ;X) and, in
addition, Problem Pρ

V has a unique solution uρ ∈ C1([0, T ];X). Our main result in this section is the following.

Theorem 3.1. Assume (2.5)–(2.9) and, moreover, assume that

Eρ → E, Gρ → G, gρ → g as ρ→ 0. (3.5)

Then the solution uρ of problem Pρ
V converges to the solution u of the problem PV i.e

uρ −→ u in C1([0, T ];X) as ρ→ 0. (3.6)

Proof . Let ρ > 0 and let t ∈ [0, T ] be given. We use inequalities (2.26) and (3.3) to deduce that

⟨Au̇(t), u̇ρ(t)− u̇(t)⟩X + ⟨Bu(t),uρ(t)− u̇(t)⟩X + j(u̇ρ(t))− j(u̇(t)) ≥ ⟨f(t), u̇ρ(t)− u̇(t))⟩X ,

⟨Au̇ρ(t), u̇(t)− u̇ρ(t)⟩X + ⟨Bρuρ(t), u̇(t)− u̇ρ(t)⟩X + jρ(u̇(t))− jρ(u̇ρ(t)) ≥ ⟨f(t), u̇(t)− u̇ρ(t))⟩X .

We now add these inequalities and use the property (2.28) of the operator A to obtain that

mA∥u̇ρ(t)− u̇(t)∥2X ≤ ⟨Bρuρ(t)−Bu(t), u̇(t)− u̇ρ(t)⟩X + jρ(u̇(t))− jρ(u̇ρ(t)) + j(u̇ρ(t))− j(u̇(t)). (3.7)

Next, we use the definitions (3.2) and (2.12) to see that

jρ(u̇(t))− jρ(u̇ρ(t)) + j(u̇ρ(t))− j(u̇(t)) ≤ c |gρ − g| ∥u̇ρ(t)− u̇(t)∥X (3.8)

where, here and below, c represents a constant wich does not depend on ρ and whose value may change from line to
line. We now combine inequalities (3.7) and (3.8) to find that

mA∥u̇ρ(t)− u̇(t)∥X ≤ ∥Bρuρ(t)−Bu(t)∥X + c |gρ − g| (3.9)
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On the other hand, using definitions (2.11) and (3.1) it is easy to see that

∥Bρuρ(t)−Bu(t)∥X ≤ (Eρ +Gρ)∥uρ(t)− u(t)∥X + (|Eρ − E|+ |Gρ −G|)∥u(t)∥X . (3.10)

It follows now from assumption (3.5) that Eρ +Gρ ≤ c and, therefore, inequalities (3.9), (3.10) imply

∥u̇ρ(t)− u̇(t)∥X ≤ c ∥uρ(t)− u(t)∥X + (|Eρ − E|+ |Gρ −G|) max
r∈[0,T ]

∥u(r)∥X + c |gρ − g|. (3.11)

Next, we use the initial conditions (2.27) and (3.3) to see that

∥uρ(t)− u(t)∥X ≤
∫ t

0

∥u̇ρ(s)− u̇(s)∥X ds, (3.12)

then we substitute this inequality in (3.11) and use the Gronwall’s Lemma to obtain that

∥u̇ρ(t)− u̇(t)∥X ≤ c (|Eρ − E|+ |Gρ −G|) max
r∈[0,T ]

∥u(r)∥X + |gρ − g|). (3.13)

The convergence (3.6) follows now from inequalities (3.12), (3.13) and assumption (3.5). □

4 An optimal control problem

We now turn to an optimal control problem associated to Problem PV [17]. and, to this end, we assume that (2.5)–
(2.9) hold. We know that Ω = (0, L) × (−h, h) such that ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 et Γ1 ∩ Γ2 ∩ Γ3 = ∅, and W ⊂ V ⊂ X.
We consider Z = (L2(Ω))2 × (L2(0, L))2 ⊂ (L2(Ω))4, and we note V × Z the Hilbert space undowed by the canonical
inner product.
Let M > 0 and u0 ∈ V a given element. Also, we define the set of admissible pairs Vad ⊂ X × Z by :

Vad = {(u, f ) ∈ V × Z, such that (2.26) holds}. (4.1)

We consider the cost functional J : V × Z −→ R defined by :

J(u, f ) =
1

2
∥u− u0∥2V +

M

2
∥ f ∥2Z , ∀ M > 0. (4.2)

for all u = (u,w) ∈ V and f = (qB , fB , qN , fN ) ∈ Z,
Then, the optimal control problem we study in this section is the following.
Problème O. Find the couple (uf , f op) ∈ Vad such that :

J(uf , f op) = min
(u,f )∈Vad

J(u, f ), (4.3)

An element (uf , f op) which solves Problem O is called an optimal pair and the corresponding traction f op is called
an optimal control.

Our first result in the study of Problem O is the following.

Theorem 4.1. Assume that (2.5)-2.9) hold. Then, there exists at least one solution (uf , f op) ∈ Vad of Problem O .

Proof . Let
ω = inf

(u,f )∈Vad

J(u, f ) ∈ R, (4.4)

and let {(un, f n)} ⊂ Vad be a minimizing sequence for the functional J , i.e.

lim
n→+∞

J(un, f n) = ω. (4.5)

We claim that the sequence { f n} is bounded in Z. Arguing by contradiction, assume that { f n} is not bounded in
Z. Then, passing to a subsequence still denoted { f n}, we have :

∥ f n∥Z → +∞ in Z as n→ +∞. (4.6)
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We now use the definition (4.2) to see that

J(un, f n) ≥
M

2
∥ f n∥2Z .

Therefore, passing to the limit as n→ +∞ in this inequality and using (4.6), we deduce that :

lim
n→+∞

J(un, f n) = +∞. (4.7)

The convergences (4.5) and (4.7) lead to a contradiction, then the sequence { f n} is bounded in Z. Therefore there
exists f op ∈ Z such that, passing to a subsequence still denoted { f n}, we have

f n ⇀ f op in Z as n→ +∞. (4.8)

Let uf be the solution of the variational inequality (2.26) for f = f op, i.e.

uf ∈ V, ⟨Au̇f +Buf ,v− u̇f ⟩V + j(v)− j(u̇f ) ≥ ⟨ f op,v− u̇f ⟩Z , ∀v ∈ V.

Then, by the defenition (4.1) of the set Vad we have

(uf , f op) ∈ Vad. (4.9)

Moreover, using the convergence (4.8) we have

un −→ uf in X as n→ +∞. (4.10)

We now use the convergences (4.8) and (4.10) and the weakly lower semicontinuity of the functional J to deduce that

lim
n→+∞

inf J(un, f n) ≥ J(uf , f op). (4.11)

It follows now from (4.5) and (4.11) that
ω ≥ J(uf , f op). (4.12)

In addition, (4.9) et (4.4) yield
ω ≤ J(uf , f op). (4.13)

We combine now inequalities (4.12) and (4.13) to see that (4.3) holds, which concludes the proof. □

The uniqueness result of the solution of Problem O is given by the theorem below.

Theorem 4.2. Assume that J : V × Z −→ R is strictly convex and lower semicontinuous l.s.c, for all (u, f ) ∈ Vad,
we have

lim
∥(u,f )∥→+∞

J(u, f ) = +∞. (4.14)

Then there exists a unique (uf , f op) ∈ Vad solution for Problem O, and conversely.

Proof . Let η0 = (u0, f 0) fixed in Vad. We put η∗ = (uf , f op) then

Kη0 = {η∗ ∈ Vad, J(η∗) ≤ J(η0)}.

It is easy to show that any solution of (4.3) is also solution for

J(η∗) ≤ J(ω), ∀ω = (uω, f ω) ∈ Kη0
, (4.15)

and coversely. Therefor, we have J is strictly convex and (4.14) holds, Kη0
is convex and bounded in a Banach X.

It is weakly closed because J is l.s.c. for the weak topology. Then Kη0
is weakly compact. We deduce that there

exists an element η∗ ∈ Kη0 which realizes the lower bound of J : Kη0 → R. The strict convexity of J results in the
uniqueness of the lower bound. □

We now investigate the dependence of the optimal pair (uf , f op). Assume that (2.5)-(2.9) hold. (3.1) and (3.2)
represents the perturbations of the operator B and the function j repectively. And we define the perturbed set of
admisible pairs by
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Vρ
ad = {(uρ, f ) ∈ V × Z : ⟨Au̇ρ +Bρuρ,vρ − u̇ρ⟩X + jρ(v)− jρ(u̇ρ) ≥ ⟨f ,vρ − u̇ρ⟩Z , ∀vρ ∈ X},

Then, we consider the following perturbed optimal control problem.
Problème Oρ. Find (uf ρ

, f opρ
) ∈ Vρ

ad such that

J(uf ρ
, f opρ

) = min
(uρ,f )∈Vρ

ad

J(uρ, f ). (4.16)

It follows from Theorem 4.1 and Theorem 4.2 that, for each ρ > 0, ProblemOρ has at least one solution (uf ρ
, f opρ

) ∈
Vρ
ad. Moreover, we have the following convergence result.

Theorem 4.3. Let {(uf ρ
, f opρ

)} be a sequence of solutions of Problem Oρ and assume that (3.5) holds. Then, there
exists a subsequence of the sequence {(uf ρ

, f opρ
)}, again denoted {(uf ρ

, f opρ
)}, and a solution (uf , f op) of Problem

O, such that
uf ρ

−→ uf in X et f opρ
⇀ f op dans Z as ρ→ 0. (4.17)

Proof . Let ρ > 0 and denote uf ρ
= (uf ρ

, wf ρ
), f opρ

= (qBopρ , fBopρ , qNopρ , fNopρ). We use the definition (4.2) of
the functional J to obtain

J(uf ρ
, f opρ

) ≥ M

2
∥ f opρ

∥2Z ⇐⇒ ∥ f opρ
∥2Z ≤ 2

M
J(uf ρ

, f opρ
). (4.18)

and, since (uf ρ
, f opρ

) is a solution of Problem Oρ, we have

∥ f opρ
∥2Z ≤ 2

M
J(uρ, f ), ∀ (uρ, f ) ∈ Vad. (4.19)

Next, since A0X = 0X , it follows that uρ = 0X is a solution of Problem Pρ
V we have for f ρ = 0Z . and, on the

other hand, it is easy to see that

J(0X ,0Z) =
1

2
∥u0∥2X . (4.20)

We now take (uρ, f ) = (0X ,0Z) in (4.19) then use (4.20) to see that the sequence { f opρ
} is bounded in Z. Therefore,

passing to a subsequence again denoted { f opρ
}, it follows that there exists f op ∈ Z such that

f opρ
⇀ f op in Z as ρ→ 0. (4.21)

Denote by uf the solution of Problem PV for f = f op. Then, we have

(uf , f op) ∈ Vad, (4.22)

and, moreover, Theorem 3.1 yields
uf ρ

−→ uf in X as ρ −→ 0. (4.23)

We now prove that (uf , f op) is a solution to the optimal control problem O. To this end we use the convergences
(4.21), (4.23) and the weakly lower semicontinuity of the functional J to see that

lim
ρ→0

inf J(uf ρ
, f opρ

) ≥ J(uf , f op). (4.24)

Next, we fix a solution (ũf , f̃ op) for Problem O and, for each ρ > 0 we denote by ũρ the solution of Problem Pρ
V for

f ρ = f̃ op It follows from here that (ũρ, f̃ op) ∈ Vρ
ad. and, by the optimality of the pair (uf ρ

, f opρ
) du Problème Oρ, we

have that
J(uf ρ

, f opρ
) ≤ J(ũρ, f̃ op), ∀ ρ > 0.

We pass to the upper limit in this inequality to see that

lim sup
ρ−→0

J(uf ρ
, f opρ

) ≤ lim sup
ρ−→0

J(ũρ, f̃ op). (4.25)
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Now, remember that ũf is a solution of Problem PV for f = f̃ op and ũρ is a solution of Problem Pρ
V for f ρ = f̃ op.

Therefore, assumption (3.5) allows to use Theorem 3.1. As a result, we deduce that

ũρ −→ ũf in X as ρ −→ 0.

and, therefore, the continuity of the functional J : X −→ R telle que u 7−→ J(u, f̃ op) yields

lim
ρ→0

J(ũρ, f̃ op) = J(ũf , f̃ op). (4.26)

We now combine (4.24)-(4.26) to see that

J(uf , f op) ≤ J(ũf , f̃ op). (4.27)

On the other hand, since (ũf , f̃ op) is a solution of Problem O, inclusion (4.22) yields

J(uf , f op) ≥ J(ũf , f̃ op). (4.28)

We now combine (4.26)-(4.28), to see that

J(uf , f op) = J(ũf , f̃ op). (4.29)

Therefore
(uf , f op) is a solution of Problem O. (4.30)

Theorem 4.3 is now a consequence of (4.21), (4.23) et (4.30). □

5 Conclusion

The purpose of this paper is to introduce the reader a mathematical model which arise in Contact Mechanics. Our
aim is: first, to present a sound and rigorous description of the way in which the mathematical model is constructed;
second, to present the mathematical analysis of this model which includes the variational formulation, existence,
uniqueness and convergence results. To this end, we used results on various classes of variational inequalities in Hilbert
spaces. Also, we used various functional methods, including monotonicity, compactness, penalization, regularization
and duality methods. Moreover, we paid a particular attention to the mechanical interpretation of our results. On
the other hand, we associated an control problem for which we proved an optimal pair.
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