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Significant amounts of Natural Aggregate (NA) materials 
are being used to meet the requirements of pavement 
structure. Simultaneously, enormous amounts of 
demolition waste, such as demolished concrete and 
reclaimed pavement materials, are dumped into landfills 
along roadsides, creating pressure on the environment. 
Therefore, the recycling of demolished materials and their 
utilization for pavement construction would result in 
conservation of natural aggregates, this would alleviate 
the problems related to geo-environment and bring 
several benefits for the environment and ensure 
sustainability. Several studies have been carried out to 
describe the mechanical properties of recycled concrete 
aggregate (RCA) with and without stabilization. A 
thorough understanding of performance-related 
engineering properties of unbound RCA and stabilized 
RCA is essential for mechanistic-empirical pavement 
design. This paper reviewed the mechanical properties 
such as compaction, California bearing ratio, resilient 
modulus, and permanent deformation in the case of 
unbound RCA, and unconfined compressive strength, 
flexural strength, and stiffness for stabilized RCA from 
accessible works of literature on the application of RCA 
for pavement base. The findings from the literature 
indicated that RCA is source-dependent, moisture 
sensitive, and subjected to particle breakdown under 
wheel load that results in reduced shear strength. Further, 
if RCA is treated with mechanical stabilization by 
geosynthetics, the interface shear strength properties 
improve, and permanent deformation is reduced. 
Chemically stabilized RCA is a promising technique as 
its strength and durability complied with stabilized NA. 
Therefore, this review will be helpful for pavement 
engineering practitioners to explore RCA use in 
pavement base or subbase layers. 
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1. Introduction 

Pavements are subjected to wheel loads from 

vehicular traffic. The long life of a pavement 

is possible only if the wheel load is 

appropriately distributed. Strength properties 

of aggregate materials against wheel load 

will determine the stability of the pavement 

base. If properly characterized and designed, 

the base and sub-base layers reduce the 

distress of rutting and fatigue in the asphalt 

layer. Vast quantities of natural aggregate 

(NA) are consumed every year to meet the 

requirements of pavement construction and 

maintenance activities. This has put a severe 

burden on natural resources with many 

countries facing an acute shortage of quality 

aggregates. The mere crushing of rock 

sources to create aggregates leads to 

significant ecological and environmental 

problems [1].  

The gradual rise in urbanization and the 

growing economy have led to an increase in 

construction. Consequently, the construction 

of new infra projects is preferable to 

improving existing ones and this has resulted 

in a significant increase in demolition waste 

[2]. To keep pace with the demand for 

construction and pronounced environmental 

problems of construction demolition waste 

(CDW), it is essential to look at using 

recyclable alternative materials. Therefore, 

the recycling of CDW has gained significant 

attention worldwide [3-4]. Among the 

components of CDW, a substantial 

percentage of concrete debris is obtained 

from the demolition of concrete structures 

such as concrete pavements, bridges and 

buildings as shown in Fig. 1. Commonly, this 

concrete waste is transferred to landfills and 

along roadsides, which creates pressure on 

the geo-environment [5]. The recycling and 

reuse of concrete waste can be a successful 

way to attain sustainability by using recycled 

concrete aggregate (RCA) wherever it is 

technically, economically, and 

environmentally justifiable [6]. 

 
Fig. 1. Distribution of CDW [7]. 

In pavement construction, research has been 

undertaken to explore the possibility of using 

RCA obtained from demolished concrete as a 

substitute to natural quality aggregate (NA)s 

[8-16]. RCA mainly contains NA and 

adhered mortar. RCA's mechanical properties 

and performance have been in question 

because of the uncertainty in characteristics 

and fundamental variability in material 

sources.  

There is minimal work documented on the 

application of RCA in pavement construction 

in developing countries like India. The direct 

employment of RCA as a substitute to NA in 

pavement base is not rational, as it may or 

may not indicate a similar response to 

moving wheel load traffic to that of the NA. 

This is because of the unusual particle size, 

shape, and variability in the source. 

Therefore, insufficiency may be tackled 

generally by stabilization. 

Stabilization is the most approved technique 

to improve the mechanical and durable 

properties of alternative materials like RCA. 

Mechanical and chemical stabilization 
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techniques are employed for pavement 

construction and maintenance because they 

are fast, efficient, and reliable [17]. Various 

researchers have used stabilization methods 

to upgrade the performance characteristics of 

RCA, using Portland cement, geo-polymers, 

fly ash, lime kiln dust, cement kiln dust, lime 

and bitumen emulsion [18-23]. 

Nwakaire et al. [24] carried out a literature 

review on the utilization of RCA for 

pavement applications such as subgrade, 

subbase, base, surface material, and concrete 

surfacing. The properties of RCA in each 

region are distinctive. This is because of non-

identical concrete strength, several sources of 

quality and nature of NA, varied geological 

conditions of regions, dissimilar grading of 

RCA and so forth. Therefore, it is wise to use 

RCA in foundation layers, as pavement base 

and subbase require a large amount of NA if 

technically feasible. Sangar et al. [25], 

presented the review on RCA leachate. 

Aytekin and Aghabaglou [26] conducted a 

literature review on compaction, resilient 

modulus, permanent deformation 

characteristics of RCA as a base or subbase 

material. However, previous literature did not 

comprehensively present RCA's mechanical 

properties required for mechanistic-empirical 

pavement design as an unbound and 

stabilized pavement base material. Therefore, 

this paper aims to summarize the 

characteristics of RCA with and without 

stabilization for pavement base or subbase 

applications. This review will be helpful for 

pavement engineering practitioners to 

explore RCA use in pavement base or 

subbase layers.  

2. Characteristics of RCA 

2.1. Physical Characteristics 

The performance of RCA is determined by 

the amount of adhered mortar, which depends 

on the properties of original concrete [27]. 

RCA shape is influenced by the method and 

level of crushing, as it contains varying 

amounts of mortar. Therefore, it is necessary 

to determine the properties of RCA with 

respect to pavement applications. Therefore, 

before any aggregate can be used for 

pavement construction, it needs to be tested 

using standard test procedures recommended 

by road authorities. The same kind of test 

characteristics will be conducted on any 

nonconventional material like RCA. The 

relevant elements include particle size 

distribution, shape, specific gravity, water 

absorption, density, hardness, toughness, and 

soundness.  

Particle size distribution (PSD) is a 

fundamental physical property that 

influences pavement quality and 

performance. The PSD of RCA indicated that 

NA had more fines than RCA [13,28-29]. 

The difference in gradation of recycled 

concrete materials is attributable to 

differences in the crushing operations and the 

strength of original concrete [12]. The PSD 

of RCA may have a wide range due to 

differences in crushing methods [29]. The 

PSD of RCA considered in earlier studies 

was presented in Fig. 2. The particle density 

of RCA varied considerably between 2g/cc to 

2.65g/cc, and this variation was due to the 

surface of aggregate coated with adhered 

mortar. In addition, RCA was porous and 

experienced a high degree of deformation 

[30]. According to Edil [29], the water 

absorption values of RCA ranged between 

5.5 to 6.9% and was found to be more than 

that NA of 3%. Water absorption varied with 

aggregate size; coarse RCA was found to be 

less than fine RCA. This shows that water 

absorption would change with different 

gradations. The flakiness index of RCA was 

40% by mass and it was recommended not to 
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use flaky materials and the Los Angeles 

abrasion loss for RCA was 28%, less than 

35% of local road authorities [13,30]. Table 

1. shows the physical properties of RCA 

reported by several authors. 

2.2 Compaction Characteristics 

 Generally, soils used in road bases are 

compacted to dense states to yield 

complacent engineering properties which 

include shear strength and compressibility. 

The optimum moisture content (OMC) 

required to achieve maximum dry density 

(MDD) for RCA is slightly higher compared 

to that of typical quarry material [13], which 

may be due to high water absorption of 

crushed concrete particles. In addition, the 

presence of mortar in RCA resulted in water 

absorption and required a higher amount of 

water to achieve maximum dry density for 

RCA than NA [29]. The results of the 

compaction test reported by several authors 

are presented in Fig. 3. 

2.3 California Bearing Ratio 

The California Bearing Ratio (CBR) test is a 

widely accepted empirical test for aggregates 

that pavement engineers have used to 

characterize the bearing capacity under 

traffic. It is an indirect measurement of shear 

strength and mainly depends on OMC, MDD 

and the level of compaction [31]. CBR value 

increased by 24% with an increase in proctor 

density from 95-99% [32]. CBR property of 

granular material for pavement design has 

become very limited as it does not simulate 

the field condition, and it can be used to 

select a material [33]. The influence of 4-day 

soaking had negligible effect on CBR value 

[34].Table 2 gives the CBR for RCA. 

Table 1. Physical Properties of Recycled Concrete Aggregates. 

Properties 

Author and Year  

[13] [28] [29] 

ARR RCO Average Range 

% Fines 3.6 5.0 7.0 5.05 2.01-12.8 

% Gravel 50.70 - - 46.19 32-69 

Coefficient of Uniformity 

(Cu) 
31.2 - - 24.60 8-45 

Specific gravity 2.31 - - 2.31 2.2-2.4 

Water absorption (%) 4.7-9.8 8.9 5.5 5.52 5.5-6.9 

Mortar content (%) - - - 50.0 37-65 

USCS Classification 

(ASTMD 2487) 
GW GW-GM GW-GM SP, GP, GW 

  A-1-a A-1-b A-1-a, A-1-b 

Flakiness Index (%) 11.0 - - - - 

Los AngelesAbrasio value 

(%) 
28.0 39.0 37.0 - - 

ARR: Adelaide resource recovery; RCO: Resource Co. 
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Fig. 2. Particle size distribution of RCA for base applications used by several authors. 

 
Fig. 3. Compaction characteristics of RCA. 

Table 2. CBR values for Recycled Concrete Aggregates. 

Reference  CBR (%) Test Method 

NA  RCA  

[35] 83 66 BS1377-4 

[36] 182 169 - 

[37] - 128 NF 94-078 

[38] 152 97-138 UNE-EN 103502 

[39] 85 62  

[40] 68 148  

[41] 256 242 UNE-EN 103502 
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2.4. Resilient Modulus (MR) and 

Permanent Deformation 

The resilient modulus (MR) is the elastic 

modulus used as an important input for 

mechanistic-empirical pavement design. 

Therefore, MR has been considered as a 

means of characterizing the elastic properties 

of pavement materials. It is known that most 

paving materials are not elastic but 

experience some permanent deformation 

after each load application [42]. However, 

when the load is small compared to the 

strength of the material and repeatedly 

applied, the deformation under each 

repetitive load is recoverable and can be 

considered elastic. The pavement responses 

to be determined using multilayer elastic 

analysis depend on the constitutive model 

representing the material's resilient modulus 

behavior. The laboratory test for the base 

material under consideration will provide 

data for constitutive modeling of MR 

behavior over a range of applied stress. The 

Repeated Load Triaxial Test (RLTT), 

following several testing procedures such as 

American Association of State Highway and 

Transportation Officials AASHTO TP46-

94[43], AASHTO T307-99 [44], and 

National Cooperative Highway Research 

Program NCHRP 1-28A [45], is used to 

determine the MR of pavement materials. 

MR is a function of several parameters: stress 

level, density, moisture content, gradation, 

fines content, aggregate type, and the number 

of load applications [46]. Many researchers 

have investigated the resilient behavior of 

RCA. For example, Bennert et al. [9] 

evaluated MR and permanent deformation of 

RCA for base and subbase applications by 

cyclic triaxial test. The author reported that a 

blend of 25% RCA with 75% NA would 

obtain the same resilient behavior as Dense 

Graded Aggregate Base (DGAB) material for 

base and subbase layers. However, RCA 

material can present higher MR values than 

DGAB as shown in Fig. 4. This is explained 

by a higher angle of internal friction, which 

contributes to improving shear resistance. A 

study conducted by Aydilek et al. [47], stated 

that MR of RCA was 2.6 times greater in 

OMC condition and 2 times greater in MDD 

condition. Further, stiffness was found to 

increase with an increase in bulk stress 

during the freeze-thaw cycle. Fig. 5, shows 

that 100%RCA and 100% graded aggregate 

base (GAB) material gives higher values than 

RCA and GAB mixtures. This may be due to 

poor packing of particles or change in 

particle size distribution among the mixtures. 

Nataatmadja and Tan [48] established that 

MR of RCA could be influenced by the 

compressive strength of parent concrete and 

the aggregate shape. The study concluded 

that MR of RCA is comparable with typical 

virgin road aggregates. 

Molin et al. [49] performed the resilient 

modulus test on RCA from several 

compressive strengths, 7, 30, and 73 MPa 

compared to NA. The MR of low strength 

RCA was found to be 14% less than that of 

NA. High strength RCAs exhibited similar 

performance compared to normal strength 

RCA which showed excellent resilient 

moduli that was about 45% greater than NA. 

The permanent deformations were found to 

be 0.65%, 2.30%, 0.35% and 1.10% for 

samples at NA, 7MPa, 30MPa and 73Mpa.  

Jitsangiam et al.[50] conducted RLTT on 

RCA and crushed rock base material molded 
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at optimum moisture content and maximum 

dry density using the procedure specified by 

Vuong & Brimble[51]. The study's outcome 

indicated that MR of RCA is approximately 

equal to that of crushed rock base. Arulrajah 

et al.[13] highlighted the importance of 

compaction and noticed high MR at a density 

ratio compacted to 98% of modified proctor 

MDD and also noticed that RCA resulted in 

higher limits of permanent strain and lower 

limits of MR at moisture contents less than 

OMC and this indicates RCA is susceptable 

to moisture. 

Gabr and Cameron [28] compared the MR of 

RCA with that of quartzite aggregates and 

found the behavior of RCA at 60% of OMC. 

Bozyurt et al.[52] demonstrated that RCA 

could be used as an unbound base by 

conducting MR tests on RCA as per NCHRP 

protocol and reported that the NCHRP model 

was more reliable in capturing MR 

dependency stress state in RCA. There was a 

high correlation between MR and index 

properties of RCA. The models presented in 

Table 3, except S.No.5, are based on 

subgrade soils and virgin aggregates and not 

for recycled products. Azam, Cameron, and 

Rahman [53] found that initial matric suction 

affects behavior such as shear strength and 

resilient modulus of unbound granular 

materials. Further, the study recommended 

that matric suction should be considered as a 

factor in predicting resilient modulus.  

The mechanistic-empirical pavement design 

guide [54] suggests model number 8 

presented in Table 3 to predict MR values for 

subgrade soils and virgin aggregates. This 

model considers that pavement materials are 

typically compacted to OMC and MDD. The 

range of k1 and k2 for RCA is presented in 

Table 4, and for NA in Table 5. Rutting is 

another crucial parameter for mechanistic-

empirical design. It is the distress that 

reduces the performance of unbound 

pavement material. Bennert et al. [9], found 

that permanent deformation results indicated 

that 25% RCA mixed with 75% DGAB 

material obtained the lowest amount of 

permanent deformation when the material 

was cyclically loaded to 100,000 cycles. 

Arulrajah et al.[13] mentioned that the strain 

development of RCA at 60% of the OMC 

was minimum. 

Further studies conducted by Arurajah et al. 

[55], revealed that adhered mortar on RCA 

affected the shrinkage and reflective cracks 

in compacted RCA. Haider et al. [40] 

concluded that RCA material showed more 

significant permanent deformation than 

Rockville Graded Aggregate Base (GAB) 

material under constant loads. However, 

RCA materials showed similar geo-

mechanical and performance to conventional 

GAB material. Bestgen et al.[56] reported 

that virgin granular aggregate base materials 

showed lower permanent deformation than 

RCA. Arisha et al.[15], reported that the 

predicted MR was greater than the South 

Australian specified value of 300MPa 

corresponding to the anticipated field stress 

and they recommended the use of RCA as an 

alternative to unbound base material. 

Jaykody, Gallege, and Ramanujam [57] 

showed that plastic strain was not influenced 

by moisture content above OMC; at lower 

confining stress, the principal stress was 

found to be dominant on the accumulated 

strain.  
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Table 3. Resilient Modulus prediction models used for RCA. 

S.No. Reference MR Test Protocol Model 

1. [9] AASHTO TP 46-94 Bulk Stress Model: MR = 𝑘1θ
k2 

2. [40] AASHTO T307-99 Pezo Model: 𝑀𝑅 = 𝑘1𝑝𝑎 [
𝜎3

𝑝𝑎
]

𝑘2

[
𝜎𝑑

𝑝𝑎
]

𝑘3

 

3. [48]  Bulk Stress Model: MR = 𝑘1 ∗ θ
k2 

4. [52] NCHRP 1-28a 

Witczak Model ∶ MR

= k1pa (θ −
3k6

pa
)

k2

(
τoct

pa

+ k7)
k3

 

5. [53] AUSTO 2007 

MR

= K0 (
σm

pa
)

k1

(
τoct

τref
)

k2

(
um

pa
)

k3

[
DDR ∗ (1 −

k4∗RCM

100
)

100
]

k5

 

6. [56] AASHTO T 307-99 Pezo Model: 𝑀𝑅 = 𝑘1𝑝𝑎 [
𝜎3

𝑝𝑎
]

𝑘2

[
𝜎𝑑

𝑝𝑎
]

𝑘3

 

7. [58] AUSTO 2007 Bulkstress Model ∶ MR = 𝑘1 θ
k2 

8. [54],[15] AASHTO T 307(2012) 

MEPDG Model: 𝑀𝑅

= 𝑘1pa (
θb

pa
)

k2

(
τoct

pa
+ 1)

k3

 

MR-Resilient modulus; pa-Atmospheric pressure,  

τoct - Octahedral shear stress = 
1

3
√{(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2} 

σd=Deviatoric Stress, (σd =σ1-σ3) ; σ1 = Axial stress, σ2= Lateral stress (σ2= σ3), σ3=Confining pressure, 

ϴ or ϴb- Bulk stress = σ1 + σ2+ σ3= σd + 3σ3; 

DDR-Dry density ratio; um-Matric suction; RCM- Reclaimed Masonry. ki-Multiple Regression Constants 

 
Fig 4. Comparison of Resilient modulus for RCA and DGABC mixes at different bulk stress [9]. 
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Table 4. Range of k1 and k2 for untreated RCA by several authors. 

Reference  Material k1 (MPa) k2 k3 

[9] 100% DGABC 9.553 0.5021 

- 

75%DGABC+25%RCA 9.746 0.5184 

50%DGABC+50%RCA 16.12 0.5124 

25%DGABC+75%RCA 19.26 0.484 

100%RCA 25.35 0.461 

[48] AF RCA 10.387 0.594 

- 

18.5MPa RCA 16.712 0.551 

49MPa RCA 13.809 0.610 

75MPa RCA 14.338 0.551 

Dry Rhyolite 5.104 0.67 

[28] ARR at 90% of OMC 25.1 0.48 

- 

ARR at 80% of OMC 25.5 0.47 

ARR at 60% of OMC 69.5 0.38 

RCO at 90% of OMC 7.2 0.63 

RCO at 80% of OMC 10.2 0.58 

RCO at 60% of OMC 190 0.22 

VA at 90% of OMC 7.4 0.58 

VA at 80% of OMC 3.5 0.74 

VA at 60% of OMC 6.5 0.66 

[40] Rockville-(R) 1025 0.88 -0.22 

RCA-(A) 355.8 1.40 -0.18 

25%A+75%R 1430 0.82 -0.20 

50%A+50%R 356.50 1.54 -0.17 

75%A+25%R 478.1 1.45 -0.34 

RCA-(B) 493.3 1.18 -0.13 

25%B+75%R 510.61 1.29 -0.18 

50%B+50%R 450.63 1.27 -0.11 

75%B+25%R 356.25 1.39 -0.21 

[56] RCA1 355.8 1.40 -0.18 

RCA2 493.3 1.18 -0.13 

 

Table 5. Ranges of k1 and k2 for untreated granular materials [42]. 

Author and Year  Material k1 (MPa) k2 

Hicks (1970) Partially crushed gravel, crushed rock 11-34.50 0.57-0.73 

Hicks & Finn (1970) Untreated base at San Diego Road 

Test 

14.50-37.23 0.61 

Allen (1973) Gravel, Crushed stone 12.41-55.15 0.32-0.70 

Kalcheff& Hicks (1973) Crushed stone 27.60-62.00 0.46-0.64 

Boyce et al. (1976) Well graded crushed limestone 55.15 0.67 

Monismith&Wictzak 

(1980) 

In service base &subbase materials 20-53.43 0.46-0.65 
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Fig. 5. Comparison of Resilient modulus for RCA and GAB mixes [47]. 

3. Studies on Stabilized RCA 

The utilization of hydraulic binders to 

provide cohesion and improve stability on 

crushed stones cannot be considered the 

latest pavement construction technique [59]. 

The important factor for the successful use of 

crushed stones in paving is adequate 

compaction of the material. The compaction 

provides the material with a significant 

bearing capacity against vertical pressure. 

However, the material does not possess an 

excellent ability to take horizontal stresses 

even after it is compacted; the employment 

of binders can assist it by changing its 

original characteristics. Furthermore, to use 

recycled materials for special applications 

like pavement base or subbase, the 

improvement of recycled material is critical. 

Hence, several improvement techniques like 

stabilization with chemical additives and 

reinforcing with geo-grids are extensively 

used in pavement applications. The 

mechanistic-empirical pavement design 

considers stabilized materials under 

semirigid pavements (MEPDG 2008)[60]. 

Different stabilizers such as Portland cement, 

limes, pozzolans activated by lime, fly ash, 

ground slag, combinations of these, and 

geopolymers are used to stabilize RCA. Also, 

researchers have tested stabilized RCA by 

varying parameters such as stabilizer type 

and content. For the analysis of pavements 

with stabilized bases, MEPDG requires a 

resilient modulus and the modulus of rupture. 

These properties could be estimated from 

other tested properties like unconfined 

compressive strength through proper 

correlations. 

3.1. Unconfined Compressive Strength of 

Stabilized RCA 

The unconfined compressive strength (UCS) 

test is an extensively accepted method of 

testing to determine the strength of bound 

materials. UCS test gives the compressive 

strength of stabilized soil subjected to 

vertical compressive load. In addition, UCS 

is used to evaluate the quality of mix to 

perform satisfactorily as a stabilized base and 

sub-base layer [61]. Table 6 synthesizes the 

UCS test results reported in the literature to 

stabilize RCA with Ordinary Portland cement 

and alternative binders. Fig. 6, represents the 
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average UCS variation of cement stabilized 

RCA with cement content ranging from 2 to 

6 % by weight of RCA. Table 7 presents the 

criterion UCS for suitability of stabilized 

base and subbase. 

3.2. Tensile Strength of Stabilized RCA 

The tensile strength of stabilized aggregate is 

considered an important material parameter 

for pavement design. This is because the 

bottom of the stabilized layer undergoes 

tensile stress. Therefore, 3 point or 4 point 

flexural beam test and indirect tensile 

strength test have been used to determine the 

tensile strength of the stabilized base. Table 8 

synthesizes tensile strength test results 

reported in the literature  

3.3. Stiffness of RCA 

Elastic modulus of stabilized materials is an 

important variable in layered elastic analysis 

to determine stresses and strains at critical 

locations i.e., at the bottom of the stabilized 

layer of a pavement. In general, the elastic 

modulus is computed at 10-40% of the 

strength of the mix, after a certain number of 

loading cycles have been applied, and is 

called resilient modulus. The standard 

methods used for determining resilient 

modulus include (1). Multi-stage repeated 

load triaxial test proposed by AASHTO 

T307-99[44] and (2). Dynamic indirect 

tension test offered by ASTM D 4123 [62] 

for stabilized pavement materials and (3). 

specimens subjected to repeated flexural 

loading by three-point or four-point flexure 

test. The stiffness or modulus values of 

stabilized materials depend on the type of test 

used in the laboratory. Table 9. presents the 

methods used to determine the stiffness of 

stabilized RCA by researchers. Table 10. 

provides the range of modulus for treated 

RCA.  

The cyclic indirect diametrical tensile test is 

used to evaluate the tensile resilient modulus. 

The compression resilient modulus was 

determined using a repeated load triaxial 

setup using AASHTO T 307-99 protocol. A 

haversine load pulse of 0.1s loading and 0.9s 

rest period was applied. The flexural 

modulus was determined by repeated flexural 

four-point beam test. 

 
Fig. 6. UCS of cement stabilized RCA. 



142 S. Kumar Gangu et al./ Journal of Rehabilitation in Civil Engineering 11-2 (2023) 131-152 

Table 6. Synthesis from the literature of the UCS values (MPa) of stabilized RCA. 

Reference  Stabilizer Test Protocol UCS(MPa) 

7-Day 28-Day 

[63] 8.0%C ASTM C 39[64] - 6.22 

4.0 % C + 4.0%F - 5.05 

8.0 % C + 8.0%F - 13.63 

4.0% C+4.0%F+0.50%H - 3.29 

8.0% C+8.0%F+0.50%H - 10.72 

[65] 3.0%C Tex-120-E[66] 4.5 4.90 

[67] 4.0% C JTJ057-94 4.45 5.06 

5.0% C 4.79 5.38 

[39] 5.0%C ASTM C-39[64] 2.6 3.5 

[68] 3.0%C AS 5101.4-2008[69] 4.0 5.35 

[18] 2.0% C 2.8 3.4 

4.0% C 3.8 4.2 

[20] 2.0% F & 2.0% S at L/P ratio 0.3 ASTM D 5102[70] 1.80 3.20 

2.0% F & 2.0% S at L/P ratio 0.4 2.10 4.0 

2.0% F & 2.0% S at L/P ratio 0.5 1.80 3.60 

4.0% S at L/P ratio 0.3 2.20 4.20 

4.0% S at L/P ratio 0.4 2.70 4.70 

4.0% S at L/P ratio 0.5 2.50 4.40 

[19] 10.0%CCR 1.08 - 

10.0%F 0.43 - 

10.0%S 6.30 - 

5.0%CCR+5.0%F 1.29 - 

5.0%CCR+5.0%S 3.37 - 

5.0%F+5.0%S 5.07 - 

[21] 30.0%CKD 2.2 - 

20.0%CKD+10.0%F 3.8 - 

15.0%CKD+15.0%F 3.8 - 

10.0%CKD+20.0%F 2.8 - 

30.0%F 0.5 - 

20.0%LKD +10.0% F 1.2 1.4 

[22] 

 

30.0% CKD 2.0 2.2 

20.0% CKD +10.0% F 3.0 3.5 

15.0% CKD +15.0%F 3.2 .8 

10.0%CKD +20.0%F 2.8 3.2 

30.0%F 0.4 1.0 

[71] 6.0% C JTG E51-2009 

T080501994 

5.6 - 

6.0%C + 1.6% E 5.0 - 

6.0%C +0.9% O 5.8 - 

[72] 3.0% C ASTM D 5102[70] 2.11 - 

3.0%C + 0.5% PVA 0.69 - 

3.0%C + 1.0% PVA 0.94 - 

3.0%C + 1.5% PVA 2.28 - 

3.0%C + 2.0% PVA 3.74 - 
C-Cement; CCR-Calcium Carbide Residue; CKD-Cement Kiln Dust; E- Slow setting cationic emulsion; F-Fly 

ash (Class-F); H- High-density polyethylene fibers; LKD- Lime Kiln Dust; L/P-Liquid activator to solid 

pozzolanic material; O-Waste Oil; PVA-Poly Vinyl Alcohol; S- Ground granulated blast furnace slag; 
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Table 7. Criteria for UCS suitability of stabilized base and sub-base. 

Reference 

Unconfined Compressive Strength 

(Mpa) 
Curing Period 

High Volume 

Roads 

Low Volume 

Roads 

MEPDG (2008)[60] 
1.72 Subbase 1.72 Subbase  7-Day for cement 

28-Day lime -fly ash  
5.1 Base  5.17 Base  

AUSTROADS(2008)[73] 2.0 1-2 28-Day Curing  

IRC:37-2018[74] 

0.75-

1.5 
Subbase  1.7 Subbase  

7-Day for cement 

28-Day lime-fly ash 

4.5-7.0 Base  3.0 Base   

 

Table 8. Synthesis from the literature of the tensile strength values of stabilized RCA. 

Reference  Blend of Materials  Test Protocol Tensile 

Strength [MPa] 

[63] 8.0%C ASTM C 496[75] 0.65 

4.0%C + 4.0%F 0.77 

8.0%C + 8.0%F 1.56 

4.0%C+4.0%F+0.50%H 0.96 

8.0%C+8.0%F+0.50%H 1.44 

4.0%C + 4.0%F ASTM C 78[76] 0.94 

8.0%C + 8.0%F 0.91 

4.0%C+4.0%F+0.50%H 1.06 

8.0%C+8.0%F+0.50%H 1.44 

[39] 5.0%C+25.0%LSA ASTM C-78[76] 0.41 

ASTM C496[75] 0.32 

[68] 3.0%C AS1012.11-2000[77] 1.23 

[78] 10.0%CCR 0.09 

10.0%F - 

10.0%S 1.90 

5.0%CCR+5.0%F 0.91 

5.0%CCR+5.0%S 1.83 

5.0%F+5.0%S 2.10 

[79] 3.0%C 0.88 

3.0%C+5.0%PET 0.30 
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Table 9. Methods used for Stiffness Evaluation. 

Reference  Type of stabilizer Test Procedure 

Curing 

Period 

(Days) 

Test Protocol  

[18] 

 
Cement  

AASHTOT307-99[44] 

 

7.0 Tex-120-E[66] 

 [20] F and S Geo-polymer 7.0 

[19] CCR, F andSGeo-polymer 7.0 

[21] CKD, F Geo-polymer 7.0 [51] 
[22] F and CKD 7.0 

[78] Alkali activated CCR [80] 28.0  

[71] C, E and O - 90.0 
JTGE51-

2009T0808-1994 

[79] C and PET [80] 28.0  

[72] C and PVA [44] 7.0 [51] 

 

Table 10. Range of Resilient Modulus for RCA stabilized with different binders. 

Compression Resilient Modulus Tensile or Flexural Resilient Modulus 

Reference  Material MR 

(MPa) 

Reference Material MR 

(MPa) 

[19] RCA 255 - 693 [63] 4.0%C+4.0%F 690 

RCA+10.0%CCR  75 - 330 8.0%C+8.0%F 790 

RCA +10.0%F  108 - 250 4.0%C+4.0%F+0.50%

H 

1,090 

RCA +10.0%S  384 - 776 8.0%C+8.0%F+0.50%

H 

690 

5.0%CCR+5.0%F 203 - 516 [78] 10.0%S 12,455 

5.0%CCR+5.0%S 373 - 852 5.0%CCR+5.0%F 8,288 

5.0%S+5.0%F 130 - 402 5.0%CCR+5.0%S 10,187 

[21] 30.0% LKD 360 5.0%F+5.0%S 11,889 

20.0%LKD+10%F 350 [79] 3.0% C 7,815 

15.0%LKD+15.0

%F 

340 3.0% C + 5.0% PET 4,985 

10.0%LKD+20.0

%F 

250 [71] 5.0% C 1,702 

30.0%F 300 5.0%C +E 1,270 

   5.0%C + 0.9 O 1,428 
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4. Recycled Concrete Aggregates 

Stabilized with Geo-Synthetics 

Geosynthetics such as geogrids, geotextiles, 

are popularly used in construction activities 

for soil reinforcement. The geogrid is most 

commonly used in the base or subbase layers 

of flexible pavement. This is because geogrid 

has large aperture size where soil particles 

can interlock easily from one side to another 

side and thereby enhance strength and 

stiffness of the pavement layer [81].  

Liu et al.[82] executed finite element analysis 

using stress intensity factor distribution on 

asphalt concrete pavements with geo-grid 

reinforced RCA and natural aggregate bases. 

They concluded that geo-grid decreased 

crack propagation rate into the top layer of 

pavement and reinforced RCA performed 

better than crushed natural aggregate. 

Gongora & Palmira [83] undertook a 

laboratory cyclic plate loading test on 

unreinforced and biaxial geo-grid 

reinforcement sections constructed inside a 

steel tank of 750mm diameter and 530mm 

height. New aggregate and RCA were used 

as base materials. The geogrid was placed at 

the subgrade interface and at the base in the 

case of reinforced section. The deformations 

measured at several locations indicated that 

geo-grid enhanced the life of RCA base.  

Arulrajah et al. and others [55,84] 

investigated interface shear strength, MR, and 

permanent deformation properties of geogrid 

reinforced RCA using conventional(C) and 

modified(M) large-scale direct shear test 

apparatus. Table 11 presents interface shear 

strength properties and Table 12 presents 

permanent strain for RCA as well as geogrid 

RCA. The study concluded that permanent 

deformation properties of geo-grid reinforced 

RCA improved compared to unreinforced 

material. Walkenbach et al.[85] reported that 

the NA replacement with RCA and triaxial 

geogrid increased resilient deformation. The 

interface stress was found to be reduced by 

55%, representing greater stress distribution. 

Table 11. Interface peak shear strength properties of geogrid reinforced RCA [55].

Material Apparent cohesion Interface angle 

Peak Residual Peak Residual 

C M C M C M C M 

RCA 95 - 80 - 65 - 39 - 

RCA+Biaxial 75 108 25 10 50 69 39 67 

RCA+Triaxial 83 114 50 12.5 52 71 35 68 

Table. 12 Permanent strain(micro) of geogrid reinforced RCA [84]. 

Deviator stress(kPa) 150 250 350 

RCA 11742.3 16077.8 Failed 

RCA+Biaxial 8293.4 15994.4 Failed 

RCA+Triaxial 7478.6 15070.1 Failed 

 

5. Pavement performance with RCA 

as a base material 

Barksdale et al. [86], investigated recycled 

concrete base materials by RLTT to evaluate 

resilient modulus and rutting potential. The 

study reported that recycled concrete 

materials performed better compared to 

crushed gravel for rutting potential. The 

granular equivalency of RCA was estimated 
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based on rutting potential and resilient 

modulus. There was considerable variation in 

RCA performance compared to that of other 

base materials. Cavey et al. [87] conducted 

laboratory and field studies to assess the 

potential suitability of pavement base course 

material containing reinforced cement 

stabilized RCA with reclaimed plastic strips. 

The field program constructed 12 test 

sections, and it was found that the addition of 

fibers did not affect field compaction. 

Laboratory tests showed better performance 

in terms of split tensile strength and beam 

flexural strength. The results suggested that 

caution and careful investigation should be 

exercised at the time of incorporation of 

waste products into component layers.  

Chini et al.[88] evaluated the effect of RCA 

as a base material on the performance of hot 

mix asphalt (HMA). A circular accelerated 

test track was constructed with 200, 250, and 

300mm base course thickness. A 90mm thick 

layer of HMA was laid over each base 

course. The life of flexible pavement was 

then estimated and stated that the properties 

of RCA was found to be consistent. Ho et al. 

[89] reported a field study where RCA was 

used as a base course material. The 

International Roughness Index (IRI) was 

found to vary between 1-4 m/km. The rut 

depth was found more in the case of 

pavement with RCA base course. Jimnez et 

al. [38] determined RCA’s performance and 

environmental impact on unpaved road 

surfaces. The IRI measured values were 

similar to those of the pavement constructed 

with NA and both roads were in good 

condition vis-a-vis unpaved rural roads 

(between 2.5m/km to 6.0m/km). However, 

after 2.5 years, the evaluation studies showed 

that IRI for the pavement with NA increased 

about 100%, whereas RCA increased slightly 

by 35%. Coban et al. [90] evaluated the use 

of RCA and recycled asphalt pavement 

(RAP) material in pavement foundation 

systems as a substitute to NA. Four pavement 

sections with base layers of thickness 300mm 

consisting of coarse RCA, fine RCA, and 

limestone (control), the combination of RCA 

with RAP materials were constructed for 

Minnesota Road Research Project Low 

Volume Road (Mn ROAD LVR) test facility. 

The modulus of base layers and the materials 

were evaluated using falling weight 

deflectometer and laboratory resilient 

modulus test. The results exhibited that 

coarse RCA and fine RCA produced higher 

elastic modulus compared to RCA with RAP. 

6. Summary and Concluding 

Remarks 

This paper summarizes the state of research 

on the utilization of RCA in base layers of 

pavement structures. Based on review of 

several researchers' investigations, RCA has 

great potential for use in pavement base 

applications. The following conclusions were 

drawn: 

 RCA is a competent alternative material 

to NA to provide a stable and durable 

pavement base. 

 The use of RCA increases the OMC for 

compaction procedures adopted in 

pavement construction. The CBR of 

RCA is comparable to that of NA. 

 The base made with RCA exhibited a 

higher resilient modulus and lower 

accumulated permanent deformation 

than NA. A combination of NA and 

RCA results in reduced modulus which 

may be due to poor packing of 

materials.  

 The studies considered the effect of 

only moisture on determination of MR.  
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 The constitutive models for MR 

presented in the literature were derived 

for subgrade soils and virgin 

aggregates, although, the use of such 

models could result in uncertainties. 

Therefore, the equations should be 

further validated, and this can be 

accomplished by applying RCA for 

case studies.  

 Minimal information is available on 

fatigue behavior of several composites 

used to stabilize RCA.  

 The use of stabilized RCA has been 

limited to experiments. 

7. Further scope of research 

The review on RCA as a pavement base 

material indicated certain knowledge gaps on 

which further research is required to use 

RCA as an alternative to NA for pavement 

applications. These are:  

1. The effect of mortar content on 

performance of RCA based pavement 

base need to be studied. 

2. The effect of gradation must be taken 

into account for evaluation of stiffness 

and permanent deformation for RCA 

based pavement base.  

3. Properties such as moisture 

susceptibility, durability, leaching, and 

shrinkage of stabilized RCA should be 

considered in the performance 

evaluation.  

4. Field performance of pavements with 

RCA and stabilized RCA should be 

evaluated. 

5. The economic analysis of pavements 

containing RCA should be carried out. 
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