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Abstract

The vehicle routing problem has attracted much attention in the recent decade. Considering the real-world constraints,
many extensions have been developed. This paper develops a new model for the green vehicle routing problem with
simultaneous pickup and delivery under demand uncertainty. Due to the problem’s complexity, the standard solvers
are only able to solve small-scale instances. To solve the large-scale problems, a two-stage algorithm based on the
modified AVNS is proposed. Extensive computational experiments are conducted using modified versions of Solomon’s
benchmark instances to show the performance of the algorithm. The results affirm that the two-stage algorithm is
capable of generating optimal solutions for small-size instances and the planned routes generated for large-size instances
were significantly more robust against the increase of uncertainty parameters.
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1 Introduction

In the optimization area, the term vehicle routing problem (VRP) refers to a well-known scheduling model that
aims at finding the best routes for distributor vehicle(s) in which the overall cost of distribution is minimized [12].
Considering the wide-ranged applications, many efforts have been done in the VRP area to take the real-world
assumptions into account. Among the proposed models, the vehicle routing problem with time windows (VRPTW)
and its extension, pickup, and delivery problem (PDP) have attracted much attention from researchers during the past
decade. According to the best knowledge of the authors, [28] and [15] conducted the earliest studies and put forward in
this area. PDP can be grouped into four main classes: (1) vehicle routing problem with clustered backhauls (VRPCB)
(2) vehicle routing problem with mixed linehaul and backhauls (VRPMB) (3) vehicle routing problem with divisible
delivery and pick-up (VRPDDP) (4) vehicle routing problem with simultaneous delivery and pick-up (VRPSDP)
[26]. Vehicle routing problem with simultaneous pickup and delivery under time windows limitation (VRPSPDTW)
introduced by Ai and Kachitvichyanukul [2] and Wang and Chen [33] that is each customer should be visited within its
time windows. In classical formulation, customers’ demand and pickup are known and deterministic. However, such
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Figure 1: An example of the VRPSPDTW

an assumption is obviously violated in the real-case studies. For instance, a number of waiting students in a station
is not decisive [10]. As another example, healthcare logistics medication demand for suppliers is not certain [8].

2 Literature review

Generally speaking, VRPTW includes two modes, (1) soft time windows in which vehicles are allowed to visit
customers out of the predefined windows enduring a penalty, and (2) hard time windows in that vehicles must visit
customers within the time windows. For example, postal deliveries, security patrol service, urban newspaper distri-
bution, grocery delivery, bank deliveries, school bus routing, and industrial refuse collection have hard time windows
constraints [32]. VRPTW have been studied by the researchers during the past decades [19, 14, 5, 31, 24, 11]. An
extended version of VRPTW, say VRP with simultaneous pickup and delivery was firstly introduced by [23]. This
problem is generally defined as a pickup and delivery problem, which has been applied in many fields, such as the
grocery delivery system, parcel delivery, and home health care services. If the delivery and pickup services are de-
manded in the logistics system, we call this pickup and delivery problem. When the customers have pickup requests
and delivery requests simultaneously, the variant pickup and delivery problem become a vehicle routing problem with
simultaneous pickup–delivery (VRPSPD) and if the customers have time windows constraints, the variant VRPSPD
is defined as a vehicle routing problem with simultaneous pickup–delivery with time window (VRPSPDTW).

Increasing the traffic congestion and negative environmental impact of transportation motivated the researchers
to develop economic models in the VRP area. The term green vehicle routing problem (GVRPs) is a major key to
reducing hazardous effects of transportation, such as air pollution, greenhouse gas (GHG) emissions, noise, and so on
[23]. Moghdani et al. [25] classified GVRPs into eight groups considering the objective of the problems:

• Green vehicle routing problem

• Pollution-routing problem

• Green heterogeneous vehicle routing problem

• Energy minimizing vehicle routing problem

• Time-dependent vehicle routing problem

• Fuel consumption in vehicle routing problem
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Table 1: Outline of different green VRP classes

Variants of GRVP Objective Data/Case
study

Uncertainty Solution
approach

CO2 calculation
method

Green VRP Single Case study Deterministic Metaheuristic Factor
Heterogeneous Multiple Experimental NondeterministicSoftware Fuel consumption model
Pollution-Routing Many obj Theoretical - Exact solver Calculate emissions from

road transportation
Energy Minimization - - - Exact Fuel consumption model
Time-Dependent - - - Heuristic Calculate transportation

emissions/energy con-
sumption

Fuel Consumption - - - Hybrid National atmospheric
emissions inventory

Electric VRP - - - - Comprehensive modal
emission model

Other - - - - Vehicle specific power

• Electric vehicle routing problem

A rich literature can be found in each class in terms of model development, solution approach, and also real-world
case studies. Table 1 shows a summary review of different classes. Figure 2 demonstrates different cost functions
employed to develop green vehicle routing models. From the solution approach viewpoint, different kinds of algorithms
are adapted to deal with the complexity of GVRP models. In this regard, a simple classification can be inspired by
the literature including exact, heuristic, metaheuristic, and hybrid algorithms. Figure 3 visualizes some of the related
approaches.

Related research will be reviewed to provide an outlined survey and determine the contribution of the current study.
Erdoğan and Miller-Hooks [13] presented a mathematical model regarding the location of the alternative fueling station
in the VRP model. They used two construction heuristics to obtain a feasible solution regarding customer and station
location simultaneously, so as to minimize the possibility of running out of vehicle fuel. Latterly, Schneider et al.
[27] developed this model by presenting VRP with intermediate stops and engaged an adaptive variable neighborhood
search algorithm to solve the problem. Bruglieri et al. [9] presented a more realistic model of GVRP containing a new
formulation to investigate a reduction in the alternative fuel station (AFS). For better performance in the computation
process, the cost of inserting any halt between each pair of customers was pre-measured and their model included
a pre-computation of AFS. Leggieri and Haouari [20] presented non-linear formulation consumption constraints of
GVRP, using a reformulation linearization technique in which the pre-processing computation is performed to reduce
the number of variables and constraints. Ashish and Pishvaee [4] attempted to assess different aspects of performing
alternative fuels in VRP by measuring the effects of different pollutants (i.e., NOx, HC, and CO) on human health and
the ecosystem through various mathematical models based on Well-to-Wheel and Tank-to-Wheel analyses. Our review
of the relevant literature only reveals a limited number of papers that deal with GVRP. However, many papers can be
found in the literature which is related to our research. Despite the rich literature in this area, many aspects of GVRP
models have not been developed by researchers. Inspiring the fact, the current research aimed at developing a green
vehicle routing problem model with time windows and simultaneous pickup and delivery under demand uncertainty
to minimize fuel consumption. Therefore, to provide a comprehensible description of the study, the next sections
are organized as follows: Section 3 introduces a base model of the research known as vehicle routing problem with
simultaneous pickup and delivery with time windows (VRPSPDTW) in both deterministic and stochastic contexts.
Section 4 is assigned to explain the details of the proposed model based on a robust formulation and demand uncertainty
set. Section 5 presents a two-stage algorithm for solving the new model. In section 5, numerical experiments will be
conducted and the results will be discussed. Finally, section 6 conclude the research.

3 Vehicle routing problem with simultaneous pickup and delivery

3.1 Deterministic demand

In general, The VRPSPDTW is defined on a complete graph G = (N0, i) with N0 = {0, 1, . . . , n + 1} as the
nodes set and E = {(i, j) | i, j ∈ N0, i ̸= j} as the arc set. According to this notation, N = {1, 3, . . . , n} denotes
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Figure 2: Percentage of using different cost functions in multi-objective models

Figure 3: Classification of algorithms employed in GVRP models
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actual customers and dummy nodes 0 and N+1 are vehicle depots. For each customer i ∈ N,DiandPi stands for the
deterministic demand and pickup, respectively. All nodes, except the depot, have positive demand and pickup. The
set K = {1, 2, . . . ,m} denotes the fleet of vehicles with the same capacity Q. All of the vehicles should start from
the depot and come back to the depot after visiting all assigned customers. Each customer has a hard time window
{ai, bi}; i.e., the arrival time of each vehicle to customer i must be within the time window interval. The required time
to serve each customer is defined as ti. The distance between the paired customers i and j is shown as dij. According
to [28], the speed of the vehicles is 1, that is, the travel time between customers i and j is the same as the distance
between this pair of customers. Each route starts at the depot, visits a number of customers (at most once), and then
returns to the depot. In this paper, we used mixed integer programming (MIP) for the formulation of VRPSPDTW.
The decision variables are defined as follows:
xkij , i ∈ N0, j ∈ N0, k ∈ K: if the vehicle k goes directly from node i to node j equals to 1; otherwise 0.
L1k: Load amount of vehicle k ∈ K when exiting the depot.
Lj : Load amount of vehicle when leaving the customer j ∈ N .
yik: arrival time of vehicle k at node i ∈ N .

min
∑
j∈N0

∑
k∈K

xk0j (3.1)

min
∑

(i,j)∈N0

∑
k∈K

dijx
k
ij (3.2)

such that
∑
i∈N0

∑
k∈K

xkij = 1, for all j ∈ N (3.3)

∑
i∈N0

xkir −
∑
j∈N0

xkrj = 0, for all k ∈ K, r ∈ N0 (3.4)

∑
j∈N

xk0j = 1, for all k ∈ K (3.5)

∑
i∈N

xki0 = 1, for all k ∈ K (3.6)

Lk =
∑
i∈N0

∑
j∈N

Djx
k
ij , for all k ∈ K (3.7)

Lj ≥ Lk −Dj + Pj −M(1− xk0j), for all j ∈ N, k ∈ K (3.8)

Lj ≥ Li −Dj + Pj −M(1−
∑
k∈K

xkij), for all i, j ∈ N, i ̸= j (3.9)

L1k ≤ Q, for all k ∈ K (3.10)

Lj ≤ Q+M(1−
∑
i∈N0

xkij), for all j ∈ N, k ∈ K (3.11)

yik − yjk + ti + tij ≤M(1−
∑
k∈K

xkij), for all i, j ∈ N0, k ∈ K (3.12)

ai ≤ yjk ≤ bi, for all i, j ∈ N0, k ∈ K (3.13)

xkij ∈ {0, 1}, for all i, j ∈ N0, k ∈ K. (3.14)

In this model, Equations 3.1 and 3.2 are respectively the objective functions for minimizing dispatching cost and
total traveling cost. Constraint 3.3 implies that each customer is visited once and only once by just one vehicle.
Constraint 3.4 ensures that any vehicle that visits a customer must immediately leave it after the completion of its
service. Constraints 3.5 and 3.6 ensure that all vehicles must choose the central depot as the starting and the ending
point; i.e., each vehicle must start from the central depot and return to it at the end. Constraint 3.7 is the initial
vehicle load. Constraint 3.8 is the vehicle loads after the first customer and constraint 3.9 is the vehicle loads after the
subsequent customers. Constraints 3.10 and 3.11 are vehicle capacity constraints. Constraints 3.12 and 3.13 ensure
the feasibility of the time schedule. The above model is for the case when the demand is deterministic and known in
advance. However, in many applications, the demand may be unknown, which invalidates this model. Thus, a model
should be developed to deal with demand uncertainty. Such a model is given in Section 3.
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3.2 Uncertain demand

According to Bertsimas and Brown [6], robust optimization has two scenario-based and interval-based approaches.
In the interval-based approach, an uncertain set is defined and all of its extreme points are named uncertain points.
Then, for each uncertain parameter, an interval is defined and the worst case of that parameter is used in the
optimization problem. In a real VRP model, when a parameter is non-deterministic, the model must be formulated
under uncertainty. Hu et al. [17] formulated the VRPTW under uncertain demand and travel time and proposed
a two-stage heuristic algorithm to tackle the NP-Hardness of the model and obtain high-quality solutions. Inspired
by their work and using the studies in [6, 7], this paper formulates the VRPSPDTW with stochastic demand. The
demand uncertainty is denoted here by U(q

k). Accordingly, the multidimensional demand uncertainty can be shown
as follows:

Uq = Xk∈KU
k
q (3.15)

Uk
q =

q̃ ∈ R|Nk| | q̃i = q̄i + αiq̂i,
∑
i∈Nk

|αi| ≤ Γk
q , |αi| ≤ 1,Γk

q = ⌈θq|Nk|⌉,∀i ∈ Nk

 . (3.16)

Eq. 3.15 indicates that the demand uncertainty set Uq is the Cartesian product of the demand uncertainty set Uk
q

for each vehicle in equation 3.16. Nk represents the set of customers on the route of vehicle k, q̄i stands for the nominal
value of uncertain demand q̃i, q̂i denotes the maximum deviation from q̄i for i ∈ Nk, αi is the auxiliary variable, and
γkq controls the level of uncertain demand. Moreover, θq ∈ [0, 1] is the demand budget coefficient: if θq = 0, there is
no demand uncertainty, and if θq = 1, each customer demand can take a value within the interval [q̄i − q̂i, q̃i + q̂i].
To incorporate demand uncertainty into the proposed model, it is possible to alter each decision variable Lj in the
deterministic model by Lj (q) [17, 1]. Accordingly, the proposed VRPSPDTW can be formulated as follows:

Min
∑
j∈N0

∑
k∈K

xk0j (3.17)

Min
∑

(i,j)∈N0

∑
k∈K

dijx
k
ij (3.18)

s.t: ∑
i∈N0

∑
k∈K

xkij = 1, ∀j ∈ N (3.19)

∑
i∈N0

xkir −
∑
j∈N0

xkrj = 0, ∀k ∈ K, ∀r ∈ N0 (3.20)

∑
j∈N

xk0j = 1, ∀k ∈ K (3.21)

∑
i∈N

xki0 = 1, ∀k ∈ K (3.22)

L0k(q) =
∑
i∈N0

∑
j∈N

Djx
k
ij , ∀k ∈ K, q ∈ ext{Uq} (3.23)

Lj(q) ≥ L0k −Dj + Pj −M(1− xk0j), ∀j ∈ N, ∀k ∈ K, q ∈ ext{Uq} (3.24)

Lj(q) ≥ Li −Dj + Pj −M(1−
∑
k∈K

xkij), ∀i ∈ N, ∀j ∈ N, i ̸= j, q ∈ ext{Uq} (3.25)

L1k(q) ≤ Q, ∀k ∈ K, q ∈ ext{Uq} (3.26)

Lj(q) ≤ Q+M(1−
∑
i∈N0

xkij), ∀j ∈ N, ∀k ∈ K, q ∈ ext{Uq} (3.27)

yik − yjk + ti + tij ≤M(1−
∑
k∈K

xkij), ∀i ∈ N0, ∀j ∈ N0, ∀k ∈ K (3.28)
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Table 2: ...

Parameter Description
cd fix cost for utilizing each vehicle
ct travel cost per distance unit
φk
ij Average acceleration of the vehicle k in arc (i, j)

g gravity
δij angle between the road connecting node i to node j
Crr Rolling resistance
Wk Weight of vehicle k
Ak Front area of vehicle k
ρk Air density
νkij Average speed of vehicle k in arc (i, j)

ai ≤ yjk ≤ bi, ∀i ∈ N0, ∀j ∈ N0, ∀k ∈ K (3.29)

xkij ∈ {0, 1}, ∀i ∈ N0, ∀j ∈ N0, ∀k ∈ K (3.30)

Constraints 3.7 to 3.11 are modified for each extreme point of the set Uq(q ∈ ext{Uq}), as demonstrated in relations
3.23 to 3.27.

4 Green VRPSPDTW with demand uncertainty

Considering the notations illustrated at previous sections and incorporating the green parameters as below the
related green VRPSPDTW with demand uncertainty can be extracted as follows:

minz1 =
∑
k∈K

(cd
∑
j∈N0

xk0j + ct
∑
i∈N0

∑
j∈N0

dijx
k
ij) (4.1)

minz1 =
∑

q∈extUq

∑
k∈K

∑
i∈N0

∑
j∈N0

(φk + g. sin δij + g.Crr cos δij)(Wk + Lj(q))dijx
k
ij +

∑
k∈K

∑
i∈N0

∑
j∈N0

0.5cdAkρdijx
k
ij (4.2)

s.t: ∑
i∈N0

∑
k∈K

xkij = 1, ∀k ∈ K, ∀j ∈ N0 (4.3)

∑
i∈N0

xkir −
∑
j∈N0

xkrj = 0, ∀k ∈ K,∀r ∈ N0 (4.4)

∑
j∈N0

xk0j = 1, ∀k ∈ K (4.5)

∑
i∈N0

xki0 = 1, ∀k ∈ K (4.6)

L0k(q) =
∑
i∈N0

∑
j∈N0

Djxjk, ∀k ∈ K, q ∈ extUq (4.7)

Lj(q) ≥ L0k(q)−Dj + Pj −M(1− xk0j), ∀j ∈ N, ∀k ∈ K, q ∈ extUq (4.8)

Lj(q) ≥ Li(q)−Dj + Pj −M(1−
∑
k∈K

xkij), ∀i ∈ N, j ∈ N, i ̸= j, q ∈ extUq (4.9)

L1k(q) ≤ Q, ∀k ∈ K, q ∈ extUq (4.10)

Lj(q) ≤ Q+M(1−
∑
i∈N0

xkij , ∀j ∈ N, ∀k ∈ K, q ∈ extUq (4.11)
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Figure 4: Framework of the two-stage algorithm

yik − yjk + ti+ (dij u
k
ij) ≤M(1−

∑
k inK

xkij , ∀i ∈ N0,∀j ∈ N0,∀k ∈ K (4.12)

ai ≤ yjk ≤ bi, ∀i ∈ N0,∀j ∈ N0,∀k ∈ K (4.13)

xkij ∈ {0, 1}, ∀i ∈ N0,∀j ∈ N0,∀k ∈ K (4.14)

5 Solution approach

This section describes the steps of the solution algorithm to be employed for examining the extended model. Many
efficient algorithms have been developed to solve NP-hard problems and obtain reliable solutions [22, 3]. Among the
existing algorithms, Hu et al. [17] proposed a two-stage method for achieving efficient solutions. In this paper, the
proposed algorithm is based on a two-stage scheme, where the first stage minimizes the number of vehicles and the
second one aims at minimizing the total traveled distance. The framework of this new algorithm is illustrated in
Figure 4.

5.1 Initial solution

The first step of the two-stage algorithm is to generate an initial feasible solution, for which all time windows and
customer constraints are considered. Since the quality of the initial solution can affect the output of the algorithm, the
sequential insertion heuristic algorithm by Joubert and Claasen is employed to guarantee the feasibility and quality
of solutions [18]. In their study, a time windows compatibility matrix (TWC) is adopted for the initial and extended
routes holding the time window constraints.

5.2 Minimize the number of vehicles

In the first stage, using an adaptive variable neighborhood search (AVNS), the employed algorithm attempts to
minimize the number of vehicles [29]. The pseudo-code for the first stage is illustrated in Figure 5.

Compute the total slack of each route.

Find and remove the route with the minimum number of customers. In the case of ties, a route is randomly selected.

Assign customers of the removed route to the route with the maximum slack. In the case of ties, a route is randomly
selected.

Execute the AVNS algorithm to obtain a feasible solution.

If no feasible route is obtained, return to the last feasible route; otherwise, return to the obtained route.

According to this Pseudo-code, calculating the floats and running the AVNS algorithm are two major tasks of
stage 1.
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Figure 5: Pseudo-code for stage 1

5.2.1 Route slack

The slack of each route is equivalent to the slack of each vehicle and demonstrates the total amount of time a
vehicle can be delayed without violating the time windows. This measure can be calculated as follows:

Slackk =
∑
i∈ri

max{0, bi − yik} (5.1)

where ri denotes route i.

5.2.2 AVNS algorithm

As a metaheuristic algorithm, the variable neighborhood search (VNS) algorithm can be applied to a wide range
of combined optimization problems [16]. This algorithm begins with an initial solution and a set of neighborhood
structures. Then, the major solution loop is replicated until the stopping condition is reached. As mentioned in the
earlier part of section ??, the AVNS algorithm was initially introduced by Stenger et al. (2013). AVNS algorithm has
two basic advantages. First, several routes are selected and their node’s order can be adjusted in the shaking phase
of an iteration such that it yields the minimum probability of exiting the local optimum. Secondly, it can be adopted
on the recent search performance. The most basic phases of the AVNS algorithm are local search and shaking phases.
To implement the proposed AVNS algorithm, two sets of operators known as Lin and Kernighan (LK) heuristics and
cross-exchange operator should be defined [21, 30].

Lin and Kernighan (LK) heuristics

LK heuristics belongs to the class of local optimization algorithms and has been defined for the exchange of the
edges of a route with those of another route. For a possible route, the algorithm repeats the exchanges many times so
that the length of the tour is reduced. Since the complexity of finding K−opt exchanges increases rapidly for larger K,
usually 2− opt and 3− opt are used in heuristics. Starting with the longest edge in the route, the edges are iteratively
removed and added, such that the pair of the removed and added edges shares an endpoint, fulfills the partial gain
criterion, and results in a feasible tour if the tour is closed. With the partial gain criterion, only those pairs of edges
are considered for the removal and insertion that the overall sequence of exchanges results in an overall improvement.
By restricting the search to promising options for larger K, this criterion reduces the neighborhood drastically. If, for
instance, the sequential removal and insertion of two pairs of edges result in no positive gain, LK does not continue to
remove and add more pairs. As soon as an improving move is found with the closure of the tour, the move is executed
and LK is restarted. The heuristic stops if for each initially removed edge no improving move can be found [3]. An
example is provided in Figure 6. Starting with the removal of edge (1,2), edge (2,5) starting from one of the endpoints
is added, such that d12 > d25. Because of the positive gain, the process continues by removing an edge incident to
node 5 and adding an edge, e.g., (4,5) and (4,6). If d12 + d45 > d25 + d46, the moves can be continued by removing
edge (5,6) and adding edge (1,5), to obtain a 3− opt move.

Cross exchange operator

Cross exchange operator (CE) is a local search operator aims to exchange two sub-routes r̂i and r̂j of two different
routes ri and rj , respectively [30]. Such an exchange is shown in Figure 7. Cross exchange is performed in two
stages: 1) identifying the initial point of the two sub-routes, and 2) estimating the appropriate length for each of the
sub-routes. To be more detailed, let (iν , i(ν+1)) be a candidate edge to be removed from route ri. For node i, a node
in a different route (which belongs to the T closest neighbors of node i) is randomly selected. Let node jτ be such
a neighbor. If edge (iν , jτ ) is added as a new edge, one of the edges (jτ , j(τ−1)) or (jτ , j(τ+1)) must be eliminated.
Finally, the incident node of the removed edge j(τ+1)orj(τ−1) is randomly selected and reconnected to i(ν+1).
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Figure 6: The sequential removal and insertion in LK nodes

Figure 7: Illustration of a CE operator for two routes

5.3 Minimize the traveled distance

After minimizing the number of vehicles in the previous step of the algorithm, the last feasible solution must
be shaken such that the routes are improved and the minimum traveled distance is achieved. In this regard, the
AVNS algorithm has six local search operators as well as a scoring scheme to improve the feasible solution in terms of
the total traveled distance: intra-route swap, intra-route reinsert, intra-route 2 − opt, inter-router swap, inter-router
reinsert, and inter-route 2− opt. The graphic illustration of these six neighborhood operators is shown in Figure 8. In
each iteration of the AVNS algorithm, six loops are considered, where, in each loop, one of the operators is randomly
selected and employed to improve the current solution. The operators are selected based on the roulette wheel scheme
with an equal chance for each operator. As soon as an improvement is observed in a loop, the corresponding operator
receives a score to be selected with more chance. According to [17], if a new overall best solution is achieved after
applying a selection method, then a score of nine is added to the method. Hereby, the more effective operator will
have more chances to be selected.

Figure 8: Six neighborhood operators
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Table 3: Results for R1 instance

Instance Proposed Alg. Modified PSO (Norouzi et al. 2017)
#Vehicles Travelled Dis-

tance
Obj. fun #Vehicles Travelled Dis-

tance
Obj. fun

R101 21 1722 7413 21 1770 7512
R102 20 1492 7406 21 1607 7449
R103 14 1295 7105 14 1313 7139
R104 11 1083 7005 11 1125 7060
R105 17 1463 7109 18 1513 7122
R106 13 1412 7078 14 1429 7136
R107 12 1255 7023 12 1284 7111
R108 11 1128 7214 11 1147 7314
R109 13 1289 7000 16 1321 7072
R110 12 1156 6978 14 1242 7028
R111 11 1316 7123 12 1373 7158
R112 11 1131 6989 13 1195 7015
Average 13.8 1313 7120 14.5 1328 7176

5.4 The termination criterion

The algorithm is stopped when 200 successive iterations show no improvement or it reaches 5000 iterations.

6 Numerical experiments

In this section, the details of the numerical experiments to test the proposed VRPSPDTW under demand uncer-
tainty are described. The test instances were derived from the well-known Solomon’s instances [15]. The instances
are grouped into six datasets R1, R2, C1, C2, RC1, andRC2. Each dataset contains between eight to twelve problems
each with 100 customers. The six problem types are categorized as follows:

C: with clustered customers whose time windows were generated based on a known solution;
R: with customer locations generated uniformly over a square;
RC: with a combination of randomly placed and clustered customers.
Where,
Type 1 has narrow time windows and small vehicle capacity, and
Type 2 has large time windows and large vehicle capacity.

In this paper, datasets R and RC are used in the experiments. To generate pickup data, the method proposed
by Angelelli and Mansini (2002) is employed. They modified Solomon’s instances and calculated the pickup amount
pi corresponding to the delivery amount Di as Pi = (1 − ψ)Di if i is even and Pi = (1 + ψ)Di if C is odd. In all
calculations, ψ is considered 0.2. Each nominal value q̄i was assumed to be equal to the corresponding customer
demand. In addition, we assumed that the maximum demand deviation q̂i was 0.2q̄i. We assumed that θq = 0.2 for
all data.

To evaluate the performance of the proposed algorithm the introduced model is also solved by the modified
PSO algorithm developed by [23]. The parameters cd and ct are randomly drawn from interval [0.35-0.65]. The
corresponding speed of vehicles is selected from the interval [65-90] and randomly assigned to roads. Objective
functions are combined with weights of 0.6 and 0.4, respectively.

The first experiment was conducted on R1 instances, which contain randomly distributed customers with narrow
time windows, short scheduling horizons, and small-capacity vehicles. Table 3 summarizes the results, where solution
approaches can be compared in terms of the objective function. In addition, the increases in the number of vehicles
and total traveled distance are outlined in Table 3. It is obvious that in some instances, the number of vehicles has
not increased for the proposed two-stage algorithm. In all cases, the two-stage algorithm outperforms the modified
version of PSO.

For R2 instances, whose results have been summarized in Table 4, it can be concluded that when the customers
have loose time windows fewer vehicles are needed to establish feasible tours than for R1 problems.
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Table 4: Results for R2 instance

Instance Proposed Alg. Modified PSO (Norouzi et al. 2017)
#Vehicles Travelled Dis-

tance
Obj. fun #Vehicles Travelled Dis-

tance
Obj. fun

R201 5 1652 7488 7 1679 7537
R202 4 1588 7576 4 1652 7579
R203 3 1339 7255 3 1542 7374
R204 3 1156 7104 3 1179 7115
R205 3 1693 7295 4 1763 7296
R206 3 1519 7202 3 1554 7313
R207 3 1239 7195 3 1328 7222
R208 3 1050 7413 3 1094 7504
R209 3 1572 7195 3 1645 7210
R210 3 1468 7051 4 1507 7083
R211 3 1308 7251 3 1308 7345
Average 3.27 1417 7275 3.63 1436 7325

Table 5: Results for RC1 instance

Instance Proposed Alg. Modified PSO (Norouzi et al. 2017)
#Vehicles Travelled Dis-

tance
Obj. fun #Vehicles Travelled Dis-

tance
Obj. fun

R201 14 1696 7498 16 1821 7733
R202 12 1554 7599 14 1602 7741
R203 11 1261 7381 13 1433 7550
R204 10 1164 7176 11 1242 7340
R205 14 1548 7422 16 1655 7593
R206 11 1424 7340 13 1479 7564
R207 11 1232 7295 12 1386 7537
R208 10 1139 7485 12 1328 7659
Average 11.63 1,377 13.38 1,493

Similar results are illustrated in Table 5 for RC datasets

Since each robust solution may be affected by uncertain parameters, the proposed model is solved using different
uncertainty parameter θq. As discussed in Section 3, θq ∈ [0, 1] is the demand budget coefficient, where if θq = 0,
there is no demand uncertainty, and if θq = 1, the demand can take a value within the interval [q̄i − q̂i, q̄i + q̂i]. To
conduct such an experiment, θq is considered to be equal to {0, 0.2, 0.4, 0.6, 0.8, 1}. Table 6 shows these results. It is
obvious that increasing the uncertainty parameter leads to greater number of vehicles and largest travelled distance.
However, when the number of vehicles increases by one, an immediate drop is seen in travelled distance.

7 Conclusions

In this paper, a robust version of the green vehicle routing problem with simultaneous pick-up and delivery under
demand uncertainty was proposed. Due to the complexity of the problem, the adapted robust model was only able
to handle small-sized instances using standard solvers. To solve large-sized instances, a two-stage algorithm consist-
ing of cross exchange and adaptive variable neighborhood search operators was designed. Extensive computational
experiments were conducted using modified versions of Solomon’s benchmark instances. The results showed that the
two-stage algorithm was able to produce acceptable solutions for large-sized instances. The robustness of the solutions
was examined by increasing the uncertainty parameter, where, a slight increase was seen during the increase of the
parameter. Comparing the results versus the modified version of the PSO algorithm affirmed the superiority of the
robust method in dealing with benchmark datasets.
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Table 6: Results for datasets with different uncertainty parameters

Instance Uncertainty Parameter
θq = 0 θq = 0.2 θq = 0.4 θq = 0.6 θq = 0.8 θq = 1

R101 #Vehicles 21 21 22 22 22 23
Distance 1722.1 1770.8 1659.5 1712.4 1745.1 1779.8

R103 #Vehicles 14 14 14 14 15 15
Distance 1295.4 1313.9 1329.1 1348.0 1309.2 1331.0

R105 #Vehicles 17 18 18 18 18 19
Distance 1463.6 1513.9 1521.19 1526.8 1549.4 1551.0

R107 #Vehicles 12 12 13 14 14 14
Distance 1255.2 1284.2 1243.7 1245.1 1249.1 1258.9

R109 #Vehicles 13 16 15 16 16 17
Distance 1289.7 1322.0 1330.1 1324.8 1340.0 1239.4

R111 #Vehicles 11 12 12 13 13 13
Distance 1316.1 1373.7 1387.7 1370.4 1390.1 1397.9

R202 #Vehicles 4 4 4 5 5 5
Distance 1588.1 1652.5 1623.2 1653.3 1653.3 1653.3

R204 #Vehicles 3 3 4 4 5 5
Distance 1156.1 1179.9 1169.1 1190.4 1192.3 1192.1

R206 #Vehicles 3 3 4 5 5 5
Distance 1519.8 1554.5 1554.5 1561.4 1561.4 1561.4

R208 #Vehicles 3 3 4 4 5 5
Distance 1050.3 1094.1 1085.1 1085.1 1085.1 1085.1

R210 #Vehicles 3 4 4 4 4 4
Distance 1468.6 1507.1 1507.1 1507.1 1507.1 1507.1

RC101 #Vehicles 14 16 16 16 16 17
Distance 1696.9 1821.5 1832.0 1840.1 1857.9 1830.0

RC103 #Vehicles 11 13 13 13 14 14
Distance 1261.7 1433.4 1450.6 1455.9 1455.9 1469.1

RC105 #Vehicles 14 16 16 16 16 16
Distance 1548.4 1655.2 1663.7 1671.0 1674.5 1674.5

RC107 #Vehicles 11 12 12 13 13 13
Distance 1232.3 1386.6 1394.0 1389.0 1394.4 1394.4
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