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Abstract

In this paper, We studied an application of the Haar wavelet basis in solving a particular class of delay differential
equations. We have extended the Haar wavelet series(HWS) method to develop a numerical technique to solve linear
and nonlinear Dirichlet boundary value problems of proportional delay nature. Some problems are presented to test
the efficiency of the proposed technique, where a remarkable agreement between approximate and analytic solutions
is obtained. The numerical simulation indicates that error drops with the increase in the level of resolution. Also, it
is observed that the rate of convergence tends to be 2.
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1 Introduction

Differential equations play a decisive role in the mathematical modeling of plentiful real-life phenomena. They
have been proven as an efficient tool to accurately capture the behavior of the models where the system’s current
state determines the system’s future behavior. Such models are called deterministic models. Several authors have
investigated different aspects and applications of ordinary and fractional differential equations [13, 18, 28, 38, 39,
40, 41, 42]. In many real-time models, consistency plays an important role and can be improved by incorporating
delay terms in its modeling. When delay terms are included in the differential model, a new class of differential
equations is known as delay differential equations or functional differential equations. A delay differential equation
is an evolutionary system in which the rate of change of a time-dependent process is defined by the current state
of the system and a specific past state. The theory of delay differential equations has drawn the interest of several
mathematicians and physicists. These equations are frequently used in the simulation of many real-life events, and
they have proven to be more accurate in the simulation of natural phenomena. These equations are used in a wide
range of disciplines, including industry, biological processes, chemical kinetics, electronics and transportation systems,
ship navigational control, infectious diseases, and population dynamics [6, 16, 20, 23, 43].
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The proportional delay variant of the delay differential equation is generally referred to as the Pantograph equation.
The name Pantograph comes from Ockendon and Tayler’s first work for collecting current by the Pantograph head
of an electric locomotive. Such systems appear in a wide range of applications such as adaptive control, number the-
ory, electrodynamics, astrophysics, nonlinear dynamical systems, probability theory on algebraic structure, quantum
mechanics, cell growth, engineering, economics, and so on [10, 20, 21, 43, 44].

It is difficult to obtain the exact solution for the majority of the delay differential models. As a result, the
solutions to such equations have developed great interest among researchers and they have used various numerical
approaches to estimate the solutions of these equations. Agarwal and Chow extended the finite-difference method
to offer the approximate solution to two-point boundary-value problems with deviating argument [4]. Li and Liu
presented a novel numerical approach for solving multi-pantograph delay equations based on the Runge-Kutta scheme
[27]. Aibinu et al. applied Sumudu transformation to solve general delay differential equations [5]. Shakeri et al.
used the homotopy perturbation method (HPM) to solve certain delay differential equations [35]. To solve generalized
pantograph equations, Saadatmandi et al. used a Lagrange multipliers-based variational iteration scheme (VIM)
[32]. VIM and HPM yield correct results, but the computational cost is significant due to the use of symbolic
integrations. Shakeri and Dehghan have investigated the numerical solution of delay differential equations using a
domain decomposition method [36]. Sedaghat et al. [33] adopted a Chebyshev polynomial-based numerical method
to the approximate solution of delay differential equations. The aim of the method [33] is to utilize the operational
matrix and its derivative to simplify the problem into a series of algebraic equations from which the solution can be
derived. Authors in [11, 19, 45, 46] have developed some numerical techniques based on collocation method in the
recent past. These techniques are quite effective for investigating proportional delay differential equations.

The authors were inspired by the aforementioned findings to expand the Haar wavelet series approach to investigate
the approximate numerical solutions of Dirichlet boundary value problems of proportional delay nature. The method
is extremely useful for solving boundary value problems because it considers the boundary condition automatically
into account. In this proposed study, we consider the following proportional delay variant of the Dirichlet boundary
value problem.

ρ′′(t) = Ω(t, ρ(t), ρ(Λt), ρ′(t), ρ′(Λt)), t ∈ [0, 1],

with ρ(0) = ζ1, ρ(1) = ζ2,
(1.1)

where Λ ∈ (0, 1) and ζ1, ζ2 are arbitrary constants.

Boundary value problems(BVPs) are now prevalent in all applied sciences. The growing popularity of this branch of
differential equations has prompted numerous researchers to investigate various physical models utilizing mathematical
tools and computer simulation software. Many problems in science and technology such as the study of the mechanical
behavior of the nanomaterial in nanomechanics [22], turbulence modeling [25], modeling of chemical reactors [24], a
study of molecular structure in chemical engineering [9], heat transfer model and study of deflection in cables can be
formulated mathematically in BVPs for second-order differential equations. Another application of BVPs appears in
mathematical modeling design to reflect the real mechanical properties of smart material [30]. The smart material
also called intellectual material of the 21st century is a material with shape memory effects. Such materials are widely
used in medicine, engineering, aircraft building, construction, etc.

The present paper is organized as follows, for clarity’s sake, we provide a few fundamental facts and definitions
associated with Haar wavelets and their integrals in section 2. In section 3, we provide a numerical method for
approximate solution of equation (1.1). An outline of the method in the form of a flow chart is demonstrated in
section 4. In section 5, we solve some numerical problems to examine the computational efficiency of the numerical
method. Section 6 is reserved for discussion on error analysis and rate of convergence. Finally, section 7 concludes the
work done.

2 Fundamental definitions and Notations

In this section, we summarize some essential definitions and mathematical preliminaries.

Over the past two decades, Haar wavelets gained interest as a fundamental tool in different numerical techniques
for solving a wide variety of differential equations. Haar wavelets are first-order Daubechies wavelets that are not only
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have mathematical expressions but also form an orthonormal basis for L2(R).

Haar wavelets belong to the family of box functions, these wavelets acquired only three values, that is, 0, 1,−1. Due
to the presence of jump discontinuity, it is impossible to utilize these wavelets directly for solving differential equations.
To avoid this shortcoming two approaches are mentioned in [14, 15]. Chen-Hsiao expanded the highest order derivatives
involved in the differential equation into the series of Haar basis [15]. Castro et al. regularize the square wave using
interpolating spline [14]. The Haar wavelet series method utilized Chen-Hsiao’s idea and approximated the highest
order derivative with the truncated series of the Haar basis. This method exhibits several advantages, such as it
does not involve the computing of symbolic integrals, also conversion of delay differential equation into the ordinary
differential equation is not required. This method handles boundary value problems very efficiently since it permits
the automatic inclusion of boundary conditions. The method can be implemented easily in software packages (such
as MATLAB).

Over the years, this wavelet has been exploited widely to tackle several sciences and engineering problems. A
substantial amount of research work has been done using the Haar wavelet. It is an important tool for producing
solutions of differential and integral equations, Image quality assessment, detecting false data injection attacks (cyber
security), and several other applications, as described in [1, 2, 3, 7, 17, 26, 31, 34, 37] and references therein.

To construct the Haar wavelet system {hi(Θ)}∞i=1 on [Γ1,Γ2] we define two basic functions:

The Haar scaling function (father wavelet):
h1(Θ) = X[Γ1,Γ2)(Θ), (2.1)

and the mother wavelet:
h2(Θ) = X[Γ1,(Γ1+Γ2)/2)(Θ)−X[(Γ1+Γ2)/2,Γ2)(Θ), (2.2)

where X[a,b](Θ) is characteristics function.

For generating the Haar wavelet series, let j be dilation and k as translation parameter. Then, i-th Haar wavelet is
defined as follows:

hi(Θ) =


1 for Θ ∈ [ϑ1(i), ϑ2(i))

−1 for Θ ∈ [ϑ2(i), ϑ3(i))

0 otherwise,

(2.3)

where ϑ1(i) = Γ1 + (Γ2 − Γ1)k/2
j

, ϑ2(i) = Γ1 + (Γ2 − Γ1)(k + 0.5)/2
j

, ϑ3(i) = Γ1 + (Γ2 − Γ1)(k + 1)/2
j

. The index

i = 2
j

+ k + 1, j = 0, 1, . . . , J, where J is the maximum level of wavelet and k = 0, 1, . . . , 2
j − 1.

To apply the Haar wavelet method following integrals are required,

Pi(Θ) =

∫ Θ

Γ1

hi(Θ)dΘ,Qi(Θ) =

∫ Θ

Γ1

Pi(Θ)dΘ.

Analytic integrations of 2.3 yields,

Pi(Θ) =


Θ− ϑ1(i), for Θ ∈ [ϑ1(i), ϑ2(i))

ϑ3(i)−Θ, for Θ ∈ [ϑ2(i), ϑ3(i))

0, otherwise,

(2.4)

and
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Qi(Θ) =



1

2
(Θ− ϑ1(i))

2, for Θ ∈ [ϑ1(i), ϑ2(i))

(Γ2 − Γ1)
2

22j+2 − 1
2 (ϑ3(i)−Θ)2, for Θ ∈ [ϑ2(i), ϑ3(i))

(Γ2 − Γ1)
2

22j+2 , for Θ ∈ [ϑ3(i), 1]

0, otherwise.

(2.5)

3 Construction of Haar wavelet series method

Haar wavelets series method for the numerical solution of (1.1) constructed as follows:

ρ′′(t) = Ω(t, ρ(t), ρ(Λt), ρ′(t), ρ′(Λt)), t ∈ [0, 1],

with ρ(0) = ζ1, ρ(1) = ζ2,
(3.1)

where Λ ∈ (0, 1) and ζ1, ζ2 are arbitrary constants. To apply the Haar wavelet series method, firstly, we expand the
ρ′′(t) in terms of truncated Haar series as:

ρ′′(t) =

2J+1∑
i=0

aihi(t). (3.2)

Integrate Eq. (3.2), from 0 to t, we get

ρ′(t) =

2J+1∑
i=0

aiPi(t) + ρ′(0). (3.3)

Further integration yields

ρ(t) =

2J+1∑
i=0

aiQi(t) + ρ′(0)t+ ρ(0). (3.4)

Quantity ρ′(0) in Eq. (3.3) and (3.4) are yet to determined, for that integrate Eq. (3.3) from t to 1, we have

−ρ(t) =

2J+1∑
i=0

aiQi(1)−
2J+1∑
i=0

aiQi(t) + ρ′(0)(1− t)− ρ(1). (3.5)

Now, from Eq. (3.4) and (3.5), we get ρ′(0) = −
∑2J+1

i=0 aiQi(1)− ρ(0) + ρ(1). Utilizing ρ′(0), ρ(0) = ζ1 and ρ(1) = ζ2
in Eq. (3.4), we obtain the following

ρ(t) =

2J+1∑
i=0

aiQi(t) +
(
−

2J+1∑
i=0

aiQi(1)− ζ1 + ζ2

)
t+ ζ1, (3.6)

and

ρ(Λt) =

2J+1∑
i=0

aiQi(Λt) +
(
−

2J+1∑
i=0

aiQi(1)− ζ1 + ζ2

)
(Λt) + ζ1. (3.7)

Similarly, putting ρ′(0), ρ(0) = ζ1 and ρ(1) = ζ2 in Eq. (3.3), we get

ρ′(t) =

2J+1∑
i=0

aiPi(t)−
2J+1∑
i=0

aiQi(1)− ζ1 + ζ2, (3.8)

and

ρ′(Λt) =

2J+1∑
i=0

aiPi(Λt)−
2J+1∑
i=0

aiQi(1)− ζ1 + ζ2. (3.9)
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Substituting Eq. (3.2) and Eqs. (3.6) to (3.9), in Eq. (3.1), we have

2J+1∑
i=0

aihi(t) = Ω

(
t,
[ 2J+1∑

i=0

aiQi(t) +
(
−

2J+1∑
i=0

aiQi(1)− ζ1 + ζ2

)
t+ ζ1

]
,

[ 2J+1∑
i=0

aiQi(Λt) +
(
−

2J+1∑
i=0

aiQi(1)− ζ1 + ζ2

)
(Λt) + ζ1

]
,

[ 2J+1∑
i=0

aiPi(t)−
2J+1∑
i=0

aiQi(1)− ζ1 + ζ2

]
,
[ 2J+1∑

i=0

aiPi(Λt)−
2J+1∑
i=0

aiQi(1)− ζ1 + ζ2

])
. (3.10)

Discretization of the above Eq. using collocation procedure leads to the algebraic system for a,is. After determining
a,is using Newton’s iterative method or any other suitable method, we get the approximate solution from Eq. (3.6).

4 Flow chart

Start

Input Boundary Conditions;Level of Resolution J

Set Collocation Points

Find hi(t),Pi(t),Qi(t)

Evaluate the Expressions 3.2, 3.6, 3.7, 3.8 and 3.9

Construct the System 3.10

Solve 3.10 for a,is by Newton’s/ Broyden’s Method

Put a,is in 3.6 for ρapprox(t)

Find Max(|ρexact(t)− ρapprox(t)|)

Error is Acceptable? Increase Level of Resolution

Desired Approximate Solution ρapprox(tl) at Level J;

end

No

yes
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Figure 1: Plot for Problem 1 at J=5
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Figure 2: Plot for Problem 2 at J=5

5 Illustrative examples:

Problem 1. Consider the boundary value problem:

ρ′′(t)− 1− 2(1 + t2/8) cos(t/2) + 2 cos(t/2)ρ(t/2) = 0, t ∈ [0, 1]

with Dirichlet boundary condition ρ(0) = 1, ρ(1) =
3

2
+ sin(1).

(5.1)

The exact solution of this problem is ρ(t) = t2

2 + sin(t) + 1.

Problem 2. Consider the boundary value problem:

ρ′′(t) + 2e−t − ρ(t)/2− e−t/2ρ(t/2) = 0, t ∈ [0, 1]

with Dirichlet boundary condition ρ(0) = 0, ρ(1) = e−1.
(5.2)

The exact solution of this problem is ρ(t) = te−t.

Problem 3. Let us assume the boundary value problem:

ρ′′(t)− 4e−t/2 sin(t/2)ρ(t/2) = 0, t ∈ [0, 1],

along with Dirichlet boundary condition ρ(0) = 1, ρ(1) = e−1 cos(1).
(5.3)

The exact solution of this problem is ρ(t) = e−t cos(t).

Problem 4. Assume the nonlinear boundary value problem as:

ρ′′(t)− ([ρ(t)]2 + [ρ(t)]3)ρ(t/2) = 0, t ∈ [0, 1],

with Dirichlet boundary condition ρ(0) = 1, ρ(1) = 1/2.
(5.4)

The exact solution of the above nonlinear boundary value problem is ρ(t) = 1
t+1 .

Problem 5. Let us consider the following boundary value problem:

ρ′′(t)− ρ′(t)ρ(t/2) + 8t2ρ(t/2) +⊖(t) = 0, t ∈ [0, 1],

subject to Dirichlet boundary condition ρ(0) = 1, ρ(1) = 3,
(5.5)

and the ⊖(t) is chosen such that the exact solution of the above nonlinear boundary value problem is ρ(t) = 1+ t+ t3.
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Figure 3: Solution curves for Problem 3 at J=5
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Figure 4: loglog Plot for Problem 4 at J=5
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Figure 7: Maximum absolute errors of Problem 3-5 for different choices of resolution
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Table 1: Maximum Absolute Error for Problems 1 to 5.

J Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

1 1.5997e− 04 5.5835e− 04 5.8345e− 04 9.4871e− 04 2.6907e− 03

2 4.4574e− 05 1.5644e− 04 1.6306e− 04 2.7026e− 04 6.6283e− 04

3 1.1324e− 05 3.9757e− 05 4.1522e− 05 7.0508e− 05 1.6553e− 04

4 2.8500e− 06 1.0014e− 05 1.0454e− 05 1.7787e− 05 4.1311e− 05

5 7.1382e− 07 2.5082e− 06 2.6172e− 06 4.4582e− 06 1.0331e− 05

6 1.7831e− 07 6.2735e− 07 6.5449e− 07 1.1152e− 06 2.5828e− 06

7 4.4275e− 08 1.5692e− 07 1.6362e− 07 2.7884e− 07 6.4569e− 07

8 1.1342e− 08 3.9226e− 08 4.0890e− 08 6.9712e− 08 1.6142e− 07

9 2.6235e− 09 9.8905e− 09 1.0218e− 08 1.7427e− 08 4.0355e− 08

10 6.9708e− 10 2.4508e− 09 2.5589e− 09 4.3559e− 09 1.0088e− 08

Table 2: Rate of convergence Rc for Problems 1 to 5.

J Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

1 −−−−−− −−−−−− −−−−−− −−−− −−−−−
2 1.8435 1.8356 1.8392 1.8116 2.0213

3 1.9768 1.9763 1.9735 1.9385 2.0015

4 1.9903 1.9892 1.9898 1.9870 2.0025

5 1.9973 1.9973 1.9980 1.9963 1.9995

6 2.0012 1.9993 1.9996 1.9992 2.0000

7 2.0098 1.9992 2.0000 1.9998 2.0000

8 1.9648 2.0001 2.0005 2.0000 2.0000

9 2.1121 1.9877 2.0006 2.0001 2.0000

10 1.9121 2.0128 1.9975 2.0003 2.0001

Table 3: Comparison of Errors.

Problem HWS Bica[12]

1 1.7831e− 07 at J = 6 6.9097e− 07 at h = π
400

1 6.9708e− 10 at J = 10 6.9100e− 09 at h = π
4000

2 9.8905e− 09 at J = 9 1.2770e− 08 at h = 1
1000

Table 4: Comparison between approximate and analytic solution Problem 1 at J=6.

t ρexact ρapprox |ρexact − ρapprox|
0.1 1.1108 1.1108 4.9295e− 08

0.2 1.2270 1.2270 9.3465e− 08

0.3 1.3415 1.3415 1.2867e− 07

0.4 1.4725 1.4725 1.5786e− 07

0.5 1.6098 1.6098 1.7498e− 07

0.6 1.7524 1.7524 1.7727e− 07

0.7 1.8995 1.8995 1.6214e− 07

0.8 2.0385 2.0385 1.3054e− 07

0.9 2.1919 2.1919 7.5335e− 08
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Table 5: Comparison between approximate and analytic solution Problem 2 at J=6.

t ρexact ρapprox |ρexact − ρapprox|
0.1 9.4912e− 02 9.4912e− 02 2.8670e− 07

0.2 1.6832e− 01 1.6832e− 01 4.7186e− 07

0.3 2.2265e− 01 2.2265e− 01 5.7505e− 07

0.4 2.6907e− 01 2.6907e− 01 6.2395e− 07

0.5 3.0444e− 01 3.0444e− 01 6.1674e− 07

0.6 3.3048e− 01 3.3048e− 01 5.6142e− 07

0.7 3.4864e− 01 3.4864e− 01 4.6471e− 07

0.8 3.5953e− 01 3.5953e− 01 3.4350e− 07

0.9 3.6601e− 01 3.6601e− 01 1.8183e− 07

Table 6: Comparison between approximate and analytic solution Problem 3 at J=6.

t ρexact ρapprox |ρexact − ρapprox|
0.1 8.9490e− 01 8.9490e− 01 3.0232e− 07

0.2 7.9563e− 01 7.9563e− 01 4.9807e− 07

0.3 7.0701e− 01 7.0701e− 01 6.0542e− 07

0.4 6.1535e− 01 6.1535e− 01 6.5268e− 07

0.5 5.2907e− 01 5.2907e− 01 6.3862e− 07

0.6 4.4879e− 01 4.4879e− 01 5.7344e− 07

0.7 3.7491e− 01 3.7491e− 01 4.6661e− 07

0.8 3.1255e− 01 3.1255e− 01 3.3853e− 07

0.9 2.5139e− 01 2.5139e− 01 1.7510e− 07

Table 7: Comparison between approximate and analytic solution Problem 4 at J=6.

t ρexact ρapprox |ρexact − ρapprox|
0.1 9.0459e− 01 9.0459e− 01 7.0007e− 07

0.2 8.2848e− 01 8.2848e− 01 1.0092e− 06

0.3 7.6877e− 01 7.6877e− 01 1.1088e− 06

0.4 7.1309e− 01 7.1309e− 01 1.0937e− 06

0.5 6.6494e− 01 6.6493e− 01 9.9756e− 07

0.6 6.2287e− 01 6.2287e− 01 8.4864e− 07

0.7 5.8581e− 01 5.8581e− 01 6.6355e− 07

0.8 5.5531e− 01 5.5531e− 01 4.6913e− 07

0.9 5.2567e− 01 5.2567e− 01 2.3844e− 07

Table 8: Comparison between approximate and analytic solution Problem 5 at J=6.

t ρexact ρapprox |ρexact − ρapprox|
0.1 1.1066 1.1066 7.4140e− 07

0.2 1.2159 1.2159 1.3630e− 06

0.3 1.3280 1.3280 1.8446e− 06

0.4 1.4675 1.4675 2.2490e− 06

0.5 1.6319 1.6319 2.5062e− 06

0.6 1.8274 1.8274 2.5806e− 06

0.7 2.0605 2.0605 2.4239e− 06

0.8 2.3143 2.3143 2.0191e− 06

0.9 2.6371 2.6371 1.2202e− 06
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6 Results and Discussions:

The above problems are solved using the Haar wavelet series method. Maximum absolute error and experimental
convergence rate are computed for each problem at different resolutions (J). These results are presented in Tables
1-8. Table 1 demonstrate that error decreases with increase in resolution(J). In Table 2, we have calculated the rate
of convergence by using the formula

Rc =
log(EJ−1

EJ
)

log 2
,

where EJ is the maximum absolute errors at resolution J . Also, from Table 2 one can observe that the experimental
convergence rates in each problem tends to be 2, as described, in [29]. The approximate and analytical solution curves
of each problem are plotted in figures 1-5. We observed that both curves coincide and also, a comparison drawn in
Table 3 shows the method is more accurate and efficient.

7 Conclusion:

In this work, we have successfully employed the Haar wavelet series method to obtain the approximate solution of
Dirichlet Boundary value problems with proportional delay. The accuracy and convergence rate of the method has
been validated by solving sample problems of both linear and nonlinear nature. MATLAB package is utilized to carry
out computer simulations. Each obtained solution is compared with the analytical solution. Maximum absolute errors
decrease with increase in levels of resolution(O(10−4) − O(10−9)). This fact is shown in Fig.6 and Fig.7. Also, the
calculated rate of convergence is in good agreement with the theoretical result proved in [29]. Overall, the method is
computationally attractive, simple and convenient for dealing with Dirichlet boundary value problems of proportional
delay nature.

Data Availability: Data sharing not applicable to this article as no datasets were generated or analysed during the
current study.

Code availability: Not applicable
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