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Abstract

Following the concept of parametric metric space introduced by N. Hussain et al., the definition of generalized para-
metric metric space is given. A decomposition theorem from a generalized metric into a family of crisp metrics is
established. Another decomposition theorem from a family of the crisp metric into a generalized parametric metric
identical to the first one under certain conditions is proved. Some basic results are studied and develop a Banach type

fixed point theorem with an application to an integral equation.
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1 Introduction

In physical formulation, most of the non-linear equations transformed into a fixed point equation F (x) = x. To
obtain results, existence and uniqueness of such fixed point equation are examined. These mappings basically satisfies
some contraction or expansion conditions which are either the celebrated Banach type contraction principle or its
variants on different types of generalized metric spaces.

Parametric metric space is one of those generalized metric spaces introduced by N. Hussain et al. in 2014 [1].
Some basic concepts such as notion of convergence of sequences, Cauchy sequence and some fixed-point theorems on
complete parametric metric spaces and triangular intuitionistic fuzzy metric spaces are also studied by them.

Being inspired by N. Hussain et al., our aim in this paper to introduce a notion of generalized parametric metric
by making some changes in the definition given by them. Analyzing the conditions of generalized parametric metric
spaces we achieve a decomposition theorem of generalized parametric metric into a family of crisp metrics. There is
another decomposition theorem which deduce a generalized parametric metric from the family of crisp metrics and
we show that under certain conditions those two generalized parametric metrics are identical. Lastly we developed
Banach type contraction principle in this new setting with an application to integral equation.

To develop the results of our manuscript we study some concerned papers for references(please see [2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16]).

The organization of the paper is as follows: Section 2 contains some preliminary results. In Section 3, definition
of generalized parametric metric, some examples are given, decomposition theorems and results related to notion of
convergence are developed. Section 4 consists of a version of Banach type contraction principle in complete generalized
parametric metric spaces and its application to integral equation.
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2 Preliminaries

First we recall some definitions and results which are used in this paper.

Definition 2.1. [4] Let X be a non-empty set. A pair (X, d) is called a metric space if there is a function d : X×X →
R+, called metric which satisfies the following conditions:

(M1) d(a, b) = 0 if and only if a = b,

(M2) d(a, b) = d(b, a), for all a, b ∈ X,

(M3) d(a, b) ≤ d(a, x) + d(b, x), for all a, b, x ∈ X.

Definition 2.2. [4] In a metric space (X, d), a sequence {xn} ⊂ X is said to

(i) converge to a point x ∈ X if for any ϵ > 0,∃m ∈ N such that d(xn, x) < ϵ, for all n ≥ m,

(ii) be a Cauchy sequence if for any ϵ > 0,∃r ∈ N such that d(xn, xm) < ϵ, for all n,m ≥ r.

(iii) (X, d) is said to be complete if every Cauchy sequence in X converges to some point in X.

Definition 2.3. [1] Let X be a non-empty set and P : X × X × (0,∞) → R+ be a function which satisfies the
following conditions:

(i) P (a, b, t) = 0, ∀ t > 0 if and only if a = b;

(ii) P (a, b, t) = P (b, a, t), for all a, b ∈ X and for all t > 0;

(iii) P (a, b, t) ≤ P (a, x, t) + P (b, x, t), for all a, b, x ∈ X and for all t > 0.

Then the pair (X,P ) is called a parametric metric space.

Definition 2.4. [1] Let (X,P ) be a parametric metric space.

(i) Let x ∈ X and r > 0, then the set B(x, r) = {y ∈ X : P (x, y, t) < r for all t > 0} is called an open ball with
center at x and radius r > 0.

(ii) A sequence {xn} ⊂ X is said to converge to a point x ∈ X if lim
n→∞

P (xn, x, t) = 0, for all t > 0.

(iii) If for any to sequences {xn} and {yn} in X converging to x and y respectively. If lim
n→∞

P (xn, yn, t) = P (x, y, t),

for all t > 0, then P is said to be continuous in its two variables.

(iv) A sequence {xn} is said to be Cauchy if lim
n→∞

P (xn, xm, t) = 0, for all t > 0.

(v) (X,P ) is said to be complete if every Cauchy sequence converges in X.

3 Generalized parametric metric space

In this section, definition of generalized parametric space is given and some basic properties are studied. Two
decomposition theorems are established.

Definition 3.1. Let o : [0,∞) × [0,∞) → [0,∞) be a binary operation which satisfies the following conditions
∀α, β, γ ∈ [0,∞)

(a) α o 0 = α

(b) α ≤ β =⇒ αoγ ≤ βoγ (monotonicity)

(c) αoγ = γoα (commutativity)

(d) αo(βoγ) = (αoβ)oγ (associativity)

Following are the examples of such binary operation.

(i) αoβ = max{α, β}.
(ii) αoβ = α+ β.

(iii) αoβ = (αn + βn)
1
n , for all n ∈ N.

Definition 3.2. ′o ′ is said to be continuous if for any sequence {αn}, {βn} in [0,∞) converging to α and β respectively,
{αnoβn} converges to αoβ.
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There are some additional axioms for ′o ′.
(e) ′o ′ is a continuous function.
(f) α < β and γ < δ =⇒ αoγ < βoδ, for all α, β, γ, δ ∈ [0,∞) (strictly monotonicity).
(g) αoα > α, for all α ∈ [0,∞) (supper idempotency).

Definition 3.3. Let X be a non-empty set and P : X×X×(0,∞) → [0,∞) be a function which satisfies the following
conditions:

(P1) (P (a, b, t) = 0, ∀t > 0) if and only if a = b;

(P2) P (a, b, t) = P (b, a, t), for all t > 0 and for all a, b ∈ X;

(P3) for s, t > 0 and for all a, b, x ∈ X, P (a, b, s+ t) ≤ P (a, x, s) o P (b, x, t).

Then the function P is said to be generalized parametric metric and the triple (X,P, o) is called a generalized parametric
metric space.

Example 3.4. Let us define a mapping P : R× R× (0,∞) → [0,∞) by

P (a, b, t) =
|a− b|p

t
, for all a, b ∈ R, for all t > 0 and 0 < p < 1

and we consider the binary operation ′o ′ as αoβ = α + β, for all α, β ∈ [0,∞). We show that P is a generalized
parametric metric on R. For,

(i) Clearly P (a, b, t) ≥ 0 and P (a, b, t) = 0, for all t > 0 if and only if |a − b|p = 0 if and only if a = b. Thus (P1)
holds.

(ii) (P2) holds trivially.

(iii) Let a, b, x ∈ R and s, t > 0. Then

P (a, b, s+ t) =
|a− b|p

s+ t

≤ |a− x|p + |x− b|p

s+ t

=
|a− x|p

s+ t
+

|x− b|p

s+ t

≤ |a− x|p

s
+

|x− b|p

t
=P (a, x, s) + P (b, x, t)

Therefore, (P3) holds.

Hence (R, P,+) is a generalized parametric metric space.

Example 3.5. We consider a metric space (X, d) and define a non-negative real valued function P by

P (a, b, t) =


d(a,b)

t if 0 < t ≤ 2d(a, b)
1
2 if 2d(a, b) < t ≤ 3d(a, b)

2− t
2d(a,b) if 3d(a, b) < t ≤ 4d(a, b)

0 if 4d(a, b) < t < ∞

for all a, b ∈ X.
We show that (X,P, o) is a generalized parametric metric space where the binary operation ′o ′ on [0,∞) is taken as
αoβ = max{α, β}. For,

(i) P (a, b, t) ≥ 0, for all t > 0 and a, b ∈ X. If a = b then d(a, b) = 0. So, P (a, b, t) = 0, for all t > 0. Again,
P (a, b, t) = 0, for all t > 0, implies that t > 4d(a, b), for all t > 0. So, d(a, b) = 0. Hence, a = b. Thus (P1) holds.

(ii) (P2) holds trivially, since d(a, b) = d(b, a), for all a, b ∈ X.

(iii) To prove (P3), we show that P (a, b, s+ t) ≤ max{P (a, x, s), P (b, x, t)}, for all a, b, x ∈ X, for all s, t > 0.
Let a, b, x ∈ X. For all s, t > 0 we have the following cases.
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(a) s > 4d(a, x), t > 4d(x, b). Then s+ t > 4d(a, x) + 4d(x, b) ≥ 4d(a, b) which implies P (a, b, s+ t) = 0. Again

max{P (a, x, s), P (b, x, t)} = 0.

(b) s > 4d(a, x), 3d(x, b) < t ≤ 4d(x, b). Then s + t > 4d(a, x) + 3d(x, b) ≥ 3d(a, b) and P (a, x, s) = 0,
P (b, x, t) = 2− t

2d(x,b) implies max{P (a, x, s), P (b, x, t)} = 2− t
2d(x,b) . Again P (a, b, s+ t) ≤ 2− s+t

2d(a,b) . Now,

s+ t

2d(a, b)
− t

2d(x, b)
=
(s+ t)d(b, x)− td(a, b)

2d(a, b)d(b, x)

≥sd(b, x) + td(x, b))− td(a, x)− td(b, x)

2d(a, b)d(b, x)

=
sd(b, x)− td(a, x)

2d(a, b)d(b, x)

≥4d(a, x)d(b, x)− 4d(b, x)d(a, x)

2d(a, b)d(b, x)
= 0

implies P (a, b, s+ t) ≤ P (b, x, t) = max{P (a, x, s), P (b, x, t)}.
(c) s > 4d(a, x), 2d(x, b) < t ≤ 3d(x, b). Then P (b, x, t) = 1

2 and max{P (a, x, s), P (b, x, t)} = 1
2 . Now,

s+ t > 4d(a, x) + 2d(x, b) ≥ 2d(a, b) implies P (a, b, s+ t) = 1
2 = max{P (a, x, s), P (b, x, t)}.

(d) s > 4d(a, x), 0 < t ≤ 2d(x, b). Then P (b, x, t) = d(b,x)
t and max{P (a, x, s), P (b, x, t)} = d(b,x)

t . Now,

s+ t > 4d(a, x) > 0 implies P (a, b, s+ t) ≤ d(a,b)
s+t . Then,

d(b, x)

t
− d(a, b)

s+ t
=
(s+ t)d(b, x)− td(a, b)

t(s+ t)

≥ (s+ t)d(b, x)− t(d(a, x) + d(x, b))

t(s+ t)

=
sd(b, x)− td(a, x)

t(s+ t)

≥4d(a, x)d(b, x)− 2d(b, x)d(a, x)

t(s+ t)

=
2d(a, x)d(b, x)

t(s+ t)
≥ 0

which shows that P (a, b, s + t) ≤ P (b, x, t) = max{P (a, x, s), P (b, x, t)}. Similarly, we can verify the other
cases.

Thus (P3): P (a, b, s+ t) ≤ max{P (a, x, s), P (b, x, t)}, for all a, b, x ∈ X ands, t > 0 holds.

Hence P is a generalized parametric metric on X.

Remark 3.6. Concept of parametric metric space (Definition 2.3) and concept of generalized parametric metric
space (Definition 3.3) are totally different. We justify it by the following two examples. In Example 3.7, we show
that a generalized parametric metric may not be a parametric metric space and in the Example 3.8, we prove that
a parametric space need not to be a generalized parametric metric space. In Definition 3.3 (generalized parametric
metric space) we use the general binary operation ‘o’ instead of ‘+’ in the sense to achieve decomposition theorems
which play crucial role to develop more results in generalized parametric spaces.

Example 3.7. We consider two metrics d1 and d2 on R2 defined by d1(a, b) = max{|ai − bi| : i = 1, 2} and d2(a, b) =∑2
i=1 |ai − bi|, for all a = (a1, a2), b = (b1, b2) ∈ R2. Then clearly, d1(a, b) ≤ d2(a, b), for all a, b ∈ R2. Next, we

define a function P : R2 × R2 × (0,∞) → [0,∞) by

P (a, b, t) =


100 if 0 < t ≤ d1(a, b)

50 if d1(a, b) < t ≤ d2(a, b)

25 if d2(a, b) < t ≤ 2d2(a, b)

0 if 2d2(a, b) < t < ∞

for all a, b ∈ R2. We claim that P is a generalized parametric metric on R2. The binary operation ‘o’ is taken as ‘+’.
Clearly P satisfies (P1) and (P2). We only verify the condition (P3). For all a, b, x ∈ R2 and s, t > 0, we have the
following cases:



A generalization to parametric metric spaces 233

(a) s > 2d2(a, x), t > 2d2(x, b). Therefore, s + t > 2d2(a, x) + 2d2(x, b) ≥ 2d2(a, b) that is s + t > 2d2(a, b). Hence
P (a, b, s+ t) = 0 = P (a, x, s) = P (b, x, t) and so P (a, b, s+ t) = P (a, x, s) + P (b, x, t).

(b) s > 2d2(a, x), d2(x, b) < t ≤ 2d2(x, b). Then P (a, x, s) = 0 and P (b, x, t) = 25. Now, s+ t > 2d2(a, x)+ d2(x, b) >
d2(a, x) + d2(x, b) ≥ d2(a, b). So s+ t > d2(a, b). Therefore, P (a, b, s+ t) ≤ 25 = P (a, x, s) + P (b, x, t).

(c) s > 2d2(a, x), d1(x, b) < t ≤ d2(x, b). Therefore P (b, x, t) = 50 and P (a, x, s) = 0. Now, s + t > 2d2(a, x) +
d1(x, b) ≥ 2d1(a, x) + d1(x, b) > d1(a, x) + d1(x, b) ≥ d1(a, b). Thus, s+ t > d1(a, b) which implies P (a, b, s+ t) ≤
50 = P (a, x, s) + P (b, x, t).

(d) s > 2d2(a, x), 0 < t ≤ d1(x, b). So P (a, x, s) = 0 and P (b, x, t) = 100. Now, s + t > 2d2(a, x) > 0 and hence
P (a, b, s+ t) ≤ 100 = P (a, x, s) + P (b, x, t). Similarly, the other cases can also be verified.
Thus (P3): P (a, b, s+ t) ≤ P (a, x, s) + P (b, x, t), for all a, b, x ∈ R2 and s, t > 0 holds.

Hence (R2, P,+) is a generalized parametric metric space. It is not a parametric metric space. For, we take a =
(1, 0), b = (0, 1

2 ), c = (14 ,
1
8 ), and t = 1. We have d1(a, b) = max{1, 1

2} = 1. So, 0 < t ≤ d1(a, b) which implies
P (a, b, t) = 100. Now, d2(a, c) = |1 − 1

4 | + |0 − 1
8 | =

7
8 and 2d2(a, c) =

14
8 . So, d2(a, c) < t ≤ 2d2(a, c) which implies

P (a, c, t) = 25. Again, d2(b, c) = |0 − 1
4 | + | 12 − 1

8 | =
5
8 and 2d2(b, c) =

10
8 . Therefore, d2(b, c) < t ≤ 2d2(b, c) which

implies P (b, c, t) = 25. Thus, P (a, c, t) + P (b, c, t) = 25 + 25 = 50 < 100 = P (a, b, t). So, P is not parametric metric
on R2.

Example 3.8. We consider a metric space (X, d) and define a function P : X ×X × (0,∞) → [0,∞) by P (a, b, t) =
etd(a, b), for all a, b ∈ X, for all t > 0. We show that P is a parametric metric on X. For,

(i) P (a, b, t) ≥ 0, a, b ∈ X, for all t > 0 and P (a, b, t) = 0, for all t > 0 if and only if d(a, b) = 0 if and only if a = b.

(ii) P (a, b, t) = P (b, a, t), a, b ∈ X, for all t > 0, since d is a metric on X.

(iii) For any a, b, c ∈ X and for all t > 0,

P (a, b, t) =etd(a, b)

≤et[d(a, c) + d(b, c)]

=P (a, c, t) + P (b, c, t)

Therefore (X,P ) is a parametric metric space. Next, in particular we take, X = R and d as the usual metric.
Choose a = 2, b = 4, c = 3, s = t = 1. We have P (a, b, s+ t) = e2d(a, b) = 2e2, P (a, c, s) = ed(a, c) = e, P (b, c, t) =
ed(b, c) = e. So, P (a, b, s + t) = 2e2 > 2e = P (a, c, s) + P (b, c, t). Hence P is not a generalized parametric metric on
R.

Proposition 3.9. If P is a generalized parametric metric on X then P (a, b, ·) is non-increasing function, for all
a, b ∈ X.

Proof . The proof follows from (P1), (P2) and (P3). □

Definition 3.10. Let (X,P, o) be a generalized parametric metric space. Define

dα(a, b) = inf{t > 0 : P (a, b, t) < α}, α ∈ (0,∞) and ∀a, b ∈ X (3.1)

Lemma 3.11. If P is a generalized parametric metric on X and dα is defined as in (3.1) then dα is non-increasing
function, for each α ∈ (0,∞).

Proof . The proof is straightforward. □

Lemma 3.12. Let (X,P, o) be a generalized parametric metric space and dα, for each α ∈ (0,∞) is defined as in
(3.1). Then ∀a, b, c ∈ X and ∀α, β ∈ (0,∞), dαoβ(a, b) ≤ dα(a, c) + dβ(c, b).

Proof . Let α, β ∈ (0,∞) and a, b, c ∈ X. Then

dα(a, c) + dβ(c, b) = inf{t > 0 : P (a, c, t) < α}+ inf{s > 0 : P (b, c, s) < β}
= inf{s+ t > 0 : P (a, c, t) < α,P (b, c, s) < β}
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Now P (a, c, t) < α, P (b, c, s) < β and P (a, b, s+ t) ≤ P (a, c, t)oP (c, b, s) implies P (a, b, s+ t) < αoβ.
Thus,

{s+ t > 0 : P (a, c, t) < α, P (c, b, s) < β} ⊂ {s+ t > 0 : P (a, b, s+ t) < αoβ}
=⇒ inf{s+ t > 0 : P (a, c, t) < α, P (c, b, s) < β} ≥ inf{s+ t > 0 : P (a, b, s+ t) < αoβ}
=⇒ dαoβ(a, b) ≤ dα(a, c) + dβ(c, b)

□

Remark 3.13. In Lemma 3.12, if the binary operation ′o ′ is taken as ′ max′, then αoα = α. Hence in particular, we
obtain dα(a, b) ≤ dα(a, c) + dα(c, b),∀α ∈ (0,∞).

Theorem 3.14. (1st Decomposition Theorem) Let (X,P, o) be a generalized parametric metric space and dα, for
each α ∈ (0,∞) is defined as in (3.1). Then ∀a, b, c ∈ X and ∀α, β ∈ (0,∞),

(d1) dα(a, b) ≥ 0;

(d2) (dα(a, b) = 0, ∀α ∈ (0,∞)) ⇐⇒ a = b;

(d3) dα(a, b) = dα(b, a);

(d4) dαoβ(a, b) ≤ dα(a, c) + dβ(c, b);

(d5) dα(a, b) is non-increasing.

Proof . We only prove (d1)-(d3).

(d1) From definition of dα, α ∈ (0,∞), it is clear that dα(a, b) ≥ 0, ∀a, b ∈ X.

(d2) for all a, b ∈ X,

dα(a, b) = 0, ∀α ∈ (0,∞)

=⇒ inf{t > 0 : P (a, b, t) < α} = 0, ∀α ∈ (0,∞)

=⇒ P (a, b, t) < α, ∀t > 0, ∀α ∈ (0,∞)

=⇒ P (a, b, t) = 0, ∀t > 0

=⇒ a = b

Again, a = b =⇒ P (a, b, t) = 0, ∀t > 0 and hence by definition dα(a, b) = 0,∀α ∈ (0,∞).

(d3) Since P (a, b, t) = P (b, a, t), for all t > 0 and a, b ∈ X, dα(a, b) = dα(b, a), for all a, b ∈ X and α ∈ (0,∞).

The proof of (d4) and (d5) follows from Lemma 3.11 and Lemma 3.12. □

Further assume that,
(P4) P (a, b, t) < α, ∀t > 0, for any α ∈ (0,∞) =⇒ a = b.

Remark 3.15. If P satisfies (P4) then (d6) dα(a, b) = 0 ⇐⇒ a = b, ∀α ∈ (0,∞) Hence if (X,P, o) is a generalized
parametric metric space satisfying (P4) then (d6) holds.

Remark 3.16. It is obvious that (d6) implies (d2) .

Definition 3.17. A family of mappings {dα : α ∈ (0,∞)} satisfying (d1), (d3), (d4) and (d6) is said to be a quasi
metric family and {(X, dα) : α ∈ (0,∞)} is called a generating space of quasi metric family.

Remark 3.18. If the binary operation ′o ′ is taken as ′ max′, then in Definition 3.17 the family {(X, dα) : α ∈ (0,∞)}
is a family of metrics. We call {dα : α ∈ (0,∞)} are the α-metrics induced by the generalized parametric metric P .

Example 3.19. We consider a metric space (X, d) and define a mapping P : X ×X × (0,∞) → [0,∞) by

P (a, b, t) =
d(a, b)

t
, ∀a, b ∈ R and ∀t > 0

Let the binary operation ′o ′ as αoβ = max{α, β}, ∀α, β ∈ [0,∞). Now,
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(i) P (a, b, t) ≥ 0, for all a, b ∈ X, t > 0, and P (a, b, t) = 0, for all t > 0, d(a, b) = 0 if and only if a = b. Thus (P1)
holds.

(ii) Since, d(a, b) = d(b, a), for all a, b ∈ X, P (a, b, t) = P (b, a, t), for all a, b ∈ X and t > 0. Thus (P2) holds.

(iii) Let a, b, x ∈ X and s, t > 0. Then P (a, b, s + t) = d(a,b)
s+t and max{P (a, x, s), P (b, x, t)} = max{d(a,x)

s , d(x,b)
t }.

Now if d(a,x)
s ≥ d(x,b)

t , then

P (a, x, s)− P (a, b, s+ t) =
d(a, x)

s
− d(a, b)

s+ t

=
(s+ t)d(a, x)− sd(a, b)

s(s+ t)

=
s(d(a, x)− d(a, b)) + td(a, x)

s(s+ t)

≥−sd(b, x) + td(a, x)

s(s+ t)
( follows from metric inequality )

≥0.

Similarly, if d(a,x)
s ≤ d(x,b)

t , then P (b, x, t) − P (a, b, s + t) ≥ 0. Thus for all a, b, x ∈ X and s, t > 0, (P3) :
P (a, b, s+ t) ≤ max{P (a, x, s), P (b, x, t)} holds.

Hence (X,P,max) is a generalized parametric metric space. Again,

P (a, b, t) < α, ∀t > 0, for any α > 0

=⇒ t >
d(a, b)

α
,∀t > 0, for any α > 0

=⇒ d(a, b) = 0

=⇒ a = b.

Therefore P satisfies the condition (P4). Hence, for each α > 0, the α-metrics on X are

dα(a, b) = inf{t > 0 : P (a, b, t) < α} =
d(a, b)

α
, ∀a, b ∈ X

Clearly {dα(a, b) : α ∈ (0,∞)} is an non-increasing family of α-metrics on X.

Definition 3.20. Let (X,P, o) be a generalized parametric metric space and {dα : α ∈ (0,∞)} is defined in (3.1).
Then dα is said to be upper semi-continuous on (0,∞) if for any α0 ∈ (0,∞), there exist a neighborhood U of α0 such
that dα0(a, b) < t =⇒ dα(a, b) < t, ∀α ∈ U and ∀a, b ∈ X.

Proposition 3.21. Let (X,P, o) be a generalized parametric metric space and {dα : α ∈ (0,∞)} is defined as in (3.1).
Assume further that,

(P5) for all a, b ∈ X, P (a, b, .) is continuous function of t, ∀t > 0

If P satisfies (P5), then dα is upper semi-continuous on (0,∞).

Proof . Let us choose α0, t0 ∈ (0,∞). Then for a, b ∈ X,

dα0(a, b) < t0

=⇒ P (a, b, t0) < α0

=⇒ ∃ ϵ > 0 such that P (a, b, t0) < α0 − ϵ

=⇒ dα(a, b) ≤ t0, ∀α ∈ (α0 − ϵ, α0 + ϵ)

This completes the proof. □

Theorem 3.22. Let (X,P, max) be a generalized parametric metric space satisfying (P4) and {dα : α ∈ (0,∞)} be
the family of α-metrics induced by P . We define

P ′(a, b, t) = inf{α > 0 : dα(a, b) ≤ t}, for all t > 0 and a, b ∈ X. (3.2)

Then (X,P ′,max) is a generalized parametric metric space.
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Proof .

(i) P ′(a, b, t) ≥ 0, ∀t > 0 and ∀a, b ∈ X. Then,

P ′(a, b, t) = 0, ∀t > 0

⇐⇒ inf{α > 0 : dα(a, b) ≤ t} = 0, ∀t > 0

⇐⇒ dα(a, b) ≤ t, ∀t > 0, ∀ α > 0

⇐⇒ dα(a, b) = 0, ∀ α > 0

⇐⇒ a = b

So (P1) holds.

(ii) Since dα, α ∈ (0,∞) is a metric, for all a, b ∈ X, dα(a, b) = dα(b, a) implies

P ′(a, b, t) = P ′(b, a, t),

for all t > 0. Thus (P2) holds.

(iii) Let a, b, x ∈ X and s, t > 0. We have to show that P ′(a, b, s+t) ≤ max{P ′(a, x, s), P ′(b, x, t)}. Let P ′(a, x, s) = α1

and P ′(b, x, t) = α2. If α1 = 0 = α2 then the result is obvious. Suppose that α1 ≤ α2. Let us choose α where
0 < α1 ≤ α2 < α. Then ∃α0 < α such that dα0

(a, x) ≤ s and ∃β0 < α such that dβ0
(b, x) ≤ t. Let

γ = max{α0, β0} < α. Therefore dγ(a, x) ≤ dα0(a, x) ≤ s and dγ(b, x) ≤ dβ0(b, x) ≤ t. Now for all a, b, x ∈ X,

dγ(a, b) ≤ dγ(a, x) + dγ(x, b) ≤ s+ t

=⇒ P ′(a, b, s+ t) ≤ γ < α

=⇒ P ′(a, b, s+ t) < α.

Since 0 < α1 ≤ α2 < α is arbitrary, from above it follows that

P ′(a, b, s+ t) ≤ α2 = max{α1, α2}
=⇒ P ′(a, b, s+ t) ≤ max{P ′(a, x, s), P ′(b, x, t)}.

Similarly if α2 ≤ α1, then also the result holds.

So (P3) holds. □

Proposition 3.23. The generalized parametric metric P ′, defined in (3.2) is a non-increasing function of t.

Proof . The proof is straightforward. □

Following is a example for the justification of the Theorem 3.22.

Example 3.24. The generalized parametric metric P , given in Example 3.19 induced a non-increasing family of
α-metrics on X. We define P ′ as

P ′(a, b, t) = inf{α > 0 : dα(a, b) ≤ t}, ∀t > 0, ∀a, b ∈ X

= inf{α > 0 :
d(a, b)

α
≤ t}, ∀t > 0, ∀a, b ∈ X

= inf{α > 0 :
d(a, b)

t
≤ α}, ∀t > 0, ∀a, b ∈ X

=
d(a, b)

t
, ∀t > 0,

for all a, b ∈ X. Then P ′ is a parametric metric which is shown in Example 3.19. Moreover P ′ is a non-increasing
function of t.

Lemma 3.25. Let (X,P, max) be a generalized parametric metric space satisfying (P4) and for each α ∈ (0,∞), dα
be the α-metric induced by P . Choose a0, b0 ∈ X with a0 ̸= b0. If

(i) P is non-increasing and satisfies (P5) then for t0 > 0, P (a0, b0, t0) = α0 ∈ (0,∞) implies P (a0, b0, dα0
(a0, b0)) =

α0. Furthermore, for any α > 0, P (a0, b0, dα(a0, b0)) = α.
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(ii) P satisfies (P5) and P is strictly decreasing function of t then for any α > 0, P (a0, b0, t) = α if and only if
dα(a0, b0) = t.

Proof .

(i) Since P (a0, b0, t0) = α0, we have
dα0(a0, b0) ≥ t0. (3.3)

Now, since P (a0, b0, .) is non-increasing, from (3.3) we have,

α0 = P (a0, b0, t0) ≥ P (a0, b0, dα0
(a0, b0)). (3.4)

If P (a0, b0, dα0
(a0, b0)) < α0, then since P (a0, b0, ·) is continuous and non-increasing, there exist t′ < dα0

(a0, b0)
such that P (a0, b0, t

′) < α0. Then

t′ < dα0
(a0, b0) = inf{s > 0 : P (a0, b0, s) < α0} ≤ t′.

Therefore a contradiction to our assumption. Hence,

P (a0, b0, dα0(a0, b0)) = α0. (3.5)

Since P (a0, b0, ·) is continuous, for any α ∈ (0,∞), there exists t > 0 such that P (a0, b0, t) = α. Hence (3.5)
gives

P (a0, b0, dα(a0, b0)) = α. (3.6)

(ii) Let P (a0, b0, t) = α. Then P (a0, b0, dα(a0, b0)) = α (by (i)). Therefore,

P (a0, b0, t) = α = P (a0, b0, dα(a0, b0))

=⇒ t = dα(a0, b0), (since, P is strictly decreasing)

Again,

dα(a0, b0) = t

=⇒ P (a0, b0, t) = P (a0, b0, dα(a0, b0)) = α ( by (i) )

=⇒ P (a0, b0, t) = α

This completes the proof. □

Remark 3.26. (a) The Lemma 3.25 does not hold without the strictly decreasing property of the generalized para-
metric metric P . To justify we consider the generalized parametric metric of Example 3.5. Now,

P (a, b, t) < α, ∀ t > 0, for any α ∈ (0,∞)

=⇒ P (a, b, t) = 0, ∀ t > 0

=⇒ t > 4d(a, b),∀t > 0

=⇒ 4d(a, b) = 0

=⇒ a = b

Thus P satisfies the condition (P4). Moreover for all a, b ∈ X, P (a, b, ·) is continuous and non-increasing function,
∀ t > 0. But P is not strictly decreasing function of t. Now for each α > 0, the α-metrics on X are

dα(a, b) = inf{t > 0 : P (a, b, t) < α} =


2(2− α)d(a, b) if 0 < α < 1

2

3d(a, b) if α = 1
2

d(a,b)
α if α > 1

2 ,

for all a, b ∈ X. Choose a0 ̸= b0 and let t0 = 5
2d(a0, b0). Then P (a0, b0, t0) = 1

2 = α0(say). But dα0
(a0, b0) =

3d(a0, b0) ̸= 5
2d(a0, b0) = t0. Therefore, P (a0, b0, t0) = α0 ⇏ dα0

(a0, b0) = t0.

(b) Following example shows that the Lemma 3.25 does not hold without the continuity of P .
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Example 3.27. Let (X, d) be a metric space and define a function P by

P (a, b, t) =


2d(a,b)

t if 0 < t ≤ 2d(a, b)
1
2 if 2d(a, b) < t ≤ 3d(a, b)

0 if 3d(a, b) < t < ∞

for all a, b ∈ X. We consider the binary operation ′o ′ as αoβ = max{α, β}. First we show that P is a generalized
parametric metric on X. For,

(i) Clearly P (a, b, t) ≥ 0, ∀ t > 0 and ∀ a, b ∈ X. If a = b then d(a, b) = 0. Hence P (a, b, t) = 0, for all t > 0.
Again, if P (a, b, t) = 0, ∀t > 0 then t > 3d(a, b),∀t > 0 =⇒ d(a, b) = 0 =⇒ a = b. Thus (P1) holds.

(ii) (P2) holds trivially.
(iii) To prove (P3), we have to show that P (a, b, s+ t) ≤ max{P (a, x, s), P (b, x, t)}, for all a, b, x ∈ X and for all

s, t > 0. Let a, b, x ∈ X and s, t > 0. Then for all s, t > 0, we have the following cases.

(a) 0 < s ≤ 2d(a, x), 0 < t ≤ 2d(b, x). Then P (a, x, s) = 2d(a,x)
s , P (b, x, t) = 2d(x,b)

t and P (a, b, s + t) ≤
2d(a,b)
s+t and hence the proof of the inequality P (a, b, s + t) ≤ max{P (a, x, s), P (b, x, t)} follows from the

Example 3.19.
(b) 0 < s ≤ 2d(a, x), 2d(b, x) < t ≤ 3d(b, x). Then P (b, x, t) = 1

2 and s + t > 2d(b, x) > 0 implies

P (a, b, s + t) ≤ 2d(a,b)
s+t . Now, max{P (a, x, s), P (b, x, t)} = max{ 2d(a,x)

s , 1
2} = 2d(a,x)

s and by the similar
lines of proof of the case (d) of Example 3.5 it follows that P (a, b, s+ t) ≤ P (a, x, s).

(c) 0 < s ≤ 2d(a, x), t > 3d(x, b). Therefore P (b, x, t) = 0 and the proof is similar as the above case (b).

The other cases can be verified similarly. Thus (P3): P (a, b, s + t) ≤ max{P (a, x, s), P (b, x, t)}, for all
a, b, x ∈ X, and s, t > 0 holds.

Hence (X,P,max) is a generalized parametric metric space but for all a, b ∈ X, P (a, b, ·) is discontinuous function
of t. Again,

P (a, b, t) < α, ∀ t > 0, for any α ∈ (0,∞)

=⇒ P (a, b, t) = 0, ∀ t > 0

=⇒ t > 3d(a, b),∀t > 0

=⇒ d(a, b) = 0

=⇒ a = b.

Thus (P4) holds. So we can construct the α-metrics on X. For all a, b ∈ X, the induced α-metrics are

dα(a, b) =


3d(a, b) if 0 < α ≤ 1

2

2d(a, b) if 1
2 < α ≤ 1

2d(a,b)
α if α > 1.

Choose a0 ̸= b0 ∈ X and let t0 = 5
2d(a0, b0). Then P (a0, b0, t0) =

1
2 = α0(say). But dα0(a0, b0) = 3d(a0, b0) ̸=

5
2d(a0, b0) = t0. Therefore, P (a0, b0, t0) = α0 ⇏ dα0(a0, b0) = t0.

Lemma 3.28. Let (X,P, max) be a generalized parametric metric space satisfying (P4), (P5) and {dα : α ∈ (0,∞)}
be the family of α-metrics on X induced by P . Then for any increasing or decreasing sequence {αn} in (0,∞), αn → α
implies dαn

(a, b) → dα(a, b), for all a, b ∈ X.

Proof . If a = b, then αn → α implies dαn
(a, b) → dα(a, b). Let a ̸= b. First we assume {αn} is an increasing sequence

such that αn → α. Let dαn
(a, b) = tn and dα(a, b) = t. Then by Lemma 3.25,

P (a, b, tn) = αn, for all n and P (a, b, t) = α. (3.7)

Since {dα : α ∈ (0,∞)} is a non-increasing family of metrics, {tn} is a non-increasing sequence in (0,∞) bounded
below by t. Hence, {tn} is a convergent sequence. Therefore lim

n→∞
P (a, b, tn) = lim

n→∞
αn implies

P (a, b, lim
n→∞

tn) = α ( by (P5) ) (3.8)
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From the relations (3.7) and (3.8), we have

P (a, b, lim
n→∞

tn) = P (a, b, t)

=⇒ lim
n→∞

tn = t

=⇒ lim
n→∞

dαn
(a, b) = dα(a, b)

Similarly we can prove that for a decreasing sequence {αn}, converging to α, lim
n→∞

dαn
(a, b) = dα(a, b). Hence the

proof is complete. □

Theorem 3.29. (2nd Decomposition Theorem) Let (X,P, max) be a generalized parametric metric space and P be
strictly decreasing which satisfies (P4) and (P5). If for each α > 0, dα be the α-metric on X induced by P and P ′ be
the generalized parametric metric as defined in (3.2) then P ′ = P .

Proof . Let x0, y0 ∈ X and t0 > 0. Case I: x0 = y0, t0 > 0 Then P (x0, y0, t0) = 0. Now

P ′(x0, y0, t0) = inf{α > 0 : dα(x0, y0) ≤ t0}
=0, since for each α > 0, dα(x0, y0) = 0

Case II: x0 ̸= y0, t0 > 0 such that P (x0, y0, t0) = 0. For α ∈ (0,∞), dα(x0, y0) = inf{t > 0 : P (x0, y0, t) < α}
Since P (x0, y0, t0) = 0 < α, dα(x0, y0) ≤ t0, for all α ∈ (0,∞). Therefore,

P ′(x0, y0, t0) = inf{α > 0 : dα(x0, y0) ≤ t0} = 0.

Case III: x0 ̸= y0, t0 > 0 such that P (x0, y0, t0) > 0. Let P (x0, y0, t0) = α0, α0 ∈ (0,∞). Then from Lemma
3.25, we have dα0

(x0, y0) = t0. Hence, P ′(x0, y0, t0) = inf{α > 0 : dα(x0, y0) ≤ t0} implies P ′(x0, y0, t0) ≤ α0. Thus,

P ′(x0, y0, t0) ≤ P. (3.9)

Next, choose 0 < α′ < α0 < ∞ and let dα′(x0, y0) = t′. Since {dβ : β ∈ (0,∞)} is a non-increasing family of
metrics,

α′ < α0

=⇒ dα′(x0, y0) ≥ dα0
(x0, y0)

=⇒ t′ ≥ t.

Again the Lemma 3.25 gives P (x0, y0, t
′) = α′. Since P (x0, y0, ·) is strictly decreasing, P (x0, y0, t

′) = α′ < α0 =
P (x0, y0, t0), implies

t′ > t0. (3.10)

So for all 0 < α′ < α0, dα′(x0, y0) = t′ > t0 =⇒ P ′(x0, y0, t0) ≥ α′. If P ′(x0, y0, t0) = α′, then

inf{β > 0 : dβ(x0, y0) ≤ t0} = α′

=⇒ there exists a sequence {αn} such that αn → α′ and dαn(x0, y0) ≤ t0

=⇒ lim
n→∞

dαn(x0, y0) ≤ t0

=⇒ dα′(x0, y0) ≤ t0 (using Lemma 3.28).

A contradiction to our assumption. Since it is true for all 0 < α′ < α0,

P ′(x0, y0, t0) ≥ α0 = P (x0, y0, t0) (3.11)

(3.9) and (3.11) together implies, P ′(x0, y0, t0) = P (x0, y0, t0). Thus, for all x, y ∈ X and for all t > 0, P ′(x, y, t) =
P (x, y, t). □

Justification of the above Theorem 3.29.
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Remark 3.30. We consider the parametric metric P of Example 3.19 which is strictly decreasing and continuous
function of t where we have shown that P satisfies (P4) and so we construct the family of metrics {dα : α ∈ (0,∞)}.
Then in Example 3.24 we show that a parametric metric P ′ is induced which is identical with P .

Definition 3.31. Let (X,P, o) be a generalized parametric metric space. A sequence {xn} ⊆ X is said to be a

(i) convergent sequence if there exists x ∈ X such that lim
n→∞

P (xn, x, t) = 0, for all t > 0. The point x is said to be

limit of {xn} and denoted by lim
n→∞

xn.

(ii) Cauchy sequence if lim
m,n→∞

P (xn, xm, t) = 0, for all t > 0.

Proposition 3.32. Let (X,P, o) be a generalized parametric metric space and ′o′ be continuous. Then

(a) limit of a sequence is unique, if exist.

(b) every convergent sequence is Cauchy.

(c) every subsequence of a convergent sequence converges to same limit.

Proof .

(a) Suppose a sequence {xn} converges to two points x and y in X. Then lim
n→∞

P (xn, x, t) = 0, for all t > 0 and

lim
n→∞

P (xn, y, t) = 0, for all t > 0. Now, for all t > 0,

P (x, y, t) ≤ P (x, xn,
t

2
) o P (y, xn,

t

2
), ∀n

=⇒ lim
n→∞

P (x, y, t) ≤ lim
n→∞

P (x, xn,
t

2
) o lim

n→∞
P (y, xn,

t

2
)

=⇒ P (x, y, t) ≤ 0 o 0 = 0.

Since P is non-negative real valued, P (x, y, t) = 0, for all t > 0 implies x = y.

(b) Let {xn} ⊆ X converges to x ∈ X. Then lim
k→∞

P (xk, x, t) = 0, for all t > 0. Now, for all t > 0

P (xm, xn, t) ≤ P (xm, x,
t

2
) o P (xn, x,

t

2
), ∀m,n ∈ N

=⇒ lim
n,m→∞

P (xm, xn, t) ≤ lim
m→∞

P (xm, x,
t

2
) o lim

n→∞
P (xn, x,

t

2
) ≤ 0 o 0

=⇒ lim
n,m→∞

P (xm, xn, t) = 0.

Hence {xn} is a Cauchy sequence in X.

(c) Let {xnk
} be a subsequence of a sequence {xn} which converges to x ∈ X that is lim

k→∞
P (xk, x, t) = 0, for all

t > 0. Then for all t > 0,

P (xnk
, x, t) ≤ P (xnk

, xn,
t

2
) o P (xn, x,

t

2
)

=⇒ lim
n→∞

P (xnk
, x, t) ≤ lim

n→∞
P (xnk

, xn,
t

2
) o lim

n→∞
P (xn, x,

t

2
) ≤ 0 o 0

=⇒ lim
n→∞

P (xnk
, x, t) = 0.

Hence {xnk
} converges to x ∈ X.

□

Remark 3.33. Every Cauchy sequence necessarily not a convergent sequence in generalized parametric metric spaces.
To justify we consider the following example.

Example 3.34. We consider the set X = {x = {xi} : xi ∈ (0,∞), for all i} ⊂ l2(R). Then

d(x, y) =

√√√√ ∞∑
i=1

|xi − yi|2,
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where x = {xi}, y = {yi} is a metric on X and with the mapping P (x, y, t) = d(x,y)
t , for all x, y ∈ X and t > 0,

(X,P,max) is a generalized parametric metric space (see Example 3.19).

If we consider the sequence {xn} ⊂ X, where x1 = {1, 0, 0, · · · }, x2 = {0, 1
2 , 0, · · · } and so on. Then {xn} is Cauchy

in (X, d) and converges to x = {0, 0, 0, · · · } ∈ l2(R). Therefore, {xn} is a Cauchy sequence in (X,P,max), but does
not converges in X.

Definition 3.35. A generalized parametric metric space (X,P, o) is said to be complete if every Cauchy sequence in
X is convergent and converges to some point in it.

Proposition 3.36. Let (X,P,max) be a generalized parametric metric space satisfying (P4) and for each α ∈
(0,∞), dα be the α-metrics on X induced by P . Then for any sequence {xn} ⊆ X, following results hold.

(i) {xn} is Cauchy in (X,P,max) if and only if {xn} is Cauchy in (X, dα), α ∈ (0,∞).
(ii) {xn} converges to x in (X,P,max) if and only if {xn} converges to x in (X, dα), α ∈ (0,∞).

Proof .

(i) Suppose {xn} is Cauchy in (X,P,max). Then lim
m,n→∞

P (xn, xm, t) = 0, for all t > 0. So for a given ϵ0 >

0, for each t > 0, there existsN(t) ∈ N such that

P (xn, xm, t) < ϵ0, ∀m,n ≥ N(t)

=⇒ inf{s > 0 : P (xn, xm, s) < ϵ0} ≤ t, ∀m,n ≥ N(t)

=⇒ dϵ0(xn, xm) ≤ t, ∀m,n ≥ N.

Since t > 0 is arbitrary, lim
n,m→∞

dϵ0(xn, xm) = 0. Again, since ϵ0 arbitrarily chosen, lim
n,m→∞

dα(xn, xm) =

0, for any α ∈ (0,∞). Therefore, {xn} is Cauchy in (X, dα), α ∈ (0,∞).
Conversely suppose that, {xn} is Cauchy in (X, dα), α ∈ (0,∞). Then lim

n,m→∞
dα(xn, xm) = 0,

for any α ∈ (0,∞). So for a given ϵ > 0, for each α ∈ (0,∞), ∃N(α) ∈ N such that

dα(xn, xm) < ϵ,∀m,n ≥ N(α)

=⇒ inf{s > 0 : P (xn, xm, s) < α} < ϵ, ∀m,n ≥ N(α)

=⇒ P (xn, xm, ϵ) < α, ∀m,n ≥ N(α).

Since α > 0 is arbitrary, we have

lim
n,m→∞

P (xn, xm, ϵ) = 0

=⇒ lim
n,m→∞

P (xn, xm, t) = 0, ∀t > 0 (Since, ϵ > 0 is arbitrary)

=⇒ {xn} is Cauchy in (X,P,max).

(ii) First assume that {xn} converges to x in (X,P,max). Then lim
n→∞

P (xn, x, t) = 0, for all t > 0. So for a given

ϵ > 0, for each t > 0, there exists N(t) ∈ N such that

P (xn, x, t) < ϵ, ∀n ≥ N(t)

=⇒ inf{s > 0 : P (xn, x, s) < ϵ} ≤ t, ∀n ≥ N(t)

=⇒ dϵ(xn, x) ≤ t, ∀n ≥ N(t)

=⇒ lim
n→∞

dϵ(xn, x) = 0, (Since, t > 0 is arbitrary)

=⇒ lim
n→∞

dα(xn, x) = 0, α ∈ (0,∞), (Since, ϵ > 0 is arbitrary).

Hence, {xn} converges to x in (X, dα), α ∈ (0,∞).
Conversely suppose that, {xn} converges to x in (X, dα), α ∈ (0,∞). Then lim

n→∞
dα(xn, x) = 0, for each

α ∈ (0,∞). So for a given ϵ > 0, for each α > 0, there exists N(α) ∈ N such that

dα(xn, x) < ϵ, ∀n ≥ N(α)

=⇒ inf{t > 0 : P (xn, x, t) < α} < ϵ, ∀n ≥ N(α)

=⇒ P (xn, x, ϵ) < α, ∀n ≥ N(α)

=⇒ lim
n→∞

P (xn, x, ϵ) = 0 (Since, α > 0 is arbitrary)

=⇒ lim
n→∞

P (xn, x, t) = 0, ∀t > 0, (Since, ϵ > 0 is arbitrary)
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This completes the proof.

□

Definition 3.37. Let (X,P, o) be a generalized parametric metric space. A ⊆ X is said to be bounded if for each
t > 0 there exist a non-negative real number Kt such that P (x, y, t) ≤ Kt, for all x, y ∈ A.

Proposition 3.38. Every convergent sequence in a generalized parametric metric space (X,P, o) is bounded.

Proof . Let {xn} be a sequence in X converging to x ∈ X. Then lim
n→∞

P (xn, x, t) = 0, ∀t > 0. So for a given

t > 0, {P (xn, x, t)} is a bounded sequence. Thus for each t > 0, ∃Kt > 0 such that P (xn, x, t) ≤ Kt, for all n.
Choose a fixed y ∈ {xm} and let P (x, y, t

2 ) = st(depends on t). Now for all t > 0 and for all n ∈ N, we have

P (xm, y, t) ≤ P (xm, x,
t

2
) o P (x, y,

t

2
) ≤ K t

2
o st = rt.

This shows that {xn} is a bounded sequence in X. □

4 Banach type fixed point theorem and an application to integral equation

Theorem 4.1. Let (X,P, o) be a complete generalized parametric metric space and ′0′ be continuous. If F be a self
mapping on X which satisfies the contraction condition

P (Fx, Fy, t) ≤ kP (x, y, t),

for all x, y ∈ X and for all t > 0 where 0 < k < 1, then F has a unique fixed point in X.

Proof . To prove the existence of fixed point, let x0 ∈ X and consider the iterative sequence:

x0, x1 = F (x0), x2 = F (x1) = F 2(x0) · · · , xn = F (xn−1) = Fn(x0), · · ·

First we prove that {xn} is a Cauchy sequence in X. Now for n ∈ N and ∀t > 0,

P (xn+1, xn, t) =P (F (xn), F (xn−1), t) ≤ kP (xn, xn−1, t).

Repeating this process we obtain, P (xn+1, xn, t) ≤ knP (x1, x0, t), ∀t > 0 and for all n ∈ N. Now ∀t > 0 and for
m = n+ p, p = 1, 2, · · · ,

P (xn+p, xn, t)

≤ P (xn+p, xn+1,
t

2
) o P (xn+1, xn,

t

2
)

≤ P (xn+p, xn+2,
t

4
) o P (xn+2, xn+1,

t

4
) o P (xn+1, xn,

t

2
)

≤ · · · ≤ P (xn+p, xn+p−1,
t

2p−1
) o P (xn+p−1, xn+p−2,

t

2p−1
) o · · · o P (xn+2, xn+1,

t

4
) o P (xn+1, xn,

t

2
)

≤ kn+p−1P (x1, x0,
t

2p−1
) o kn+p−2P (x1, x0,

t

2p−1
) o · · · o kn+1P (x1, x0,

t

4
) o knP (x1, x0,

t

2
).

Taking limit n → ∞ on both side, we obtain, lim
n→∞

P (xn+p, xn, t) = 0, for all t > 0 which proves that {xn} is a

Cauchy sequence. Since X is complete, there exists x ∈ X such that {xn} converges to x. We prove that x is a fixed
point for F . Now ∀t > 0,

P (F (x), x, t) ≤ P (F (x), xn,
t

2
) o P (x, xn,

t

2
)

=⇒ P (F (x), x, t) ≤ kP (x, xn−1,
t

2
) o P (x, xn,

t

2
)

=⇒ P (F (x), x, t) ≤ lim
n→∞

[kP (x, xn−1,
t

2
) o P (x, xn,

t

2
)] = 0

=⇒ P (F (x), x, t) = 0

=⇒ F (x) = .



A generalization to parametric metric spaces 243

So x is a fixed point of F . If possible suppose ∃y ∈ X such that Fy = y. Then

P (x, y, t) = P (F (x), F (y), t) ≤ kP (x, y, t), ∀t > 0

=⇒ P (x, y, t) = 0, ∀t > 0 (Since k < 1)

=⇒ x = y.

This completes the proof of the theorem. □

Example 4.2. Let X = C[−1, 1]. For all f, g ∈ X, d(f, g) = sup
t∈[−1,1]

|f(t)− g(t)| is a metric on X. Next we consider

the function P (f, g, s) = d(f,g)
s , for all f, g ∈ X and s > 0. Then in Example 3.19, we have shown that (X,P,max)

is a generalized parametric metric space and clearly it is complete. Now we define F : X → X by F (f) = 5f
11 , for all

f ∈ X. Then for k ∈ ( 5
11 , 1), P (F (f), F (g), t) ≤ kP (f, g, t), for all f, g ∈ X and t > 0. So by Theorem 4.1, F has a

unique fixed point in X and here the fixed point is the null mapping.

Theorem 4.3. We consider the complete metric space (C[0, a], d), a > 0 where the metric d is given by d(f, g) =
sup

t∈[0,a]

|f(t)− g(t)|, for all f, g ∈ C[0, a] and consider an integral operator η on C[0, a] by

η(f(t)) = g(t) +

∫ t

0

ϕ(t, s, f(s)) ds, ∀t ∈ [0, a] (4.1)

Now consider the complete generalized parametric metric space (X,P,max) where X = C[0, a], a > 0 and P (f, g, t) =
d(f,g)

t , for all f, g ∈ X and t > 0. Let us choose a function h : [0, a]× [0, a] → [0,∞) which satisfies sup
t∈[0,a]

∫ t

0
h(s, t)dt ≤

k < 1 and ϕ satisfies the following condition:

|ϕ(s, t, f1(t))− ϕ(s, t, f2(t))| ≤ h(s, t)|f1(t)− f2(t)|, ∀f1, f2 ∈ X, ∀s, t ∈ [0, a].

Then the integral equation (4.1) has a unique solution in C[0, a].

Proof . We have,

|ηf1(t)− ηf2(t)| =|
∫ t

0

[ϕ(t, s, f1(s))− ϕ(t, s, f2(s))] ds|, ∀t ∈ [0, a]

≤
∫ t

0

|ϕ(t, s, f1(s))− ϕ(t, s, f2(s))| ds, ∀t ∈ [0, a]

≤
∫ t

0

h(t, s)|f1(s)− f2(s)| ds, ∀t ∈ [0, a]

≤d(f1, f2)

∫ t

0

h(t, s)ds, ∀t ∈ [0, a]

≤kd(f1, f2), ∀t ∈ [0, a].

Which implies

d(ηf1, ηf2) ≤ kd(f1, f2)

=⇒ P (ηf1, ηf2, t) ≤ kP (f1, f2), ∀t > 0

where k < 1. So η satisfies the contraction condition of Theorem (4.1) and hence it has a unique solution in X. □

5 Conclusion

We have introduced a new concept of generalized metric space by changing the condition of inequality in the
definition of parametric metric space introduced by N. Hussian et al. It is possible to achieve a decomposition theorem
from a generalized parametric metric into a family of crisp metrics. Banach type contraction principle is established
and an application to find out the solution of Integral equation is given. We think this decomposition theorem will play
a key role to develop further results in generalized parametric metric spaces. There are lot of scopes for researchers
to study various results in compactness, completeness in such generalized parametric metric spaces and develop fixed
point theorem for different types of contraction and expansion mappings in such spaces.
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