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Abstract

Tensor completion has numerous applications in digital image processing such as image recovery and video overlay.
In this paper, we consider two new approaches to tensor completion. Efficient low-rank tensor with tensor train and
tensor ring for image recovery, some basic concepts about tensor algebra and completion problems are presented, after
that Tensor completion based on the tensor train and tensor ring are offered and implemented on some examples for
image recovery with different observed ratios. The results of these implementations are compared and final results are
proposed.
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1 Introduction

Here, we consider efficient low-rank tensor completion (TC) based on the tensor ring (TR) and tensor train (TT)
methods for image recovery and video completion [10]. Tensor decompositions for expressing and saving data have
lately attracted significant concentration due to their effectiveness in compressing data for statistical and mathematical
signal processing [3]. In this paper, we concentrate on TR decomposition [10] and in particular, its connection to Matrix
Product States (MPS) [6] representation for tensor and utilize it for completing data from missing entries. The tensor
ring completion uses a different initialization. This method is based on the TR analysis. The type of decomposition
removes unit rank limitations for boundary tensor factors and applied the sign operator in decomposition. Multi-linear
multiplications between factors are also used by generalizing matrix states. To complete the data by using tensorial
decompositions, a primary issue is rank [7]. Although the rank in TR is a vector, we can assume that all ranks are
the same as in other cases, so a single parameter is provided that can be adjusted based on the data and the number
of available samples in each application [1]. The use of a sign operator in the TR structure has some challenges to
completing the tensor analysis in TT mode. It can be said that the structure of TR is equivalent to the distance
structure in tensor networks (TN). Understanding this structure can help to know the completion for TN in general
cases [10].
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The remainder of the paper is constructed as follows. In section 2, we present the basic notation and preliminaries
on the TC, TR, and TT decomposition. In section 3, we describe the problem statement and propose the principal
algorithm. We also explain the computational complexity of the proposed algorithm based on the TT and TR. In
section 4, we perform and examine the algorithm extensively against competing methods on a number of real and
artificial data experiments in section 5, we provide conclusions and future research directions.

2 Preliminaries

In this section, we introduce some preliminaries and notations about tensor theory and related topics.

Definition 2.1. If X ∈ Rn1×...×nd ia a tensor, and M ∈ Rmk×nk is a matrix, then mode-k matrix product of M and
X defined as follows [2]:

nk∑
j=1

M(i, j).X(α1 . . . αk−1, j, αk+1, . . . , αd) (2.1)

In practice, The mode-k matrix product is a contraction between a tensor and a matrix that produces another tensor.

Definition 2.2. A tensor can be defined in various ways at different levels of abstraction. We follow the most general
way and define it as a multidimensional array [8]. The dimensionality of it is described as its order. An Nth-order
tensor is an N-way array, also known as N-dimensional or N-mode tensor, denoted by X. We use the term order to
refer to the dimensionality of a tensor (e.g., Nth-order tensor), and the term mode to express operations on a specific
dimension (e.g., mode-n product), for more examples, see figure 1. The tensor dimension with mode i could be an
expression, where the expression inside () is evaluated as a scalar, e.g. X ∈ R(I1I2)×(I3I4)×(I5I6) represents a 3-mode
tensor where dimensions along each mode is I1I2, I3I4, and I5I6 respectively. An entry inside a tensor X is represented
as X(i1, i2, . . . , in), where ik : k = 1, 2, . . . , n is the location index along the kth-mode [1].

Figure 1: The representation of tensors based on the dimension.

In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix that
generalizes the eigendecomposition of a square normal matrix into an orthonormal eigenbasis to any m × n matrix
via an extension of the polar decomposition. Here, this idea generalizes to tensors. The SVD is a robust tool for
displaying the structure of a matrix and for achieving its essence through optimal, data-sparse representations [2].

Definition 2.3. High order Singular Value Decomposition (HoSVD) of a tensor X ∈ Rn1×...×nd involves computing
the matrix SVDs of modal unfoldings U(1), . . . ,U(d) [4]. This result in a reperestation of X as a sum of rank-1 tensors
as follows:

X = S×1 U1 ×2 U2 . . .×d Ud (2.2)

where S is a low rank tensor core of X, Uis for i = 1, . . . , d is inverse tensor factors, and ×d is a d-mode production,
see figure 2 [1].

Tensor completion is defined as the problem of filling the missing elements of partially observed tensors. As its
special matrix case [9], to avoid being an underdetermined and intractable problem, low rank is a certain hypothesis
to limit the degree of freedoms of the missing entries [5]. Since a tensor has different types of rank definitions, to give
a nearly general mathematical formulation of the low-rank tensor completion (LRTC) problem [5].
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Figure 2: The representation of HoSVD.

Definition 2.4. Given a low-rank tensor T with missing entries, the goal of completing it can be formulated as the
following optimization problem:

minimiz eX rank∗(X),
Subject to Xω = TΩ.

where rank∗ denote a specific type of tensor rank based on the rank assumption of the given tensor T,X represents the
completed low-rank tensor of τ , and Ω is an index set denoting the indices of observations. The intuitive explanation
of the above equation is that: we expect to find a tensor X with minimum rank, which is subjects to the equality
constraints given by the observations, please see figure 3 [9].

Figure 3: Tensor Completion Problem (TC).

For X ∈ RI1×...×In as a n-mode tensor, mode-i unfolding of X denoted as Xi, matricized the tensor X by putting
the i-th mode in the matrix rows and remaining modes with the original order in the columns such that:

Xi ∈ RIi×(I1...Ii−1Ii+1...In)

Definition 2.5. Let X ∈ RI1×...×In be an n-order tensor with Ii-dimension along the ith mode, then any entry inside
the tensor, denoted as X(i1, . . . , in), is represented by:

X(i1, . . . , in) =
∑R1

ri=1 . . .
∑Rn

rn=1 U1(rn, i1, r1) . . . Un(rn−1, in, rn),

where Ui ∈ RRi−1×Ii×Ri is a set of 3-order tensors, also named matrix product states (MPS), which consist the bases
of the tensor ring structures.

Remark 2.6. Note that, In the formulation of the tensor ring, tensor ring rank is the vector [R1, . . . , Rn]. In general
Ris are not necessary to be the same. We set Ri = R for i = 1, . . . , n and the scalar R is referred as the tensor ring
rank [10].

Definition 2.7. Tensor train is a special case of tensor ring when Rn = 1 [11].
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3 Algorithms

Given a tensor X ∈ RI1×...×In that is partially observed at locations Ω, let PΩ ∈ RI1×...×In be the corresponding
binary tensor in which 1 denotes an observed entry and 0 represents a missing entry. The problem is to obtain a
low tensor ring rank (TR-Rank) approximation of the tensor X, denoted by f(U1 . . . Un), such that the recovered
tensor matches X at PΩ. This problem is referred to as the tensor completion problem under the ring model, which is
equivalent to the following problem:

min ||PΩ ◦ (f(U1 . . . Un)− X||2F . (3.1)

Note that the rank of the tensor ring R is predefined and the dimension of Ui:i=1,··· ,n is RR×Ii×R [10].

To solve this problem, we introduce an algorithm, referred to as Tensor Ring completion by Alternating Least
Square (TR-ALS) in two steps:

1) First, Choose an initial starting point by using Tensor Ring Approximation (TRA). This initialization algorithm
is detailed in subsection 3.1.

2) Update the solution by utilizing Alternating Least Square (ALS) that alternatively (in cyclic order) determines
a factor say Ui keeping the other factors fixed. This algorithm is detailed in subsection 3.2.

3.1 Tensor Ring Approximation (TRA)

Here, a heuristic initialization algorithm, namely TRA, for solving (3.1) is proposed. This algorithm is a revised
version of TR decomposition as proposed in [7]. We first conduct a TT decomposition on the zero-filled data, where
the rank is constrained by SVD. Next, an estimate for the TR is formed by extending the acquired factors to the
desired dimensions by filling the remaining entries with small random numbers. We remark that the small entries
show faster convergence as compared to zero entries based on our studied small examples, and consequently induces
the choice in the algorithm. Further, non-zero random entries help the algorithm initialize with larger ranks since the
TT decomposition has the corner ranks as 1. Having non-zero entries can help the algorithm not getting stuck in local
optima of low corner rank [10]. Figure 4 shows the main algorithm steps.

Figure 4: Tensor Ring Approximation (TRA)
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3.2 TR-ALS Algorithm

The proposed tensor ring completion by alternating the least square method (TR-ALS) solves (3.1) by solving the
following problem for each i iteratively. The factors are initialized from the TRA algorithm presented in the previous
subsection. Figure 5 shows the main algorithms. The stopping step in TR-ALS is measured via the changes of the

Figure 5: TR-ALS Algorithm

last tensor factors Un since if the last factor does not change, the other factors are less possible to change.

We note that tensor train completion provides a similar complexity as tensor ring completion. Nevertheless, tensor
train rank is a vector and it is hard for tuning to reach the optimal completion. The middle ranks in the tensor train
are large in general, leading to the significantly higher computational complexity of tensor train [11]. This is alleviated
in part by the tensor ring structure which can be parametrized by the tensor ring rank which can be smaller than
the intermediate ranks of the tensor train in general. In addition, the single parameter in the tensor ring structure
leads to ease in characterizing the performance for different ranks and can be easily tuned for practical applications.
The lower ranks lead to the lower computational complexity of data completion under the tensor ring structure as
compared to the tensor train structure [10].
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4 Implementation of algorithms

In this section, we performed our codes, algorithms, and experiments on the Asus Laptop with configuration as
given in table 1.

Table 1: The configuration of expriment system.

CPU Ci7-2670QM (8 Cores)
Frequency 2.2-3.1 GHz
RAM 16 GB (DDR3)
GPU Nvidia Geforce GT 540M (2GB)
O.S. Windows-10 Pro (64bit)
Software MATLAB R2021a (64bit)

It must be noted that in this set of codes, the software package of Tensorlab is also used. We note that the recovery
error is defined as:

RE =
||T− X||F
||X||F

(4.1)

Tensor ring completion by alternating least square (TR-ALS) algorithm is an iterative algorithm and the maximum
iteration, maxiter, is set to be 300. The convergence is obtained by the change of the last factorization term Un, where
the error threshold is set to be 10−10.

4.1 Image Completion

In this section, we examine the completion of RGB Einstein Image, that employed ad a 3-order tensor X ∈
R600×600×3. In the initial step, a reshaping operation is utilized to transform the image into a 7-order tensor of size
R6×10×10×6×10×10×3. Reshaping low order tensors into high order tensors is a general practice in research papers and
has shown enhanced achievement in classification and completion [11].

In the field of image recovery, with only a 10 percent observation ratio (i.e. 90 percent distortion ratio), this
method has a minimum error of 10.83 percent and accordingly can recover and restore up to 90 percent distortion
with 89.17 percent confidence and certainty. You can see the achievement results in Figure 6.

Figure 6: Comparison of the implementation of the TR against TT method in different cases of tensor rank on Einstein image.

In the second step, we consider Yale Face dataset that includes 38 people with 9 poses under 64 illumination
conditions. Each images has the size of 192× 168, wherein we down-sample the size of each image to 48× 42 for ease
of computation. We investigate the image subsets of 38 people under 64 illumination with 1 pose by formatting the
data into a 4-order tensor in R48×42×64×38, which is further reshape into a 8-order tensor X ∈ R6×8×6×7×8×8×19×2.

In the area of recovery face images in various exposure modes by the aforementioned Yale dataset, with a 10 percent
observation ratio (90 percent distortion) of the original images, the minimum error under the rank of 30 reaches 21.57
percent. So this method can recover up to 90 percent of distorted images with 78.43 percent accuracy.

Figure 7 shows the original image, missing images, and recovered images using TR-ALS and TT-ALS algorithms
for ranks of 10, 20, and 30, wherever the completion results given by TR-ALS better capture the detailed information
given from the image and recovers the image with a better resolution.
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Figure 7: Comparison of the results of the implementation of the tensor completion method based on TR and TT in different ranks in the
Yale image data set of different facial exposure modes.

4.2 Video Completion

The video data, we employed is high-speed camera video for gun shooting, that is downloaded from You Tube
with 85 frames in total and each frame consists of a 100× 260× 3 image. Hence the video is a 4-order tensor of size
100× 260× 3× 85, which is further reshaped into an 11-order tensor of size 5× 2× 5× 2× 13× 2× 5× 2× 3× 5× 17
for completion. Video is multi-dimensional data with different color channels a time dimension in addition to the 2D-
image structure [10].

In the area of video completion, our studies show that by observation ratio of 10 percent (90 percent distortion),
TC based on the TR in the rank 30, has an error of 6.25 percent, while the TC based on the TT has an error of 16.99
percent. Therefore, the method of TT can recover video images by a distortion ratio of 90 percent with an accuracy
of 93.75 percent. For more details, please see figure 8.

Figure 8: Comparison of the implementation of TC in video completion based on TR and TT in different ranks for the bullet shooting
video.

5 Conclusions

In this paper, we consider the low-rank tensor completion method based on the TT and TR. The TC on the TT
and TR are presented and implemented on some standard data sets and compared with other famous and related
methods. Our main goal is to recover and reconstruct distorted and noisy images and video completion by this method.
This algorithm employs the MPS representation and utilizes alternating minimization over the low-rank factors for
completion. In general, it can be said that this method has a significant efficiency in recovery images, video completions
under various exposure modes with a maximum distortion percentage of up to 90 percent. This method can be used
for image completion issues, completing various exposure modes of the face, and completing the video successfully up
to 90 percent distortion and aberration.
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