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Abstract

In this paper, we present some new Ramsey families by using the van der Waerden theorem and affine topological
correspondence principle.
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1 Introduction

A focal matter in Ramsey theory is to discover which patterns can be monochromatic of any finite coloring of N.
We start with following definition:

Definition 1.1. Let k, s ∈ N, and let f1, . . . , fk : Ns → Z. We say that f1, . . . , fk is a Ramsey family if for any finite
coloring N = C1 ∪ . . . ∪ Cr, there exist x ∈ Ns and i ∈ {1, . . . , r} such that {f1(x), . . . , fk(x)} ⊂ Ci.

I. Schur (1916) stated that for any finite partition of the natural numbers N = C1 ∪ · · · ∪ Cr, there exist x, y ∈ N
and C ∈ {C1, · · · , Cr} such that {x, y, x+ y} [17]. A famous result in arithmetic Ramsey theory is van der Waerden’s
theorem(1927) on arithmetic progressions [18].

In this paper, we state generalized van der Waerden theorem and then we present Theorem 1.4 for some function
that satisfy in Definition 2.1(such that does not necessarily apply to the assumption of Theorem 1.4). Also, we introduce
some new Ramsey families such as we arrive that for v, k ∈ N, the pattern {xy, x+v, x+y+v, x+2y+v, . . . , x+ky+v}
is monochromatic.

Theorem 1.2 (van der Waerden theorem). For any finite partition of the natural numbers N = C1 ∪ · · · ∪ Cr

and any k ∈ N there exist x, y ∈ N and C ∈ {C1, · · · , Cr} such that {x, x+ y, x+ 2y, ..., x+ ky} ⊆ C.

After that, in [7] Brauer(1928) extended of Schur’s theorem and van der Waerden theorem. Brauer’s theorem stated
for each p ∈ N, the family {x, x + y, x + 2y, · · · , x + py} is Ramsey in N. Rado(1933) presented a theorem such
that introduced necessary and sufficient conditions for a family of linear functions to be Ramsey [15]. Deuber (1973)
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presented the theorem such that contains Schur’s theorem, van der Waerden’s theorem, Brauer’s theorem [8]. Deuber’s
theorem applies to many families of the form {f1, · · · , fk}, such that fi is a monomial, are Ramsey. Furstenberg and
Sárközy (1977) proved that the family {x, x+ y2} is Ramsey independently [10] and [16]. Afterward Bergelson (1987)
proved that the family {x, y, x + y2} is Ramsey[4]. Bergelson and Leibman (1996) presented Polynomial van der
Waerden theorem as follows [6].

Theorem 1.3 (Polynomial van der Waerden theorem). Let f1, · · · , fk ∈ Z[x] be polynomials such that fi(0) =
0 for all i = 1, ..., k. Then for any finite coloring of N = C1 ∪ · · · ∪ Cr there exist a color C ∈ C1, · · · , Cr and x, y ∈ N
such that

{x, x+ f1(y), x+ f2(y), ..., x+ fk(y)} ⊂ C.

The above theorem presented major advance towards Ramsey family problem. Many polynomial Ramsey present such
as [1], [5], [3], [9], [13]. Afterward in [14], J. Moreira state an affine topological correspondence principle by Polynomial
van der Waerden theorem and by using its proved the following theorem that introduce some Ramsey families.

Theorem 1.4. Let s ∈ N and, for each i = 1, . . . , s, let Fi be a finite set of functions Ni → Z such that for all f ∈ Fi

and any x1, . . . , xi−1 ∈ N, the function x → f(x1, . . . , xi−1, x) is polynomial with 0 constant term. Then for any finite
coloring of N, there exist a color C ⊂ N and (s+ 1)-tuples x0, . . . , xs ∈ N such that

{x0 . . . xs} ∪ {x0 . . . xj + f(xj+1, . . . , xi) : 0 ≤ j < i ≤ s, f ∈ Fi−j} ⊂ C.

Then he came to the following corollary.

Corollary 1.5. For any finite coloring of N, there exist x, y ∈ N such that {x, xy, x+ y} is monochromatic.

First we define condition (∗)(Definition 2.1) and by using this condition, we state generalized van der Waerden
theorem.

Corollary 1.6 (generalized van der Waerden theorem). Let F ∈ Pf (
NZ) and let F satisfy in condition (∗).

Then for any finite coloring of N, there exist x and y ∈ N such that {x+ f(y) : f ∈ F} is monochromatic.

We restate Theorem 1.4 for function that satisfies in condition (∗) by using 2.4 as follows. All family of functions
that satisfy in the assumption of the following theorem are Ramsey family, including finite family of homomorphism
functions.

Theorem 1.7. Let s ∈ N and, for each i = 1, . . . , s, let Fi be a finite set of functions Ni → Z such that for all f ∈ Fi

and any x1, . . . , xi−1 ∈ N, the function x → f(x1, . . . , xi−1, x) satisfies in condition (∗). Then for any finite coloring
of N, there exist a color C ⊂ N and (s+ 1)-tuples x0, . . . , xs ∈ N such that

{x0 . . . xs} ∪ {x0 . . . xj + f(xj+1, . . . , xi) : 0 ≤ j < i ≤ s, f ∈ Fi−j} ⊂ C.

Finally, we present a weak version of polynomial Ramsey family as follows.

Corollary 1.8. For v ∈ N, k ∈ N, we define fv,k : N → S by fv,k(x) = kx+ v. F = {fv,k : k = n1 < n2 < · · · < nk} ∈
Pf (

NN) satisfies in condition (∗). Then for v ∈ S, k ∈ N, the pattern {xy, x+ v, x+ y + v, x+ 2y + v, . . . , x+ ky + v}
is monochromatic.

2 Extend of the van der Waerden theorem

In this section, we defined condition (∗). Then we extend of the van der Waerden theorem.

Definition 2.1. Let (S,+) be a commutative semigroup and F ∈ Pf (
NS). We say that F satisfies in condition (∗), if

(1) for each a, b ∈ N there exist c ∈ N such that f(a) + f(b) = f(c), for each f ∈ F or
(2) for each a, b ∈ N there exist c ∈ N, d ∈ S such that f(a) + f(b) = f(c) + d, for each f ∈ F .
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We present an example such that doesn’t satisfy in polynomial van der Waerden theorem.

Example 2.2. (a) For v ∈ S, k ∈ N, we define fv,k : N → S by fv,k(x) = kx+ v. Now let F = {fv,k : k = n1 < n2 <
· · · < nk}. Then F satisfies in condition (∗).
(b) Let Hom(N, S) denote the collection of all homomorphisms from N into S. Every F ∈ Pf (Hom(N, S)) satisfies in
condition (∗).

Theorem 2.3. Let (S,+) be a commutative semigroup and let A be a piecewise syndetic, if F ∈ Pf (
NS) satisfies in

condition (∗), then there exist a ∈ S and b ∈ N such that the set {a+ f(b) : f ∈ F} ⊆ A.

Proof . Since A be a piecewise syndetic, by Theorem 14.8.3 in [12] A is J-set. So whenever F ∈ Pf (
NS) there exist

a ∈ S,H ∈ Pf (N) such that the set a +
∑

t∈H f(t) ∈ A for each f ∈ F . According to assumption F satisfies in
condition (∗) then there exist c ∈ S, d ∈ N such that {c+ f(d) : f ∈ F} ⊆ A. □

Corollary 2.4 (generalized van der Waerden theorem). Let F ∈ Pf (
NZ) such that if F satisfies in condition

(∗), then for any finite coloring of N, there exist x, y ∈ N such that {x+ f(y) : f ∈ F} is monochromatic.

3 Main results

The affine semigroup (A−
N ) is the semigroup consisting of all the linear maps from Z to Z such that x → ax + b,

where a ∈ N and b ∈ Z, and the semigroup operation is composition of functions. Also, Au is the map x → x+ u for
u ∈ Z and Mu is the map x → ux for u > 0. The following law satisfies:

∀u ∈ N, v ∈ Z, MuAv = AuvMu. (3.1)

Let A−
N acts on X via (Tg)g∈A−

N
, for each g ∈ A−

N , there is a map Tg : X → X and for any g, h ∈ A−
N , Tg ◦Th = Tgh,

and let u ∈ Z. The map TAu
denote by Au and, if u > 0, the map TMu

by Mu.

Let G be a semigroup. A G-topological system denoted by a pair (X, (Tg)g∈G), where X is a compact Hausdorff
space, not necessarily metrizable, and let (Tg)g∈G be an action by continuous functions Tg : X → X. We say system
(X, (Tg)g∈G) is minimal if X contains no proper nonempty closed invariant subsets. x ∈ X is called a minimal point
if its orbit closure Y := {Tgx : g ∈ G} is a minimal subsystem of X. We say that A ⊆ N is piecewise syndetic if
A ∩K(βN) ̸= ∅, where K(βN) is minimal ideal of the Stone-Čech compactification of the natural numbers. It is well
known that K(βN) is union of all minimal sub dynamical system (βN, {An}n∈N). In fact, minimal sub dynamical
systems of (βN, {An}n∈N) are precisely minimal left ideals of βN. Since that βN is an additive compact semigroup, so
there exists minimal idempotent. In this paper, minimal idempotent of (βN,+) is called additive minimal idempotent,
and every element of minimal ideal of βN is called additive minimal point. For more detail see [4].

Proposition 3.1. Let E ⊂ N and g ∈ A−
N . E is piecewise syndetic if and only if its image g(E) is piecewise syndetic.

Proof . See Proposition 2.1 in [14]. □

Proposition 3.2. Let E ⊂ N be a piecewise syndetic set. Then for any finite partition C of E, there exists C ∈ C
that is piecewise syndetic.

Proof . See Theorem 1.24 in [11]. □

Theorem 3.3. There exists an A−
N -topological system (X, (Tg)g∈A−

N
) with a dense set of additively minimal points,

such that all map Tg : X → X is open and injective, and for any finite coloring N = C1 ∪ . . .∪Cr, there exists an open
cover X = U1 ∪ . . . ∪ Ur such that for each g1, . . . , gk ∈ A−

N and t ∈ {1, . . . , r},

k⋂
l=1

Tgl(Ut) ̸= ∅ =⇒ N ∩
k⋂

l=1

gl(Ct) ̸= ∅. (3.2)
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Proof . See the proof of Theorem 3.2 in [14]. □

Lemma 3.4. For each g ∈ A−
N , the map Tg : βN \ N → βN \ N is continuous, open and injective. Morever, for

g, h ∈ A−
N , one has Tg ◦ Th = Tgh.

Proof . See the proof of Lemma 3.6 in [14]. □

Theorem 3.5. Let (X, (Tg)g∈A−
N
) be an A−

N -topological dynamical system, and let X contains a dense set of additively

minimal points. Let F ∈ Pf (
NZ) satisfy in condition (∗). Then for each nonempty open set U ⊂ X, there exists n ∈ N

such that ⋂
f∈F Af(n)U ̸= ∅.

Proof . Let y ∈ U be an additively minimal point and let Y = {Any : n ∈ Z} be its additive orbit closure. (Y, (An)n∈Z)
is a minimal topological system, then

⋃
n AnU covers Y , and by ussing compactness there exists r ∈ N, where⋃r

n=1 AnU covers Y . We define χ : N → {1, . . . , r} of N by letting χ(n) be such that Any ∈ Aχ(n)U .

Let N =
⋃r

t=1 Ct. By Corollary 2.4, if F ∈ Pf (
NZ) such that satisfies in condition (∗) then there exist t ∈

{1, . . . , r}, a ∈ Z and b ∈ N such that χ(a + f(b)) = t for each f ∈ F. For any f ∈ F , let f̃ : n → −f(n) and observe
that f̃ ∈N Z. Put F̃ = {f̃ : f ∈ F} so find some t ∈ {1, . . . , r}, a ∈ Z and b ∈ N such that χ(a + f̃(b)) = t for every
f ∈ F . In other words, Aa−f(b)y ∈ AtU for all f ∈ F and so, Aa−ty ∈ Af(b)U . Then we have⋂

f∈F

Af(b)U ̸= ∅.

□

Theorem 3.6. Let (X, (Tg)g∈A−
N
) be an A−

N -topological system with a dense set of additively minimal points, and let

each map Tg : X → X be open and injective. Let s ∈ N and, for any i = 1, . . . , s, let Fi be a finite set of functions
Ni → Z such that for each f ∈ Fi and each x1, . . . , xi−1 ∈ N, function x → f(x1, . . . , xi−1, x) satisfies in condition
(∗). Then for each open cover U of X, there exists an open set U ∈ U in that cover and infinitely many s-tuples
x1, . . . , xs ∈ N such that

U ∩
⋂

0≤j<i≤s

⋂
f∈Fi−j

Mxj+1...xs
Af(xj+1,...,xi)U ̸= ∅.

Proof . Let U be an open cover of X. We want to find U ∈ U and infinitely many s-tuples x1, . . . , xs ∈ N such that

U ∩
⋂

0≤j<i≤s

⋂
f∈Fi−j

Mxj+1...xs
Af(xj+1,...,xi)U ̸= ∅.

If X is compact, then there exists a finite subcover U1, . . . , Ur of U such that Ut ̸= ∅. We build four sequences
(tn)n>0, (yn)n≥1, (Bn)n≥0 and (Dn)n≥0 as in the proof of Theorem 3.1 in [14]. For each i ∈ 1, . . . , s and each f ∈ Fi,
we define the collection Gn(f) of all functions g : Z → Z of the form

g : z → y(m1, n− 1)f(y(m1,m2), y(m2,m3), . . . , y(mi, n− 1)z)

for each 0 ≤ m1 < m2 < . . . < mi < n. If i > n, then we set Gn(f) = ∅. For each g ∈ Gn(f) is function such that
satisfies in condition (∗). By Theorem 3.5, we can detect yn ∈ N satisfying

Dn := Bn−1 ∩
⋂s

i=1

⋂
f∈Fi

⋂
g∈Gn(f)

Ag(yn)Bn−1 ̸= ∅.

Let tn ∈ {1, . . . , r} such that Bn := Myn
Dn ∩ Utn ̸= ∅. Since Myn

is an open map, Bn is open. This finishes the
construction of yn, tn, Dn, Bn . So Bn ⊂ Utn for every n ≥ 0. Also, Bn ⊂ Myn

Dn ⊂ Myn
Bn−1. By repeating this

observation we arrive as follows.
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∀m ⩽ n, Bn ⊂ My(m,n)Bm.

The rest of the proof is the same as proof of Theorem 3.1 in [14].

□

Theorem 3.7. Let s ∈ N and, for any i = 1, . . . , s, let Fi be a finite set of functions Ni → Z such that for all f ∈ Fi

and each x1, . . . , xi−1 ∈ N, the function x → f(x1, . . . , xi−1, x) satisfies in condition (∗). Then for each finite coloring
of N, there exists a color C ⊂ N and (s+ 1)-tuples x0, . . . , xs ∈ N such that

{x0 . . . xs} ∪ {x0 . . . xj + f(xj+1, . . . , xi) : 0 ≤ j < i ≤ s, f ∈ Fi−j} ⊂ C.

Proof . Let s ∈ N and, for each i = 1, . . . , s, let Fi be a finite set of functions Ni → Z such that for all f ∈ Fi and
any x1, . . . , xi−1 ∈ N, the function x → f(x1, . . . , xi−1, x) satisfies in condition (∗). Let N = C1 ∪ . . . ∪ Cr be a finite
coloring of N. We need to show that there exists a color Ct and (infinitely many) s + 1-tuples x0, . . . , xs ∈ N such
that x0 . . . xs ∈ Ct and, for every 0 ≤ j < i ≤ s and f ∈ Fi−j , we have x1 . . . xj + f(xj+1, . . . , xi) ∈ Ct.

We append to Fs the zero function f : Ns → 0 if necessary. Invoking Theorem 3.3 and then Theorem 3.6, the rest
of the proof is similar to proof of Theorem 1.4 in [14]. □

We arrive as a result to corollary below.

Corollary 3.8. For v ∈ N, k ∈ N, we define fv,k : N → S by fv,k(x) = kx+ v. F = {fv,k : k = n1 < n2 < · · · < nk} ∈
Pf (

NN) satisfies in condition (∗). Then for v ∈ S, k ∈ N, the pattern {xy, x+ v, x+ y + v, x+ 2y + v, . . . , x+ ky + v}
is monochromatic.
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[12] N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification: Theory and Application, second edition,
de Gruyter, Berlin, 2011.

[13] R. McCutcheon A variant of the density Hales-Jewett theorem, Bull. Lond. Math. Soc. 42 (2010), no. 6, 974—980.

[14] J. Moreira, Monochromatic sums and products in N, Ann. Math. 185 (2017), 1069–1090



38 Hosseini, Akbari Tootkaboni

[15] R. Rado, Studien zur kombinatorik, Math. Zeit. 36 (1933), 424–470.
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