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Abstract

This paper gives a study of various types of cone metric spaces and their topological characterizations. Contrarily to
the case of cone metric space X, the paper shows with examples that the limit of a sequence may not be unique in
the topology generated by partial cone metric T, and (X, T}) is not generally Hausdorff topological space and also the
cone valued partial metric mapping p may not generally be continuous. Hence T, is not equivalent to any topology
generated by any metric on X. Furthermore, the paper considers some generalized contraction types of mappings on
f-complete cone metric-like spaces and then generalizes some coupled fixed point theorems of some previous results in
this setting.
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1 Introduction

Some construction of topological models in the study of denotational semantics of programming languages (dataflow
networks) is needed in such a way that a model need not be a Hausdorff space but a Ty-space. Therefore; the conditions
of metric space can be reduced to result an ideal candidate of generalized metric space called partial metric space that
gave the required Tp-space, see [20] 23].

In 1994, Matthews [24] used the notion of a partial metric space as a part of this study and showed that the Ba-
nach’s contraction mapping theorem can be generalized to the partial metric context for applications and verification
in this theoretical computer science field, the self-distance of a data presents the amount of information included in
this data.

In 1997, Zabrejko [31] and afterwards in 2007 Huang and Zhang [I7] introduced cone metric spaces as generalization
of metric spaces and they gave a generalized fixed point theorem for contraction type mapping on a cone metric space
provided that the given cone is normal.
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In 2008, Rezapour and Hamlbarani [27] improved the results of [I7] by omitting the normality condition of the
given cone induced the partial relation.

After that, in 2009 and then in 2010, the characterizations of the topologies that induced by cone metric spaces
have been listed and surveyed by Rezapour and DuWS, as given in [I6] [IT] respectively; and the references therein.
They linked these characterizations to fixed point theorems and have been studied by many authors.

In 2010, Khamsi [22] showed that any cone metric space is a metric like space provided that the underlying cone
is normal, in his proof the metric parameter were given to equal the normal constant of the underlying normal cone.
Specifically he showed the following:

Theorem 1.1. Let (X,C,q) be a cone metric space, C be a normal cone in a normed space (A, ||.]]). Then the
composition D(x,y) := ||d(x,y)| is a metric like space with metric parameter equals to the normal constant M of C.

In 2010, Amini-Harandi and Fakhar [9] used some scalarization method and showed the following:

Theorem 1.2. Let (X, C, q) be a complete cone metric space, C be a solid cone. Then there exists a metric D on X
such that (X, D) is a complete metric space and a sequence in (X, C,q) is convergent if and only if it is convergent in
(X, D). Moreover; any Geraghty type mapping in (X, C,q) is Geraghty mapping in (X, D).

In 2010 Feng and Mao [13] showed that the cone metric space and metric space are equivalent and gave the following
theorem:

Theorem 1.3. Let (X, C,q) be a cone metric space, C' be a solid cone in a normed space (A, ||.||). Then D(z,y) :=
inf { llu|l : ¢z, y) 2 u, ue C} is a metric on X. Moreover; the metric space (X, D) is complete if and only if (X, C, q)

is complete cone metric space and any contractive mapping in (X, C,d) is contractive mapping in (X, D).

In 2011, Jankovic et al [I9] and Kadelburg et al [21] studied more equivalences and characterizations of cone metric
spaces.

In 2012, Cakalli et al [10] worked in the case of topological vector spaces and give the following equivalent theorem:

Theorem 1.4. Let (X,C,q) be a cone metric space, C' be a solid cone in a topological vector space (A,7) with
e € Int(C). Then D(z,y) := inf {r cr € RT; g(z,y) €re— C} is a metric on X. Moreover; the two generated

topologies are equivalent and for neighborhoods, we have

Ugz,re)={ye X :qlz,y) <re} =Up(z,r) ={ye X : D(z,y) <r}.

In 2014, 2016, 2017, and then in 2020, further studies have been given to a larger category of metric spaces, like
b-cone metric spaces, cone metric spaces over Banach algebra, and theta cone metric spaces, see Xu and Radenovic
[30], Huang and Radenovic [18], Neetu Sharma [29], and then Sahar [2] results in fixed point theory’s fields. These
results are proved by omitting the normality condition of the underlying cone.

Different approaches to fixed point theory have been successfully given along decades. Notably to mention for
example the results given in [12] [Tl [5 [6] [7] for cone metric spaces over Banach algebra.

In addition, many authors derived fixed point theorems in partial metric spaces. Subsequently, the concept of
partial metric has been generalized to the concept of partial cone metric.

Specifically, in 2013, Jiang and Li [20] extend Banach contraction principle to partial cone metric spaces over a
non-normal solid cone, hence improve many fixed point results in cone metric spaces and partial metric spaces. They
gave example to support the usability of their results.

In 2017, Moshokoa [25] gave a nice study on partial metric spaces and studied some of its characterizations with
some fixed point applications.

On the other side, in 1987 the concept of coupled fixed point was initiated by Gue and Lakshmikantham [15], in
partially ordered metric spaces, after that in 2006, Bhaskar and Lakshmikantham [14] proved existence of coupled
fixed points for mappings having the mixed monotone property.
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In 2009, Sabetghadam et al [28] proved some coupled fixed point theorems for mappings satisfying different con-
tractive conditions on complete cone metric spaces. Specifically, they proved the following:

Theorem 1.5. [28] Let (X, d) be a complete cone metric space. Suppose that the mapping F': X x X — X satisfies
the following contractive condition for all z,y,u,v € X:

d(F(z,y), F(u,v)) < kd(z,u) + ld(y,v),

where k,l are nonnegative constants with k + [ < 1. Then F has a unique coupled fixed point.

In 2021, Sahar [4] [3] generalized some coupled fixed point results given by some previous researchers in theta cone
metric spaces, the concept which is introduced by the author in [2] and then gave more extension of this result in both
b-cone metric and b-theta cone metric spaces, respectively.

2 Preliminaries and Basic Definitions

First, we recall some standard notations and definitions in cone metric spaces.

A subset C of a linear space A is said to be a cone in A if and only if

1. C is non-empty closed and C # {0}, where 6 is the zero (neutral element) of A ;
2. AC' + pC C C for all non-negative real numbers A, py;
3. CN-C={6}.

If (A, ||.|) is a normed space, C' is cone in A, and int C is the set of all interior points of C, then C' generates the
following ordered relations:

uzv<=v—uel, u<v<= (v—uécCCandu #v),

and
uLv<=v—ucintC.

A sequence {wy, }nen in A is bounded above by w € A iff
wp Jw VneN,

and its bounded below by w € A iff
w=w, VneN.

A cone C in normed space is solid cone iff it has a nonempty interior. A cone C in a normed space is called normal
if there is a number M > 0 (actually this number is shown to be greater than or equal one) such that for all z,y € C,

0 <u<v=|ul <Mlv|. (2.1)

The normal constant of C' is defined to be the smallest constant M satisfying (2.1)).

Remark 2.1. The simplest example of a normal solid cone is the set of all non-negative real numbers Rt in R, the
normal constant of R* equals one.

Remark 2.2. [8] The cones in the spaces, space of all convergent to zero sequences ¢y and the space of all p-summing
sequences, [, p > 1 are normal with normal constant 1 and they are not solid cones.

We have the following example.

Example 1. Let C[0,1] be the Banach space of all real valued continuous functions on the compact interval [0, 1]

with the norm
[lu]| := max{|u(t)| : t € [0,1]} Vwe C[0,1],
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and C :={u:wu € C[0,1],u(t) >0Vt € [0,1]}, we have
u=v<=ut) <o) Vtel0,1] <= |ul <|v|.

The cone C is normal and solid.

First: The cone C is normal with normal constant one. Indeed; if § < u < v, then 0 < u(t) < v(¢) for every
t € [0,1], hence 0 < max;epo,1] u(t) < maxyejo,1)v(t), this implies |[ul| < [Jv].

Second: The cone is solid. Because, if we let ¥ := {u : minsgp,1ju(t) > 0}, then such a set is not empty; for
example u(t) = exp™" (mingejo 1y u(t) = 2 > 0) and v(t) = cos(t) (minge(, 1 v(t) = cos(1) > 0) are belonging to ¥ and
we claim that ¥ C Int(C). To prove such a claim, we let u € ¥ be any element, then the neighborhood of « with radius
mingeo,1) u(t), Numin, e (.1 u(t) (u) is a subset of C. In fact; if v € Nuin, o1y u(t)(u), we have [|u —v|| < mingep 17 u(t),
thus the inequality

[u(z) — v(z)] < max{|(v—v)(#)]: t€[0,1]} = Ju—1| < tg[l(i)g] u(t) for every x € [0, 1]

implies
lu(z) —v(z)] < min w(t) Vzel[0,1],

t€[0,1]

hence
0< — mi t) < < i t) Vxel0,1
< u(z) tg[lég]U( ) <w(z) <u(x) +tg[1(1)g]U( ) Vael01],
this insures that
0 <wv(z) <u(z)+ n[l(i)ri]u(t) vz e [0,1].
telo,

Hence v € C' and proves that u € Int(C).

Definition 2.3. Let (A, ||.|)) be a normed space and C be a solid cone in A. Then a sequence {uy, }nen in A is called
V-sequence if and only if it satisfies the following V-condition:

V0 < vdng € Nsuch that u, < v Vn>ng. (2.2)
and it is N-convergent to zero if it satisfy the following norm-convergent to zero condition:

lim ||u,| =0; Ve>03ng € Nsuch that |u,|] <e Vn>ng. (2.3)

n—o0

Lemma 2.4. [I7] Let (A, ||.||) be a normed space and C be a solid cone in A. Then every norm-convergent to zero
sequence in A is V-sequence, if the cone is normal then every V-sequence is norm-convergent to zero. That is; the
condition ([2.3)) is stronger than the V-condition, (2.2) and the two conditions are equivalent in case of normal cones.

There are V-sequences which are not N-convergent to zero sequences. The following gives an example of a solid
non-normal cone with infinitely many non- N-convergent to zero but V-sequences.

Example 2. Let C([0,1]) be the Banach space of all differentiable real valued functions with the norm

du
dt

and consider the cone C := {v:v € C([0,1]),v(t) > 0Vt € [0,1]}.

[ull == [ulloo + = lloe ¥ u e C([0,1])

Using the fact that |u(t) — v()] < |lu — v|loo < |lu—v| := |Ju — v]loo + ||WHC>O for every ¢ € [0,1] and every

u,v € C([0,1]) insures that ¥ defined in the last example is such that ¥ C Int(C) and then C is solid.
Now; we show that C is not normal with respect the given norm. First, Let n be a positive integer, n € N, p be a
real number p > 1, 0 # A € R, and denote A, , » the class of functions,

du(t)
dt

Appai={u:[0,1] = [0,1], | 400 = || .
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nP Xt
Then the class A, , » is a non-empty subset of the cone C. In fact; the functions u(t) = exp "M w(t) = %,
w(t) = sin(nPAt), w(t) = %, and &(t) = t""* with A > 0 are examples belonging to A,, , x.
Now; pick any element u € A, ,, » and consider the functions
u(t) 1
nlt) = — d n(t) = —,
U (1) - and v (t) -
we have the following;:
p="W 1 viep N
Un()—ﬁ_ﬁ—vn() €1[0,1], neN.
Consequently;
Up 2V, VneN. (2.4)

If C' were normal with normal constant M, then we would have
[unll < M |lon]| ¥V 7n €N,

hence )
oo
[uHAI] <M[-] VYneN.
n? n
Taking the limit as n — oo gives the contradiction |A| < 0. Hence C' can not be normal cone. On the other hand we
have

[[ulloo 1
nil = Al nl|=— VneN,
Junll = P92 4 A ol =~ ¥n
consequently;
lim |ju,|| = |\| does not equal to zero. (2.5)
n— oo
The fact that lim, . ||vn] = limn_,oo% = 0 yields lim,,oc v, = 6 in the norm topology of the space C([0,1]),

consequently, it should be a V-sequence, in fact; if v € Int(C) is an arbitrarily element, then v posses a neighborhood
of some radius € > 0, N¢(v) such that N(v) C C, this implies w € Int(C) for every w with ||v —w|| < ¢, for this e > 0
there is ng € N such that [1] < € for every n > ng. Now; the inequality

1
lv=[v—wa]ll = lloall =[] <€ Vn2mno

implies that [v — v,] € Int(C) for every n > ng, hence v,, K vV n > ng, in conclusion, we have

V8 < vdng € Njsuch that v, < v Vn>ng. (2.6)

Using (2.4) and (2.6 prove that

VO < vdng € Nsuch that u,, < v Vn > ng. (2.7)

Equation (2.7)) proves that {u, }nen is a V-sequence. Using (2.5 and (2.7) proves the existence of a V-sequence which
does not tend to zero, hence the condition for a sequence to converge to zero in the norm topology is stronger than
the condition for a sequence to be V-sequence.

A cone C is called regular if every monotonically non-increasing (non-decreasing ) bounded above (bounded below)
sequence has a limit in the norm sense of A.

Remark 2.5. [16] Every regular cone is normal, there are normal cones but not regular, there are cones which are
not normal, the normal constant M of any normal cone is such that M > 1, and for any real number k, k > 1 there
is a cone with normal constant M = k.

Cone metric spaces and b-cone metric spaces have been introduced and studied by many authors. Their definitions
are as follows:
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Definition 2.6. Suppose that X is a non empty set, C is a cone in a normed space A, r € R*, » > 1; and ¢ is a
function; ¢ : X x X — C satisfying the following:

1. 0 2 q(z,y) Va,ye X.

2. q(z,y) = 0 < = = y (equality is equivalent to indistancy).
3. q(z,y) = q(y,x) Va,ye X.

4. q(z,y) 2 rq(z,w) + q(w,y)] Vz,y,we X.

Then (X, C,q) is defined to be a b-cone metric space over C. If in particular » = 1, then (X, C,q) is defined to be
cone metric space.

We have the following important remark:

Remark 2.7. If {v,},en is an N-convergent to 6 in the normed space A and C is a solid cone in A, then it is
V-sequence. In particular, we have, if a sequence {x, }nen in (X, C,q) is such that {g(zn,x)}nen N-convergent to 6
in the norm topology of A for some z € X, then {z, }nen is convergent to x in the topological sense of cone metric
space (X,C,q). [It is shown that in case of normal cone the converse is true [I7]].

Definition 2.8. Let (X, C,q) be a cone metric space, where the cone C is solid. Then
1. A sequence {x, }nen in (X, C,q) is Cauchy if and only if for every v € C' with § < v there is nyg € N such that
q(Tn, Tm) < v for all n,m > ny.
2. A sequence {z,}nen in (X, C, q) is convergent sequence if and only if there is z such that for every v € C with
0 < v there is ng € N such that ¢(x,,z) < v for all n > ng. Equivalently; {q(zn, ) }nen is V-sequence in C.

3. A cone metric space (X, C, q) is complete whenever every Cauchy sequence in (X, C, q) converges to an element
belonging to X.

The notion of partial metric space is as follows:

Definition 2.9. [24] A partial metric on a nonempty set X is a function p : X x X — R* such that for all z,y,z € X:

1. 0 < p(z,z) <p(z,y) Va,yeX.

2. If p(z,y) = p(y,y) = p(x,z), then = = y.

3. p(z,y) =ply,x) Vaz,yeX.

4. p(z,y) < p(x,2) + p(z,y) —p(z,2) Va,y,zeX.

The double (X, p) is defined to be a pmetric space or a partial metric space.
The open p-ball of center z and radius 0 < €, By(z,¢) is defined as By(z,e) = {y € X : p(x,y) < €}. Note the

following:

1. If B,(z,¢€) is not empty, then it contains the element z itself because p(z,z) < p(z,y) for every z,y € X.

2. Clearly z € By(z,p(x,x) + ¢) for every x € X and € > 0.

3. ¢ Bp(x,e) for every x € X and every ¢, 0 < € < p(z,z). This means, there are p-balls not containing their
centers.

Each partial metric p on X generates a Ty topology 7, on X, the family of open p-balls
F:={By(z,p(z,z) +€):x€X,e>0}

constitutes a base family for 7, because the set X and the intersection of any of its two members are union of some
members of these p-balls.

A sequence {x,}nen in (X, p) converges to o in the topology 7, whenever lim,,_,oc p(@n, 20) = p(zo, o). Since
p(z0,20) < p(n,xo), we have 0 < p(z,,x9) — p(zo, o), consequently; convergence means

Ve > 03 ng € Nsuch that [p(zy, zo) — p(ro,x0)] <€ Vn > no,
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i.e,
Ve > 03dng € Nsuch that p(x,, o) < p(xo,z0) +€ Vn > ng.

This convergent is denoted by x,, =, 00 To-

A sequence {z, }nen in a partial metric space (X, p) is Cauchy whenever there is 7 € R such that lim,, ;00 P(Z5, Tm)
r (i.e. exists and is finite).

A partial metric space (X,p) is complete whenever every Cauchy sequence in (X,p) converges to an element
belonging to X.

Remark 2.10. Contrarily to the case of metric space, the limit of a sequence in the topology generated by a partial
metric, 7, generally may not be unique because it is not generally Hausdorff space and the mapping p may not be
continuous.

Many ways can be used to generalize the concept of cone metric space, one can reduce the second condition to
the one direction implication, if x = y, then g(z,y) = 0, that is; equality implies indistancy, this leads to the concept
of pseudo cone metric space, other can reduce this condition to the reverse direction of implication, if ¢(z,y) = 6,
then x = y, that is; indistancy implies equality, and some others can modify the fourth condition. But in this paper
motivated by Matthew’s results, we replace the second and the fourth conditions of cone metric space by analogues
generalized conditions enabling us to introduce the concept of cone pmetric like and cone metric like spaces those
increase the field of applications in computer science and to give some generalization of fixed point and coupled fixed
point theorems.

On the other side, we have the following:

Definition 2.11. An element (x,y) € X x X is said to be a coupled fixed point of the mapping F : X x X — X if
and only if F(z,y) =z and F(y,z) = y.

In this paper, contrarily to the case of cone metric space X, we show with examples that the limit of a sequence in
the topology generated T; by a partial cone metric, may not be unique because 75 is not generally Hausdorff space and
the cone valued partial metric mapping ¢ may not be continuous. Hence is not equivalent to any topology generated
by a metric on X, and consider some generalized contraction type of mappings on #-complete cone metric like spaces,
and generalize the coupled fixed point theorem of Sabet in this setting.

3 Main Results

In the following we suppose that C is a cone in a normed space A and = is the corresponding obtained ordered
relation, X is a non-empty set, and p : X x X — C. Consider the following conditions:

—_

0 < p(x,y) Vaz,ye X (nonnegativity),

2. p(z,x) =0 V€ X (equality implies indistancy),

3. p(z,y) = 0, then z = y (indistancy implies equality),

4. If p(z,y) = p(y,y) = p(x,x), then x = y (indistancy implies equality),
5. p(x,z) <X p(z,y) Va,y€ X (small self distance),

6. p(z,y) =p(y,x) Va,y € X (symmetry),

7. p(z,y) 2 p(z,2) + pz,y) —p(z,2) Va,y,z € X (triangularity).

8. p(z,y) 2 plz,z) + p(z,y) Va,y,z € X (triangularity).

9. p(z,y) 2 r[p(x,2) + p(z,y)] Va,y,z€ X (for somer > 1).

We focus on some generalizations of the cone metric spaces, namely; pseudo cone metric space, partial cone metric
space, cone pmetric like space, and cone metric like space. These generalizations are defined as follows:

If p satisfies the conditions 7 7 , @, and , then p is defined to be a cone metric on X and the triple
(X, C,p) is a cone metric space.
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If p satisfies the conditions (I)), (2), (6)), and (8], then p is defined to be a pseudo cone metric on X and the triple
(X,C,p) is a cone pseudo metric space.

If p satisfies the conditions , , , @, and 7 then p is defined to be a partial cone metric on X and the
triple (X, C,p) is a partial cone metric space.

If p satisfies the conditions , , @, and @, then p is defined to be a cone pmetric like (reads p metric like or
partial cone metric like) on X and the triple (X, C,p) is a cone pmetric like space.

If p satisfies the conditions (1), (3), (6), and (8], then p is defined to be a cone metric like on X and the triple
(X, C,p) is a cone metric like space.

If p satisfies the conditions , , @, and @D, then p is defined to be a b-cone metric like on X and the triple
(X, C,p) is a b-cone metric like space.

If p satisfies the conditions , , , @, and @, then p is defined to be a b-cone metric on X and the triple
(X, C,p) is a b-cone metric space.

Remark 3.1. 1. A space (X, C,p) is cone metric space if and only if it is both pseudo cone metric and partial
cone metric.

2. There are pseudo cone metric spaces which are not partial cone metric spaces, and there are partial cone metric
spaces which are not pseudo cone metric spaces.

3. Each of pseudo cone metric space, partial cone metric space, cone pmetric like space, and cone metric like space
is a generalization of cone metric space.

4. Every partial cone metric space is a cone pmetric like space. Indeed; given that p is partial metric, we need
to verify condition . For this reason let p(z,y) = 0, since p is partial metric, we have p(x,z) < p(z,y) and
p(y,y) X p(z,y), this implies p(x, x) = p(y, y) = p(x,y) = 0, using condition of partial metric gives x = y.

5. Every cone pmetric like space is clearly a cone metric like space. These implies that every partial cone metric
space is a cone metric like space.

6. Every cone metric like space is clearly a b-cone metric like space.

7. Every b-cone metric space is cone b- metric like space.

Hence we have the following observation and diagram:

e The category of partial cone metric spaces is larger than the category of cone metric spaces and the concept of
partial cone metric is a generalization of the concept of cone metric.

e The category of cone pmetric like spaces is larger than the category of partial cone metric spaces and the concept
of cone pmetric like is a generalization of the concept of partial cone metric.

e The category of cone metric like spaces is larger than both of the two categories, the category of partial cone
metric spaces and the category of cone pmetric like spaces, hence the concept of cone metric like is a generalization
of both of the concepts of partial cone metric and cone pmetric like.
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pseudo cone metric space

(1,2,6,8)
1)
cone metric space N b — cone metric space N b — cone metric like space
(1,2,3,6,8) (1,2,3,6,9) (1,3,6,9)
M (3.1)
\
partial cone metric space N cone pmetric like space N cone metric like space
(1,4,5,6,7) (1,3,6,7) (1,3,6,8)
3
b — cone metric like space
(1,3,6,9) ’

where each implication means the inclusion of the corresponding spaces, generally the inverses of these inclusions are
not hold. Indeed we will give some counter examples at the end of this paper.

For the cone metric like space (X, C, p), we introduce the following:

Let C be a solid cone in the normed space A, denote the open p-ball of center x € X and radius v, § < v
(v € Int(C)) by Up(a, v),
Up(z,v) :=={y € X : p(z,y) < v}.

and
U={Uy(z,v):zeX, 0K},

also, let B, (x,v) be defined as:
By(z,v) :=Up(z,p(x,z) +v) ={y € X : p(z,y) < v+ p(z,x)}.

For every z € X and v, § < v, the open p-ball, B,(z,v) := Up(z,v + p(x,x)) contains the center z itself because
p(z,x) € v+ p(z,x), x € By(x,v) and therefore it is not empty set, while Up(x,v) may not contain the center x (if

p(z,z) > v).
Denote B as:
B:={By(z,v):zeX,0<v}.

The topology T, on (X,C,p) is defined as follows: V & T, iff for every x € V there is v, § < v such that
Up(xz,v) C V. A subset W C X is defined to be a neighborhood of z iff there is # < v such that U,(z,v) C W.

T, ={V:VCXsuchthat Ve e VIf <v,Uy(z,v) CV},

Lemma 3.2. We have the following inclusions:
UcCT,and BCT,.

Equivalently; the open p-balls, U,(z,v) and B,(x,v) belong to T, for every z € X and every v, § < v.

Proof . Each open p-ball Up(z,v) in (X, C,p) is an open set in the topology T),. Indeed; if y € U,(x,v), we have
p(y, ) < v, consider the p-ball of center y and radius v—p(x,y), U, (y,v—p(z,y)). Then for every z € Up,(y,v—p(z,y)),
we have p(z,y) < v — p(x,y), consequently,

p(z,7) 2 p(2,9) +py,r) <v—pz,y) +pYy,r) =0,

this gives p(z,x) < v. That is; z € Up(z,v) and then U,(y,v — p(z,y)) C Up(x,v).

On the other side, for every x € X and v, § < v € C, let y € B,(x,v) be an arbitrarily element, we show that there
is < v(y) € C such that U,(y,v(y)) C By(z,v). Since p(z,y) < v+ p(z,x), then § < [v + p(z,z) — ply,z)] € C,
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take v(y) = v + p(x,x) — p(y,z) the open p-ball U,(y,v(y))) € T}, is such that U,(y,v(y)) C B,(x,v). Indeed; if
z € Up(y,v(y)), then p(z,y) < [v+ p(x,z) — p(z,y)], hence

p(z,7) 2 p(z,9) + p(y, )
< [v+p(z,z) —px,y)] + p(y, 2) = v+ p(x, 7).

This shows that p(z,z) < v+ p(z, z), that is; z € By(z, v). Consequently; U, (y,v(y)) C Bp(z,v). O

We have the following characterization:

Theorem 3.3. The family of open p-balls B constitutes a base family for the topology T}, of cone pmetric like space
(X,C,p).

Proof . First; using Lemma (3), we see that B C T}, since € By(,v) for every 2 € X and v, § < v [By(z,v) # 0],
we have X = J,cx By(z,v).

Second: We show that the intersection of any two members of B is a union of some members of B, that is; if B, (x, u)
and B (y,v) are arbitrarily two open p-balls in B, we show that there is B* C B such that By(z,u)() Bp(y,v) =
Upeg- B- Equivalently, we show that for any z € By(z,u) () Bp(y,v) there is some 6 < w, such that B,(z,w.) C

By(z,u) () By(y,v).

Suppose that z € Bp(z,u)()Bp(y,v), we have p(z,z) < u + p(z,z) and p(y,z) < v+ p(y,y). Then § <«
u+p(z,z)—p(z,z) and 0 < v+p(y,y) —p(y, z), hence there is a neighborhood of u+ p(z, z) — p(z, z) with some radius
01, Ns, ([u+p(z,z) —p(x, 2)]) and a neighborhood of v+ p(y, y) — p(y, z) with some radius d2, Ny, ([v+p(y, y) —p(y, 2)])
such that

N51 ([u —|—p(x, 33) - p(x’ Z)D = [U, —|—p(l‘, l‘) - p(a:, Z)] + N51 (9) cdq,
and
Ns,([v+p(y,y) —p(y, 2)]) = [v+p(y,y) — p(y, 2)] + N5, (0) C C.

Since u + p(z,x) — p(z,2) € C, v+ p(y,y) — p(y,2) € C, and C is a cone, we have

[u+p(z,z) —p(x,2)] + [v+pY,y) —py,2)]

eC VnelN.

Since
[u+p(z,z) — p(z,2)] + [v+ Y, y) — Py, 2)]

—n—oo 0.

For the two non-negative real numbers §; and do, there are two integers ni,n, € N such that

(et pz,2) —p(@,2)] + [0+ p(y,y) — ply, 2)]

- € N5, () Yn>n

and

[u+p(z,2) —p(z, )]+ [v+py, y) — (¥, 2)]
n

— [u+p(w,w)*p(%Z)];[v+p(y,y)*p(y7Z)]. Then

+

€ Ns,(0)  Vn > ns.

Let N = max{ni,no} and set w, :
[u+p(z,z) — p(z,2)] —w, € [u+p(x,x) —p(x,2)] + N, (0) = N5, (u + p(z,z) — p(x, 2)) C C, (3.2)

and
[v+p(y,y) —p(y, 2)] —w. € [v+p(y,y) — p(y, 2)] + Ns,(0) = Ns, (v + p(y,y) — p(y,2)) C C. (3.3)

Equations (3.2) and (3.3 prove the following:
0 <w:, we <[utp(z,z)—plx,2)], and w. < [v+p(y,y) —py, 2)].

The open ball By(z,w;) contains z and Bp(z,w.) C Bp(z,u)()Bp(y,v). Indeed; if w € Bp(z,w.), then p(z,w) <
p(z, z) + w,, hence

p(wi) j p(I,Z) —|—p(Z,’LU) —p(Z,Z) < p(I,Z) —|—p(z,z) +wz —p(Z,Z)
<plz,2)+ [u+p(z,z) — p(z,2)] = u+ p(z, ),
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hence p(z,w) < u + p(z,z), that is; w € By(x,u). Similarly; we have p(y,w) < v + p(y,y), hence w € B,(y,v).
Therefore w € By, (x,w) () Bp(y,v), in conclusion, we have

By(z,w;) C Bp(x,u) ﬂBp(y,'U) V z € By(z,u) me(y,v).

Consequently, we have

U{Bp(z7wz) t 2 € By(x,u) ﬂBp(yaU)} C By(z,u) ﬂBp(yvv)~ (3.4)
On the other side for every z € By(z,u) () By(y, v), we have z € B,(z,w.), hence

By(z,u) [\ By(y,v) C | {Bp(z,w:) : 2 € By(x,u) () Bply,v)}- (3.5)
Equations (3.4]) and (3.5)) prove the required claim

Bp('ra U) ﬂ Bp(yv ’U) = U{Bp(szz) HFAS Bp(xa U) ﬂ Bp(y7 ’U)}

O

Let (X, C,p) be either partial cone metric space, cone pmetric like, or cone metric like space, the convergence’s
characterizations of sequences in 7}, is as follows:

A sequence {z, }nen in (X, C,p) is Tp-convergent to x iff for every v € Int(C'), B,(x,v) there is ng € N such that
Zn, € Bp(z,v) for every n > ng. Equivalently;

Vv e Int(C) 3 ng € Nsuch that p(z,, z) < p(z,z) +v Vn > ng.

This convergent is denoted by z,, ——00  — (I},). Equivalently; the sequence {p(z,, ) — p(z, ) }nen is V-sequence
in C. The element z itself is said to be T},-limit point of {z, },en.

A sequence {z,}nen in (X, C,p) is §-Cauchy iff for every v € Int(C) there is ng € N such that p(z,, x.,) < v for
every n,m > ng.

A metric (X, C,p) is 6-complete whenever every 6-Cauchy sequence {z,}nen in (X, C,p) is Tp-convergent to an
element x belonging to X such that p(z,z) = 6.

A sequence {xy,}nen in (X, C,p) is Cauchy iff there is 6 < w, ||w|| < oo such that limy, m— o P(Tn, Tm) = w, the
limit is taken in the normed space A.

A sequence {x,}nen in (X, C,p) is said to be p-strongly convergent to z (or p — ||.|| convergent) if and only if
the sequence {p(zy,x) — p(z, x) }nen is norm-convergent to 6, that is; it converges in the norm topology of (A, ||.||),
limy, o0 ||P(2n, ) —p(z, x)|| = 0 (or limy,— 00 p(@n, ) = p(x, ) in the norm topology of A). This convergent is denoted

A metric (X, C,p) is complete whenever every Cauchy sequence {z, }nen in (X, C,p) is p-strongly convergent to
an element = belonging to X such that p(x,z) = 6.

Lemma 3.4. Let {x,}nen be a sequence in (X, C,p). If 2, —n—00 © — (p— ||.||) for some z € X, then z,, —n—00
x — (T}p) and the converse is true whenever the cone C' is normal.

Proof . Let lim,_,o p(xy,x) = p(x, z), then
Ve > 0 3 ng € Nsuch that ||p(x,,z) — p(z,z)|| <e Vn>mno.

Let 0 < v be arbitrarily element. Then v € Int(C'), hence, there is a neighborhood of v with some radius ey, N¢,(v)
such that N, (v) C C, u € C for every u, ||u — v|| < €, for this ey there is ny € N such that ||p(z,,x) — p(z, 2)|| < €
for every n > ng, we see that ||[v—[v+p(x,x) — p(a,, z)]|| < € for every n > ng, hence [v+p(z, z) — p(Tn, )] € Ne, (v)
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for every n > ng, since N, (v) is an open set in the normed space A there are N, (v + p(x,z) — p(zn,x)) such that
N, (v+p(z,x)—p(zy, x)) C Ne, (v) which is true for every n > ng, consequently we have N, (v+p(z,z)—p(z,,x)) C C
for every n > ng, that is; [v + p(x,z) — p(zn,x)] € Int(C) every n > ng, this shows that p(z,,z) < v + p(x,x) for
every n > ng, Tn —nooo— & — (Ip).

(]

There are T),-convergent sequences which are not p — ||.|| convergent, the T, limit point may not be unique, and
also the metric function p : X x X — C may not be continuous in the sense that given {z, }nen and {y, }nen, , v,
T —nooo € — (Tp), and Yn —nooo ¥ — (Ip) implies p(zn, Yn) —n—oo P(T,y)(||.]]). The following example supports
this intension.

Example 3. Let C([0,1]) be the Banach space of all differentiable real valued functions with the norm |ju| :=
[ulloe + [[ %o Vue C([0,1]), C={u:ueC([0,1]),u(t) >0Vt [0,1] }, X =C, and p: C x C — C be defined
by

(2, y) = x, if z = y;
PY) = x4y, otherwise.

Then (C,C,p) is (partial cone metric) cone pmetric like and then it is cone metric like which is not a cone metric
because p(z,x) =z #6. If p(x,y) =0, then x +y =0, x = —y, but x,y € C, then z =y = 6.

A sequence {z, }nen in (C, C,p) is 8-Cauchy if and only if it is V-sequence. Indeed if {x, }nen is 6-Cauchy, then
for every v € Int(C') there is ng € N such that p(z,, ;) < v for every n,m > ng, since &, < Tp + Ty = P(Tn, Tim)
and x,, < T, + Ty = p(Tn, Tm), we see that x,, < v for every n > ng and then it is V-sequence.

Conversely; if {2, }nen is V-sequence, then for every v € Int(C) there is ny € N such that z, < 5 for every
n > ng, hence z,, + x,, < § 4+ § = v for every n,m > ny, since x, + &, = p(Tn, Trm), we see that p(zy, z,,) < v for
every n,m > ng and it is §-Cauchy.

If {z}nen is any V-sequence in X = C, then it is T,-convergent and its set of all T},-limit points is the whole of

— T
C, {zn}nen " = C, the closure of the sequence in the topology T},. Indeed if z € C' is an arbitrarily element, we have
p(n,z) — p(x,2) = xy, hence {p(zn, z) — p(x, z) }nen is V-sequence in X = C, that is 2, —n—oo & — (T))-

These last two paragraphs prove that every §-Cauchy sequence is T}, convergent to infinitely many limits in X = C,
hence (C,C, p) is f-complete.

Back to example with p = 1, A = 1, the sequence {x, }nen, Where x,(t) = w; t € [0,1] is V-sequence in
X = C and then it is T,-convergent to each x in the space X. On the other side, it is not p — ||.||-convergent to any

2 € X because {p(z,, ) — p(x, ) }nen is not strongly convergent to zero. Indeed, if x is any element in C, then

i t s(nt
sin(nt) 4 max n cos(nt)

() = bl )| = | = e S o e 2
sin(n) sin(n)
= + max cos(nt) = + cos(0)
n t€[0,1] n
sin(n)

If {x,}nen is any V-sequence in X = C which is not ||.||-convergent to zero, hence it is T,-convergent, we have
ZTn, = oo 0 — (Tp) as 6 is one of its limit points, hence take y, = x,, we have

Tp —Fn—oo 0 — (Tp)7 Yn —7n—oco 0— (Tp>7 P(ﬂﬁn,yn) = Tn, p(¢9,0) = 97
and
(@, yn) — p(6,0)|| = [|lznl.

Since {@y, }nen is not ||.||-convergent to zero, the sequence {p(zn, yn) — p(0,0)}nen is not ||.||-convergent to zero. That
is; p is not continuous.
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We claim that the space (C, C, p) is not complete. To prove this claim, we will give example of a Cauchy sequence
which is not a p — ||.|| convergent to any element in C. In fact; using example (2) with p = 1, A = 1, we see that the

sequence {yn tnen where y, (t) = #; t €10,1] is a V-sequence and for any u € C, we have

—nt —nt

—nexp
[ynl = max | |+ max |
t€[0,1] n te[0,1] n

exp

[P(Yns w) — pu, u)||

1
~ 41 e L#0.

Hence, {yn }nen is not p — ||.|| convergent to any element in X, particularly is not p — ||.|| convergent to 6, p(,6) = 6,
the only zero self distance element (is not ||.||-convergent to zero). This sequence is Cauchy sequence because the
element w(t) := %(1) sin(1 — t) is such that
2sin(1) 2
= in(1 — ¢t - _cos(1—t)| = < 0.
] tIEIl[(Ei)i] |cos(1) sin( I+ tgl[g,)f] | cos(1) cos( ) cos(l)  cos(1) o
On the other hand, for any n,m € N, n # mwe have
d
1 (Yns ym) = wll = 1p(Yn, ym) = wlloo + | [P(yn, Ym) = w]lloo
d
= [|yn + ym — W + ”%[Z/n + Ym — ][00
—nt —mt
= max ‘ex + &P — sin(1 — ¢)|+
telo,]] n m cos(1)
2
—nt —mt
- - - 1—t
+ tlén[g,)i] | — exp exp [ cos(1) cos( )|
—nt —mt 2
< max SXP + SXP — min sin(1 — ¢t)
te[o,]] N m te[0,1] cos(1)
2
max exp " +exp "™ 4 max [~ cos(l—t
+ tE[O,)%] Xp Tt exp the[o,}l(][ cos(1) ( )
1 1
=—+—+1+1-2
n m
1
=—4+——=0asn,m— oo.
n m
This proved that ||.|| — limy, m—co P(Yn, Ym) = w. Consequently; this sequence is Cauchy sequence which is not p — ||.|

convergent to any element in C.
We also have the following example:

Example 4. Let X :

= { (z1,22) : 1,72 > 0,271,722 € Q }, A = R? with the norm |[|(z1,22)|| = max{xy,z2}, and
C = { (xl,acg) L L1,T2 Z 0

}, where Q is the set of rational numbers. Define p: X x X — C as

p((z1,22), (Y1, 92)) = (max{ x1,y1 }, max{z2,y2 }).

Clearly (X, C, p) is cone metric like space, p((z1, 22), (z1,22)) = (21, 22), (X, C,p) is f-complete which is not complete.

According to Example , Example and Lemma (3.4]), we conclude that every complete space is #-complete
and there are many f-complete (cone metric like) cone pmetric like spaces which are not complete.

3.1 Applications to Coupled Fixed Point Theory

Let (A, ||.]]) be a normed space and C be a cone in A. A mapping L : A — A is said to be V-mapping iff L(C) C C
and it preserves V-sequences in the sense that {L(uy,)}nen is V-sequence whenever {uy }nen is V-sequence.
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Remark 3.5. If L : A — A is linear bounded mapping, then it is continuous, consequently it preserves strong
convergence. If it is V-mapping and {uy, },en is norm-convergent to u € C, then {u, — u},en is norm-convergent to
0, accordingly {u, — u}nen is V-sequence and hence {L(u,) — L(u)}nen is V-sequence.

We have the following theorem, cones are not necessarily normal but solid and the underlying space is the wider
f-complete cone metric like space:

Theorem 3.6. Let (X,C,p) be a f-complete cone metric like space and L,S : A — A be two linear bounded V-
mappings, if the spectral radius of their sum is strictly less than one, r(L+S) <1 and T : X x X — X is a mapping
such that

q(T(x,y), T(z,w)) =X L(p(z,2)) + S(p(y, w)) Vaz,y,2z,weX, (3.6)

then T has a unique coupled fixed point.

Proof . Select xg,yo € X and set x1 = T(20,%0), ¥y1 = T(Yo,%0)s - -5 Tnt1 = T(Tn,Yn), Yn+1 = T(Yn, Tn). Then by
(3.6) we have

p($n+17 xn) = p(T(xna yn), T(,’L‘n—la yn—l))
L(p(xn, ‘rnfl)) + S(p(yna ynfl))v

PN

and similarly,

PWn+1,Yn) = D(T(Yns ©n)s T(Yn—1,Tn—1))
= L(pWnyYn—1)) + S(0(xn, Tn_1)).

Let v, = p(YnsYn—1) + p(Tn, Tn—1), we have

Un41 = p<xn+17xn) +p(yn+17yn)
2 L(p(xn, 2n-1)) + S(PYns Yn—1)) + LOWns Yn—-1)) + S(P(Tn; Tn-1))
= (L+ S)(p(@n, Tn-1) + p(Yn, Yn-1)) = (L + 5)(vn).

For each n € N, we have

0 <v, < (L+8)(vp_1) = (L+8)2(vp_2) <--- =< (L+5)" " (v1). (3.7)

If v; = 0, then p(z1, z0) +p(y1,y0) = 0, so p(x1,x0) = 0 and p(y1,yo) = 6, for the cone metric like space this imply
1 = xo and y1 = Yo, consequently T'(zo, yo) = zo, T (Yo, o) = yo and (x,yo) is coupled fixed point of T', in this case
the proof will be completed. Therefore we continue by letting § < v1. Now, let n,m € N, n < m. Then

P(Enstm) 2 [p@ns20s1) + p(@nia,om)] .
j p(mvw xn+1) + p(anrlv xn+2) +p(xn+27 xn+3) + +p(xm71» xm)a
similarly,
PYn> Ym) =X PYn, Unt1) + PWUnt1,Yns2) + PUnt2, Ynt3) + -+ PUm—1,Ym)-
Adding, we get
Yn,s yn+1)]+
Tpy1s Tng2) + D(Ynt1, Ynt2)]+

Tn42, xn+3) +p(yn+2a yn+3)] +..
xm—lyxm) +p(ym—1aym)}-

P(Tns ) + P(Yns Ym) = [P(@n, Tntr)

TET R

This shows that
p(xnv xm) + p<yn7 ym) = Un+1 + Un+-2 + Un+3 + ot U (38)

Using the two inequalities (3.7) and , we have
DT Tm) + D(Yns Ym) = (L +8)"(01) + (L + S)" 2 (v1) + ...
+ (L A+ S)"+Hm=m) (yy)
=(L+8)"[(L+S)+(L+S)?*+(L+85)°>++
+(L+8)" "] (v1)
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Since r(L + S) < 1, the operator I — (L + S) is invertible and its inverse equals [I — (L + S)]7' =Y (L +S)",

< (LA+S)"[(L+S)+(L+8)*+(L+8)>+-+
+(L+8)" " (vn)
S (L+S)"[(L+8)+(L+8)*+(L+8)>+- -+

P(Tn, Tm) + P(Yns Ym)

+(L+9™"+ .. ](v1) (3.10)
= (L+8)"[ D> (L+9)"](v)
n=0

= (L+8)"I = (L+9)] 7 (v1) = (L +8)" (W),

where [I — (L+9)]71(v1) = Tp. On the other hand, we should have lim,,_,o.(L+9)" = ©, where © : A — A is the zero
operator, consequently; the sequence {(L+5)"(u) }nen is norm convergent to 6 for every u € A, lim, oo (L+S5)™(u) = 0
for every u € A, this imply that {(L+5)"(u)}nen is V-sequence in C for every u € C, in particular; {(L+S5)" (Vo) }nen
is V-sequence in C and therefore {p(zy,Zm) + P(Yn, Ym) Inen is V-sequence in C. Hence for every n < m, we have

Vv € Int(C) I ng € Nsuch that [p(xn, Tm) + P(Yn, ym)] K v V¥V n > ng. (3.11)

Since p(Zn, Tm) = P(Tn, Tm) + P(Yn, Ym) and p(Yn, Ym) = P(@n, Tm) + P(Yn, Ym), we concluded that

Vv € Int(C) 3 ng € Nsuch that p(x,, zm) <v ¥n,m > ng. (3.12)

Vv € Int(C) 3 np € N such that p(yn, ym) < v Vn,m > ng. (3.13)

The two inequalities (3.12]) and (3.13)) prove that the two sequences {z,, }neny and {yn tnen are two 6-Cauchy sequences
in (X,C,p). Since (X,C,p) is 6-complete, then there are two Tp-limits of {x,, }nen and {yntnen say wo, w1 € X,
p(wo, wo) = 6 and p(wy,wy) = 6, respectively. Hence

1
Vv € Int(C) 3 ny € Nsuch that p(x,, wy) < 3V Vn>n. (3.14)

1
Vv € Int(C) I ne € Nsuch that p(y,, w1) < 3V V'n > ns. (3.15)

The two sequences {p(zn, wo) }nen and {p(yn,w1) tnen are two V- sequences in C, their images via L and S are
V-sequences, in particular, we have

1
Vv € Int(C) I ng € Nsuch that L(p(x,,wo)) < 3V V' n > ns. (3.16)

1
Vv € Int(C) 3 ng € Nsuch that S(p(yn,w1)) < 3V YV n,m > ny. (3.17)
Let Ny = max{ni,ns,n3,ng} and v € Int(C) and use (3.14)), (3.16)), and (3.17). Then we have

p(T'(wo,w1), wo) = [p(T(wo, w1), Tng+1) + P(TNg+1, Wo)]
= [p(T(wo, w1), T (T Ny, YN, )) + P(TNy+1, wo)]

= [L(p(wo, zn,) + S(p(w1,yn,))] + (T No+1, Wo)
L1
Jutgutgu=v

Since v is an arbitrary element, we have p(T'(wg, w1 ), wo) = 6, the metric like condition (3)) of p insures that T'(wg, w1) =
wp and similarly T'(wq,wy) = w1, meaning that (wp,w;) is a coupled fixed point of T. Finally we show that such a
coupled fixed point is unique. Contrarily, suppose that (ws,ws) is another coupled fixed point, then we have
p(wo, w2) + p(wi,wz) = p(T (wo, wr), T(wa, w3)) + p(T (w1, wo), T'(ws, w2))
= [Lp(wo, w2)) + S(p(w1, ws))] + [L(p(w1, w3)) + S(p(wo, w2))]
= (L + S)(p(wo, wa) + p(wy,ws)).
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This gives
(I = (L +9))(p(wo, we) + p(wr,w3)) =0,
p(wo, w2) + p(wy, ws) = (I — (L+S))~"(0) = 9.

Therefore; p(wg,ws) = —p(wy,ws), since both p(wg,ws) and p(wi,ws3) are belonging to C and C'(—C = {6}, we
should have p(wp, ws) = p(wy,w3) = 6, and then the metric like condition of p insures that wg = ws and wy = ws,
this means that the coupled fixed point is unique and completes the proof. [

We have the following Corollaries:

Corollary 3.7. Let (X, C,p) be a #-complete cone metric like space, S : A — A be a linear bounded V-mapping and
the spectral radius of S is strictly less than half, 7(S) < % Suppose that T : X x X — X is a mapping such that

9(T(z,y), T(z,w)) 2 S(p(z,2)) + ply,w)) Vz,y,2,weX. (3.18)

Then T has a unique coupled fixed point.
Proof . Using Theorem (3.6) with S = L completes the proof. [J

Corollary 3.8. Let (X,C,p) be a §-complete cone metric like space. Suppose that the mapping 7 : X x X — X
satisfies the following contractive condition for all z,y,w,z € X:

p(T(z,y), T(w, 2)) = kp(x, w) + Ip(y, 2),

where k,[ are nonnegative constants with £+ < 1. Then T has a unique coupled fixed point.

Proof . Using Theorem (3.6) with L(u) = ku and S(u) = lu, (L + S)(u) = (I + k)u, ||L + S|| =l + k completes the
proof. O

The following corollary proves theorem (|1.5)) of Sabetghadam, Masiha, and Sanatpour:

Corollary 3.9. Let (X,C,p) be a complete cone metric space. Suppose that the mapping T : X x X — X satisfies
the following contractive condition for all z,y, w,z € X:

p(T(l‘, y)7 T(w7 Z)) = k‘p(l‘, w) + lp(?Jv Z),

where k,[ are nonnegative constants with k£ + 1 < 1. Then T has a unique coupled fixed point.

Proof . Since every complete cone metric space is f-complete cone metric like space, using Corolary (3.8)) with
L(u) = ku and S(u) = lu, (L+ S)(u) = (I + k)u, |L + S|| =l + k completes the proof. O

We also have the following:

Corollary 3.10. Let (X, C,p) be a 6-complete cone metric space. Suppose that the mapping 7' : X x X — X satisfies
the following contractive condition for all z,y, w,z € X:

p(T(z,y), T(w, ) 2 tlp(z, w) + p(y, 2)],
where ¢ is nonnegative constant with ¢t < % Then T has a unique coupled fixed point.

Proof . Using corollary 1' withl =k < % completes the proof. O

3.2 Counter Examples Supporting and Verifying Inclusions of Diagram (3.1]

The following gives an example of pseudo cone metric space which is neither partial cone metric space nor cone
metric like, hence not cone metric space.
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Example 5. Let M,,(R) be the set of all m x m matrices of real entries, C' be the cone of all matrices of non-negative
real entries in M, (R), X = M,,(l,) be the set of all m x m matrices, where the entries of each matrix in M,,(l,) are
elements of [,

A= [a")1<ij<m € Mn(l,) = a¥ = {aP}pen €1, V1<i,j<m,

with the usual linear structure of addition and scalar multiplication [note that the norm ||Alle = |[[¢¥]1<i j<mlloc =
maxiy 30 [la¥ |, where [la¥]l, = {/3207, |yl |P makes M,,(l,) Banach space], and p be the C valued function
p: Mp(lp) x My, (l,) — C defined for every A = [a¥]1<; j<m, B = [b¥]1<i j<m € Mm(lp) by

p(A, B) = p([a"]1<i j<m, [07]1<i j<m)

= [max{[|a” ||, 1Y ]l,} — min{]a”||,, [67]|,}1<ij<m € C.

Then p is pseudo cone metric on M,,(I,) which is not partial cone metric (therefore it is not cone metric). Indeed, if
A=DB= [alj]1§i7j§m S Mm(lp), then

p(A, A) = p(A, B) = p([a”N1<ij<m: [a7]1<i j<m)
= max{[[a” |, [a"[lp} — min{[la" [, la" ||, }1<ij<m
= # = matrix each one of its entry is zero

= zero matrix € C.
On the other side, if p(4, B) equals the zero matrix, then
[max{[|a"? ||, [[67|,} — min{l|a*? ||, [|67[|,}]1<ij<m = zero matrix,

hence, max{||a® [, |6} —min{||a®? ||, [6|,,} = O for every 1 <, j < m, max{[|a”[|,, [6Y|,} = min{[|a®? |, [[b9]],}
for every 1 < i,j < m, this imply ||a”||, = ||b"||, for every 1 < i,j < m, one can construct infinitely many different
matrices with this condition. Actually, for example take A and B having the same entries except

1 2
' = {27%}7“21 and b't = {37%}71217
we have [|a!!|, = /1 =1 and ||b'}|, = 2?/ % =2x £ =1, hence A # B while p(A, B) = p(4, A) = p(B, B) = 0.
3

The following is an example of partial cone metric which is not cone metric space:

Example 6. Let M,,(R) be the set of all m x m matrices of real entries, C' be the cone of all matrices of non-negative
real entries, Y = {[a,b] : a,b € RT,a < b}, the set of all closed bounded intervals of real numbers, X = M,,(Y) be the
set of all m x m matrices, the entries of each matrix in X = M,,(Y") are elements of Y,

A=la"1<ijem € X = a” =[a,a¥] €Y, VI<ij<m.

Define the C valued function p : M,,(Y) x M, (Y) — C for every A = [a"]1<; j<m, B = [b7]1<ij<m € My (Y) as
follows:

p(A, B) = p([a"]1<i j<m, [bij]1<i,j<m)
= [max{af*,b”} mm{a b }]1<w<m

Then p is a partial cone metric which is not a pseudo cone metric on M,,(X) (hence, it is not cone metric space). We
have

p(A, A) = p([a]1<ij<m, [aij]1<z‘,j<m)
[maX{ai&,a”} min{a?, a¥ 1< j<m
[ a ]1<ij<m

[length( Ni<ij<m # the zero matrix.

The following is an example of cone pmetric like which is not partial cone metric.
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Example 7. Let C be a given cone in a normed space A, v be a non-zero element in C, § # v € C, x,y be two
distinct real numbers, and X = {z,y}, and p: X x X — C defined by

p(z,z) =ply,y) = p(z,y) = ply, ) = v.

Then p is cone pmetric like on X which is not partial cone metric.

The following examples are examples of cone metric like spaces which are not cone pmetric like (not partial cone
metric).

Example 8. Let C be the cone C = {(a,b) : (a,b) € R? : a,b € RT} in R?, X = {z,y}, and p: X x X — C defined
by

p(z,z) = (2,0), p(y,y) = p(z,y) = p(y, v) = (1,0).
Then p is cone metric like which is not partial cone metric because p(z,x) is not precedes p(z,y), p(z,y) — p(z,x) =
(—=1,0) ¢ C, note also that p(z,x) is not precedes p(x,y) + p(y,x) — p(y, y). Hence, it is also not pmetric like.

Example 9. Let M3(R), C be the cone of all 2 x 2 matrices of positive entries, X = {a,b,c}, and p: X x X —» C

defined by
5

o= (§ 9) p0.0) =) =00 =pie.) = g 7).
3

o) =ptea) = (3 1) =pten = (3 7).

2
Then p is cone metric like which is not cone pmetric (not partial cone metric) because
[p(av C) + p(C, a)] - p(c7 C)’ [p(c, b) + p(b, C)] - p(C, C)v [p(a, C) + p(C7 CL)] - p(av a) € C,
[p(a’a b) + p(ba a)] - p(av a)7 [p(bv C) + p(C, b)} - p(ba b)7 [p(aﬂ b) + p(b7 CL)] - p(ba b) € C7

341y 1
[p(avc) +p(c,b)] _p(aab) = <(4 +(2)) ! (1 + (1)) — 1) - 6

m
a

m
aQ

——" ~— ~—
m
9

(
bit.o)+ptal st = (CTP 50 =
(

N O pw O N O

1y _3
o)+ o] - place) = (CTHTE ) -

while for example

N[

I
S
I o
N———

TR

Q

[p(a;b) +p(b; ¢) = p(b,b)] = p(a,¢) = p(b, ¢) = p(a, ¢) = (

We have the following simple example with calculations:

Example 10. Let Ms(R), A = [a7]1<; j<2 € M3(R) with the norm ||A|| = max;—1 2{|a’!| + |a®|}, C be the cone of
all 2 x 2 matrices of non-negative real entries, X = {a,b}, and p: X x X — C defined by

paa)= (5 9) o) = plat) s = (5 7).

A -1
Then p is cone metric like which is not cone partial metric (not cone pmetric like) because p(a, b)—p(a,a) = 0 8 ¢

C, that is; p(a,a) does not precedes p(a,b). On the other hand Range(p) = {(g ?) , <(1) (1))} with ((1) (1)> =

(3 (1)> For the open p-balls Up(a,v) ={y:y € X,p(a,y) < v}, let v=1v; = ((1)
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comparable with any of v; or vy, that is; one of the following hold v = v3 < v1, v1 < v = vq4 < v, and vy < v = vs5,
and v = vg be not comparable with each of v; and vs. Then

Up(a,v1) = Up(a,vs) = Up(a,ve) =0,
Up(a,v2) = Up(a, vs) = {b},

Up(a,vs) = X,

Up(b,v1) = Up(b,v3) = Uy(b,v6) = 0,
Up(b,v2) = Up(b,v4) = Up(b,vs) = X

Now; at least one entry of vs, vy, vs, and vg is strictly greater than zero because they are lying in C,
0<wv3' <ot 0< vz <oi? 0< 3! <oft, and 0 < w32 < 03,

Vel <ol v]2 <vf? < 0d?) 0P <02 < odl) and 032 < 022 < 022,

and
V<wgh, vd? < vg?, v3t < vgt, and v3? < 022,

By(a,v1) = Bp(a,vs) = By(a,vs) = By(a,vs) = By(a,vs) = By(a,ve) = X,
Bp(b’vl) = {b}v
Bp(b, ’Ug) = Bp(b7 Ug) = Bp(b, U4) = Bp(b, 1)6) = X.

Hence; U = {0, X, {b}} and B = {X, {b}}.

We also have the following example:

Example 11. Let R be the Banach space of real numbers with the usual absolute value metric, C = R™ be the cone
of non-negative real numbers, X = { [a,b] : a,b € R,a < b }, and define p: X x X — R by

p(z,y) = p([a,b],[c,d]) = max{b,d} — min{a,c} Va =[a,b],y=]c,d] € X

Then (X, p) is a partial cone metric space. We have the following:
1. For any © = [a,b] € X , a < b, we have p(z,x) = p([a, ], [a,b]) = b— a, this means that p(x, ) equals the length
of the interval x = [a, b] for every x € X, p(x, x) does not equal to zero.
2. Let z = [a,b] € X and 0 < € < b — a, we see that

[a,b] ¢ By([a,b],€) ={[c,d] € X : max{b,d} — min{a,c} < €}.

But the basis elements B, ([a,b],b — a + €) contains [a, b].
3. A limit of a sequence in a partial metric space need not be unique, a convergent sequence may have infinitely

many limits. Indeed, let z,, := [y, (n+1)] and z = [1,2]. Then for the sequence {z, }nen in X, we have

n 2n
In,T) = N T, 1\ 172
panea) =Gty gy 102
2n n n
- oy min{ 1} =2
max{(n+1), } mln{(n+1), } D)
o, ) = 2)| = o, el [1,20) = (11,21, [1,2])
p ny p ’ _p (n+1)7(n+1)7 I p I ’ bl
n n
-2 peq=1-—" 0
2 7l - - Ul = 1= i o
hence, {2, }nen i p — |.|-convergent to [1,2]. Similarly, it is also p — |.|-convergent to [1,c] for every ¢, ¢ > 2,
because 5
n n

nh_{rolop([mv m]v [176]) =c—1= p([l,c], [LCD Ve>2,
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hence, we have

n 2n
[mv m] —rn—oo [1,2] = (p—[.])

and
n 2n
o) ) e Ld= o) Vez2,

That is; the generated topology is not Hausdorff.

4. Moreover, the cone valued function p is not continuous in the sense that if z, —, 00 2o — (p — |.|) and
Yn —n—soo Yo — (p = |.]), then imply p(zy, Yn) —n—sco P(20,30). Indeed, for 2, = yn = [y, Gorp ) %o = [1,2]
and yo = [1, ] for ¢ > 2, we have

2n n 2n 2n n

H(n+1)’ (n—i—l)]) :nlinéo((nﬂ) (n+1)
1

lim p(] )

n=oo’ (n4+1)" (n+1)

=1,

lim ———
B Ry
while p([1,2],[1,¢]) =c—1#1 forc> 2.

3.3 Conclusion

This paper gives a study of various types of cone metric spaces and its topological characterization, and considers
some generalized contraction type of mappings on #-complete cone metric like spaces, then extends and generalizes
some previous coupled fixed point theorems in this setting.
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