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Abstract

The purpose of studying the discipline of nonlinear wave processes is to knowledge of the current state of nonlinear
wave problems in mechanics and an understanding of its main problems, as well as to develop general skills for solving
these problems using new methods of mathematical. We consider a class of initial boundary value problems for one-
dimensional nonlinear wave processes. A new topological approach is applied to prove the existence of at least two
nonnegative classical solutions. The arguments are based on a recent theoretical result.
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1 Introduction

The wave equations arise in mathematical models which describe the wave phenomena in fields like fluid dynamics
and electromagnetics. Many authors such as H. Brésiz, J. Mawhin, K. C. Chang etc. have developed topological tools,
index theory, and variational methods to get some existence results for the one-dimensional problem with various
nonlinearities. The related results are [2], [3], [4], [5], [6], [12] and the references therein. Nonlinear wave processes are
usually modeled using nonlinear partial differential equations. For nonlinear analogs of the wave equation, let f be a
nonlinear function, the structure of which is determined by the geometric and (or) physical features of the problem,
where non-linear ripple effects are many and varied. A very important model of nonlinear waves is the nonlinear
Klein-Gordon equation [13]

utt − uxx = ϕ(u),

where ϕ(u) is some smooth or discontinuous function that describes distributed nonlinear restoring forces. In the
linear approximation ϕ(u) = −κu(κ > 0), we have the well-known string model on an elastic bed.
Restricting ourselves to considering sufficiently long waves, one can obtain additional terms of the equation of motion
that depend only on the deformation ux, but not on its derivatives. The equation of a nonlinear string or the equation
of longitudinal vibrations of a nonlinear rod, can be reduced to the form [10]

utt − uxx + l2uxxxx − buxuxx = 0,
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here l is a scale, considered small, b is also a small parameter characterizing the intensity of nonlinear forces.
One of a very interesting basic model is given by the so-called Korteweg-de Vries equation the KdV equation, which
turns out to be fundamental when considering models of nonlinear waves

ut − ux + auxxx − buux = 0, a, b > 0,

By differentiating with respect to t and by performing fundamental calculations, we obtain

utt − uxx − 2auxxxx + 2b(uux)x + ab(2uuxx +
1

2
u2
x)xx − a2uxxxxxx − b2(u2ux)x = 0,

The main aim of this paper is to investigate for multiple nontrivial nonnegative solutions of the following IBVP

utt − uxx = f(t, x, u, ut, ux), t ≥ 0, x ∈ [0, 1],

u = u0(x), x ∈ [0, 1], t = 0,

ut = u1(x), x ∈ [0, 1], t = 0,

u = 0, x = 0, t ≥ 0,
ux = 0, x = 1, t ≥ 0,

(1.1)

where

(H1) u0, u1 ∈ C2([0, 1]),

0 ≤ max
x∈[0,1]

u0(x), max
x∈[0,1]

|u0x(x)|, max
x∈[0,1]

|u0xx(x)| < ∞,

0 ≤ max
x∈[0,1]

|u1(x)|, max
x∈[0,1]

|u1x(x)|, max
x∈[0,1]

|u1xx(x)| < ∞,

r = max{ max
x∈[0,1]

u0(x), max
x∈[0,1]

|u0x(x)|, max
x∈[0,1]

|u0xx(x)|,

max
x∈[0,1]

|u1(x)|, max
x∈[0,1]

|u1x(x)|, max
x∈[0,1]

|u1xx(x)|} > 0.

(H2) f ∈ C([0,∞)× [0, 1]×R3) satisfies the condition

0 ≤ |f(t, x, w1, w2, w3)|

<

l∑
j=1

(aj(t, x)|w1|pj + bj(t, x)|w2|pj + cj(t, x)|w3|pj ) ,

(t, x) ∈ [0,∞)× [0, 1], where l ∈ N, aj , bj , cj ∈ C([0,∞)× [0, 1]) such that there exist

0 ≤ Aj = sup
t∈[0,∞),x∈[0,1]

aj(t, x) < ∞, 0 ≤ Bj = sup
t∈[0,∞),x∈[0,1]

bj(t, x) < ∞,

0 ≤ Cj = sup
t∈[0,∞),x∈[0,1]

cj(t, x) < ∞,

(A1, . . . , Al, B1, . . . , Bl, C1, . . . , Cl) ̸= (0, . . . , 0, 0, . . . , 0, 0, . . . , 0),

pj ≥ 0, j ∈ {1, . . . , l}, (p1, . . . , pl) ̸= (0, . . . , 0).

In addition, we suppose
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(H3) Suppose that m, A, Aj , Bj , Cj , j ∈ {1, . . . , l}, r1, L1 and R1 are positive constants such that

0 < r1 <
L1

20
< L1 < R1, m ∈ (0, 1), ϵ > 1, R1 < ϵ

L1

20
,

A

(
2R1 + 2r +

l∑
j=1

(Aj +Bj + Cj)R
pj

1

)
<

L1

20
,

A

(
2L1 + 2r +

l∑
j=1

(Aj +Bj + Cj)L
pj

1

)
<

(
4

5
−m

)
L1,

0 < r < L1, 0 < r <

l∑
j=1

(Aj +Bj + Cj)L
pj

1 ,

r ≥ sup
t ∈ [0,∞), x ∈ [0, 1],
r ≤ w1, |w2|, |w3| < L1

|f(t, x, w1, w2, w3)|.

(H4) There exists a nonnegative function g ∈ C([0,∞)× [0, 1]) such that

g(0, x) = g(t, 0) = 0, t ≥ 0, x ∈ [0, 1], g(t, x) > 0, t > 0, x ∈ (0, 1],

2

∫ t

0

∫ x

0

(1 + t1 + t21)(1 + t− t1 + (t− t1)
2)(1 + |x− x1|+ (x− x1)

2)g(t1, x1)dx1dt1 ≤ A,

t ≥ 0, x ∈ [0, 1].

In the last section, we will give an example for constants m, A, Aj , Bj , Cj , j ∈ {1, . . . , l}, r1, L1, R1 and a function
g that satisfy (H3) and (H4). In Remark 3.1, we will give motivation for the last two conditions of (H3) and using
them we remove the case when

f(t, x, w1, w2, w3) =

l∑
j=1

(aj(t, x)w
pj

1 + bj(t, x)w
pj

2 + cj(t, x)w
pj

3 ), t ≥ 0, x, w1, w2, w3 ∈ [0, 1],

as well as the cases when f is a linear function or a constant. Our main result is as follows.

Theorem 1.1. Suppose (H1)-(H4). Then the IBVP (1.1) has at least two non trivial nonnegative classical solutions.

To prove our main result we use a new topological approach. So far, for the authors they are not known investigations
for existence of multiple solutions for the IBVP (1.1).

The paper is organized as follows, In the next section, we give some auxiliary results. In Section 3, we prove our
main result. In Section 4, we give an example.

2 Auxiliary Results

Let X be a real Banach space.

Definition 2.1. A mapping K : X → X is said to be completely continuous if it is continuous and maps bounded
sets into relatively compact sets.

The concept for k-set contraction is related to that of the Kuratowski measure of noncompactness which we recall for
completeness.

Definition 2.2. Let ΩX be the class of all bounded sets of X. The Kuratowski measure of noncompactness α :
ΩX → [0,∞) is defined by

α(Y ) = inf

δ > 0 : Y =

m⋃
j=1

Yj and diam(Yj) ≤ δ, j ∈ {1, . . . ,m}

 ,

where diam(Yj) = sup{∥x− y∥X : x, y ∈ Yj} is the diameter of Yj , j ∈ {1, . . . ,m}.
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For the main properties of measure of noncompactness we refer the reader to [7], Chapter 7, Section 7.3.

Definition 2.3. A mapping K : X → X is said to be k-set contraction if there exists a constant k ≥ 0 such that

α(K(Y )) ≤ kα(Y )

for any bounded set Y ⊂ X.

Obviously, if K : X → X is a completely continuous mapping, then K is 0-set contraction(see [8], Chapter 5, Section
5.1).

Definition 2.4. Let X and Y be real Banach spaces. A mapping K : X → Y is said to be expansive if there exists
a constant h > 1 such that

∥Kx−Ky∥Y ≥ h∥x− y∥X
for any x, y ∈ X.

Definition 2.5. A closed, convex set P in X is said to be cone if

1. αx ∈ P for any α ≥ 0 and for any x ∈ P,

2. x,−x ∈ P implies x = 0.

Denote P∗ = P\{0},

Pr1 = {u ∈ P : ∥u∥ ≤ r1},

Pr1,r2 = {u ∈ P : r1 ≤ ∥u∥ ≤ r2}

for positive constants r1, r2 such that 0 < r1 ≤ r2. The following result will be used to prove our main result. We
refer the reader to [9] for more details.

Theorem 2.6. Let Ω be a subset of P, 0 ∈ Ω and 0 < r < L < R are real constants. Let also, T : Ω → E
is an expansive operator with a constant h > 1, F : PR → E is a k-set contraction with 0 ≤ k < h − 1 and
F (PR) ⊂ (I − T )(Ω). Assume that Pr,L

⋂
Ω ̸= ∅, PL,R

⋂
Ω ̸= ∅ and there exist an u0 ∈ P∗ such that T (x− λu0) ∈ P

for all λ ≥ 0 and x ∈ ∂Pr

⋂
(Ω + λu0) and the following conditions hold.

(a) Fx ̸= x− λu0, x ∈ ∂Pr, λ ≥ 0,

(b) ∥Fx+ T0∥ ≤ (h− 1)∥x∥ and Tx+ Fx ̸= x, x ∈ ∂PL

⋂
Ω,

(c) Fx ̸= x− λu0, x ∈ PR, λ ≥ 0.

Then T + F has at least two fixed points x1 ∈ Pr,L

⋂
Ω, x2 ∈ PL,R

⋂
Ω, i.e.,

r < ∥x1∥ < L < ∥x2∥ < R.

In [1], it is proved that the function G(t, s) = min{t, s}, t, s ∈ [0, 1], is the Green function for the BVP

y′′ + g(t) = 0, t ∈ [0, 1],

y(0) = 0 = y′(1).
(2.1)

We have 0 ≤ G(t, s) ≤ 1, t, s ∈ [0, 1]. Let E = C2([0,∞)× [0, 1]) be endowed with the norm

∥u∥ = max

{
∥u∥∞, ∥ut∥∞, ∥utt∥∞, ∥ux∥∞, ∥uxx∥∞

}
,

provided it exists, where
∥v∥∞ = sup

(t,x)∈[0,∞)×[0,1]

|v(t, x)|.
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For u ∈ E, define the operator

F1u(t, x) =

∫ 1

0

∫ t

0

(t− t1)G(x, x1)f(t1, x1, u(t1, x1), ut(t1, x1), ux(t1, x1))dt1dx1

−
∫ 1

0

G(x, x1)(u(t, x1)− u0(x1)− tu1(x1))dx1

−
∫ t

0

(t− t1)u(t1, x)dt1, t ≥ 0, x ∈ [0, 1].

Lemma 2.7. Suppose (H1) and (H2). If u ∈ E satisfies the integral equation

F1u(t, x) = 0, t ≥ 0, x ∈ [0, 1], (2.2)

then u is a solution to the IBVP (1.1).

Proof . We differentiate with respect to t the equation (2.2) and we find

0 =
∫ 1

0

∫ t

0
G(x, x1)f(t1, x1, u(t1, x1), ut(t1, x1), ux(t1, x1))dt1dx1

−
∫ 1

0
G(x, x1)(ut(t, x1)− u1(x1))dx1

−
∫ t

0
u(t1, x)dt1, t ≥ 0, x ∈ [0, 1].

(2.3)

Now, we put t = 0 in (2.2) and (2.3) and we get∫ 1

0

G(x, x1)(u(0, x1)− u0(x1))dx1 = 0, x ∈ [0, 1], (2.4)

and ∫ 1

0

G(x, x1)(ut(0, x1)− u1(x1))dx1 = 0, x ∈ [0, 1], (2.5)

respectively. We differentiate twice with respect to x the equation (2.4) and the equation (2.5) and we obtain

u(0, x) = u0(x) and ut(0, x) = u1(x), x ∈ [0, 1],

respectively. We differentiate with respect to t the equation (2.3) and we arrive at

0 =

∫ 1

0

G(x, x1)f(t, x1, u(t, x1), ut(t, x1), ux(t, x1))dx1

−
∫ 1

0

G(x, x1)utt(t, x1)dx1 − u(t, x), t ≥ 0, x ∈ [0, 1],

or

u(t, x) =

∫ 1

0

G(x, x1) (f(t, x1, u(t, x1), ut(t, x1), ux(t, x1))− utt(t, x1)) dx1,

t ≥ 0, x ∈ [0, 1]. Using that G(·, ·) is the Green function for the BVP (2.1), we get

uxx(t, x) + f(t, x, u(t, x), ut(t, x), ux(t, x))− utt(t, x) = 0, t ≥ 0, x ∈ [0, 1],

and
u(t, 0) = ux(t, 1) = 0, t ≥ 0.

This completes the proof. □
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Lemma 2.8. Suppose (H1) and (H2). If u ∈ E and ∥u∥ ≤ b for some positive constant b, then

|F1u(t, x)| ≤

 l∑
j=1

(Aj +Bj + Cj)b
pj + (b+ r)

 t2 + (b+ r)t, t ≥ 0, x ∈ [0, 1].

Proof . We have

|F1u(t, x)| ≤
∫ 1

0

∫ t

0

(t− t1)G(x, x1)|f(t1, x1, u(t1, x1), ut(t1, x1), ux(t1, x1))|dt1dx1

+

∫ 1

0

G(x, x1)(|u(t, x1)|+ u0(x1) + t|u1(x1)|)dx1

+

∫ t

0

(t− t1)|u(t1, x)|dt1

≤
∫ 1

0

∫ t

0

(t− t1)

l∑
j=1

(
aj(t, x)|u(t1, x1)|pj + bj(t, x)|ut(t1, x1)|pj

+cj(t1, x1)|ux(t1, x1)|pj

)
dt1dx1

+(b+ r + rt)t

≤
l∑

j=1

(Aj +Bj + Cj)b
pj t2 + (b+ r)t+ (b+ r)t2

=

 l∑
j=1

(Aj +Bj + Cj)b
pj + (b+ r)

 t2 + (b+ r)t, t ≥ 0, x ∈ [0, 1].

This completes the proof. □ For u ∈ E, define the operator

Fu(t, x) =

∫ t

0

∫ x

0

(t− t1)
2(x− x1)

2g(t1, x1)F1u(t1, x1)dx1dt1, t ≥ 0, x ∈ [0, 1].

Lemma 2.9. Suppose (H1) and (H2). If u ∈ E is a solution to the integral equation

Fu(t, x) +
L1

5
= 0, t ≥ 0, x ∈ [0, 1], (2.6)

then u is a solution to the IBVP (1.1).

Proof . We differentiate trice with respect to t and trice with respect to x the equation (2.6) and we find

g(t, x)F1u(t, x) = 0, t ≥ 0, x ∈ [0, 1],

whereupon
F1u(t, x) = 0, t > 0, x ∈ (0, 1].

Now, using that F1u(·, ·) is a continuous function on [0,∞)× [0, 1], we get

0 = lim
t→0

F1u(t, x) = F1u(0, x)

= lim
x→0

F1u(t, x) = F1u(t, 0)

= lim
t→0,x→0

F1u(t, x) = F1u(0, 0), t > 0, x ∈ (0, 1].
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Consequently
F1u(t, x) = 0, t ≥ 0, x ∈ [0, 1].

Then, the assertion follows from Lemma 2.7. This completes the proof. □

Lemma 2.10. Suppose (H1), (H2) and (H4). If u ∈ E and ∥u∥ ≤ b for some positive constant b, then

∥Fu∥ ≤ A

2b+ 2r +

l∑
j=1

(Aj +Bj + Cj)b
pj

 .

Proof . Applying Lemma 2.8 and (H3), we get

|Fu(t, x)| ≤
∫ t

0

∫ x

0

(t− t1)
2(x− x1)

2g(t1, x1)

(( l∑
j=1

(Aj +Bj + Cj)b
pj + (b+ r)

)
t21

+(b+ r)t1

)
dx1dt1

≤ A

2b+ 2r +

l∑
j=1

(Aj +Bj + Cj)b
pj

 , t ≥ 0, x ∈ [0, 1],

and ∣∣∣∣ ∂∂tFu(t, x)

∣∣∣∣ ≤ 2

∫ t

0

∫ x

0

(t− t1)(x− x1)
2g(t1, x1)

(( l∑
j=1

(Aj +Bj + Cj)b
pj + (b+ r)

)
t21

+(b+ r)t1

)
dx1dt1

= 2

( l∑
j=1

(Aj +Bj + Cj)b
pj + (b+ r)

)∫ t

0

∫ x

0

t21(t− t1)(x− x1)
2g(t1, x1)dx1dt1

+2(b+ r)

∫ t

0

∫ x

0

t1(t− t1)(x− x1)
2g(t1, x1)dx1dt1

≤ A

2b+ 2r +

l∑
j=1

(Aj +Bj + Cj)b
pj

 , t ≥ 0, x ∈ [0, 1],

and ∣∣∣∣ ∂2

∂t2
Fu(t, x)

∣∣∣∣ ≤ 2

∫ t

0

∫ x

0

(x− x1)
2g(t1, x1)

(( l∑
j=1

(Aj +Bj + Cj)b
pj + (b+ r)

)
t21

+(b+ r)t1

)
dx1dt1

= 2

( l∑
j=1

(Aj +Bj + Cj)b
pj + (b+ r)

)∫ t

0

∫ x

0

t21(x− x1)
2g(t1, x1)dx1dt1

+2(b+ r)

∫ t

0

∫ x

0

t1(x− x1)
2g(t1, x1)dx1dt1

≤ A

2b+ 2r +

l∑
j=1

(Aj +Bj + Cj)b
pj

 , t ≥ 0, x ∈ [0, 1],
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and ∣∣∣∣ ∂∂xFu(t, x)

∣∣∣∣ ≤ 2

∫ t

0

∫ x

0

(t− t1)
2(x− x1)g(t1, x1)

(( l∑
j=1

(Aj +Bj + Cj)b
pj + (b+ r)

)
t21

+(b+ r)t1

)
dx1dt1

= 2

( l∑
j=1

(Aj +Bj + Cj)b
pj + (b+ r)

)∫ t

0

∫ x

0

t21(t− t1)
2(x− x1)g(t1, x1)dx1dt1

+2(b+ r)

∫ t

0

∫ x

0

t1(t− t1)
2(x− x1)g(t1, x1)dx1dt1

≤ A

2b+ 2r +

l∑
j=1

(Aj +Bj + Cj)b
pj

 , t ≥ 0, x ∈ [0, 1],

and ∣∣∣∣ ∂2

∂x2
Fu(t, x)

∣∣∣∣ ≤ 2

∫ t

0

∫ x

0

(t− t1)
2g(t1, x1)

(( l∑
j=1

(Aj +Bj + Cj)b
pj + (b+ r)

)
t21

+(b+ r)t1

)
dx1dt1

= 2

( l∑
j=1

(Aj +Bj + Cj)b
pj + (b+ r)

)∫ t

0

∫ x

0

t21(t− t1)
2g(t1, x1)dx1dt1

+2(b+ r)

∫ t

0

∫ x

0

t1(t− t1)
2g(t1, x1)dx1dt1

≤ A

2b+ 2r +

l∑
j=1

(Aj +Bj + Cj)b
pj

 , t ≥ 0, x ∈ [0, 1].

Consequently

∥Fu∥ ≤ A

2b+ 2r +

l∑
j=1

(Aj +Bj + Cj)b
pj

 .

This completes the proof. □

3 Proof of the Main Result

Let
P̃ = {u ∈ E : u ≥ 0 on [0,∞)× [0, 1]}.

With P we will denote the set of all equi-continuous families in P. For v ∈ E, define the operators

Tv(t, x) = (1 +mϵ)v(t, x)− ϵ
L1

10
,

Sv(t, x) = −ϵFv(t, x)−mϵv(t, x)− ϵ
L1

10
,
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(t, x) ∈ [0,∞)× [0, 1]. Note that any fixed point v ∈ E of the operator T + S is a solution to the IBVP (1.1). Define

Pr1 = {v ∈ P : ∥v∥ < r1},

PL1
= {v ∈ P : ∥v∥ < L1},

PR1
= {v ∈ P : ∥v∥ < R1},

Pr1,L1
= {v ∈ P : r1 < ∥v∥ < L1},

PL1,R1
= {v ∈ P : L1 < ∥v∥ < R1},

R2 = R1 +
A

m

(
2R1 + 2r +

l∑
j=1

(Aj +Bj + Cj)R
pj

1

)
+

L1

5m
,

Ω = PR2 = {v ∈ P : ∥v∥ < R2}.

1. For v1, v2 ∈ Ω, we have

∥Tv1 − Tv2∥ = (1 +mϵ)∥v1 − v2∥,

whereupon T : Ω → E is an expansive operator with a constant 1 +mϵ > 1.

2. For v ∈ PR1
, we get

∥Sv∥ ≤ ϵ∥Fv∥+mϵ∥v∥+ ϵ
L1

10

≤ ϵ

(
A

2R1 + 2r +

l∑
j=1

(Aj +Bj + Cj)R
pj

1


+mR1 +

L1

10

)
.

Therefore S(PR1) is uniformly bounded. Since S : PR1 → E is continuous, we have that S(PR1) is equi-
continuous. Consequently S : PR1

→ E is a 0-set contraction.

3. Let v1 ∈ PR1
. Set

v2 = v1 +
1

m
Fv1 +

L1

5m
.

Note that by the second inequality of (H3) and by Lemma 2.10, it follows that ϵFv+ ϵL1

5 ≥ 0 on [0,∞)× [0, 1].
We have v2 ≥ 0 on [0,∞)× [0, 1] and

∥v2∥ ≤ ∥v1∥+
1

m
∥Fv1∥+

L1

5m

≤ R1 +
A

m

(
2R1 + 2r +

l∑
j=1

(Aj +Bj + Cj)R
pj

1

)
+

L1

5m

= R2.

Therefore v2 ∈ Ω and

−ϵmv2 = −ϵmv1 − ϵFv1 − ϵ
L1

10
− ϵ

L1

10
or

(I − T )v2 = −ϵmv2 + ϵ
L1

10
= Sv1.

Consequently S(PR1) ⊂ (I − T )(Ω).
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4. Suppose that there exists an v0 ∈ P∗ such that T (v−λv0) ∈ P, v ∈ ∂Pr1 , v ∈ ∂Pr1

⋂
(Ω+λu0) and Sv = v−λv0

for some λ ≥ 0. Then

r1 = ∥v − λv0∥ = ∥Sv∥

≥ −Sv(t, x) = ϵFv(t, x) + ϵmv(t, x) + ϵ
L1

10

≥ ϵ
L1

20
, (t, x) ∈ [0,∞)× [0, 1],

because by the second inequality of (H3) and by Lemma 2.10, it follows that ϵFv + ϵL1

20 ≥ 0 on [0,∞)× [0, 1].

5. Let v ∈ ∂PL1
. Then

∥Sv + T0∥ = ∥ϵFv +mϵv + ϵ
L1

5
∥

≤ ϵ(∥Fv∥+m∥v∥+ L1

5
)

≤ ϵ

(
A

(
2L1 + 2r +

l∑
j=1

(Aj +Bj + Cj)L
pj

1

)
(m+

1

5
)L1

)

≤ ϵL1 = ϵ∥v∥.
Note that in the last inequality we have used the third inequality of (H3).

6. Now, assume that v ∈ ∂PL1

⋂
Ω is such that

v = Tv + Sv,

whereupon

Fv +
L1

5
≡ 0 on [0,∞)× [0, 1].

Since v ∈ ∂PL1
, we have that v ̸≡ 0 on [0,∞)× [0, 1] and by the second inequality of (H3) and by Lemma 2.10,

it follows that Fv + L1

5 > Fv + L1

20 ≥ 0 on [0,∞)× [0, 1]. This is a contradiction.

7. Suppose that there exists an v0 ∈ P∗ such that T (v−λv0) ∈ P, v ∈ ∂PR1
, v ∈ ∂PR1

⋂
(Ω+λu0) and Sv = v−λv0

for some λ ≥ 0. Then

R1 = ∥v − λv0∥ = ∥Sv∥

≥ −Sv(t, x) = ϵFv(t, x) + ϵmv(t, x) + ϵ
L1

10

≥ ϵ
L1

20
, (t, x) ∈ [0,∞)× [0, 1],

which is a contradiction.

Therefore all conditions of Theorem 2.6 hold. Hence, the IBVP (1.1) has at least two solutions v1 and v2 so that

r1 < ∥v1∥ < L1 < ∥v2∥ < R1. (3.1)

This completes the proof.

Remark 3.1. 1. For any solution u of the IBVP (1.1), we have

∥u∥ ≥ max{ max
x∈[0,1]

u0(x), max
x∈[0,1]

|u0x(x)|, max
x∈[0,1]

|u0xx(x)|, max
x∈[0,1]

|u1(x)|, max
x∈[0,1]

|u1x(x)|, max
x∈[0,1]

|u1xx(x)|} = r.

Hence, using (3.1), we conclude that 0 ≤ r < L1 and ∥v2∥ > r. If ∥v1∥ = r, since v1 is a nontrivial nonnegative
solution of (1.1), then r > 0.

2. If r = ∥v1∥ = |v1tt(t1, x1)| and v1xx(t1, x1) = 0 for some t1 ∈ [0,∞), x1 ∈ [0, 1], then

r ≤ v1(t, x), |v1t(t, x)|, |v1tt(t, x)|, |v1x(t, x)|, |v1xx(t, x)| < L1, (3.2)

t ∈ [0,∞), x ∈ [0, 1]. Hence,

r = |v1tt(t1, x1)| = |v1tt(t1, x1)− v1xx(t1, x1)|
= |f(t1, x1, v1(t1, x1), v1t(t1, x1), v1x(t1, x1))|,
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which is true because the last condition of (H3) holds. Moreover,

r = |f(t1, x1, v1(t1, x1), v1t(t1, x1), v1x(t1, x1))| <
l∑

j=1

(Aj +Bj + Cj)L
pj

1 .

3. If r = ∥v1∥ = |v1xx(t2, x2)| and v1tt(t2, x2) = 0 for some t2 ∈ [0,∞), x2 ∈ [0, 1], then we have (3.2). Hence,

r = |v1xx(t2, x2)| = |v1tt(t2, x2)− v1xx(t2, x2)|
= |f(t2, x2, v1(t2, x2), v1t(t2, x2), v1x(t2, x2))|,

which is true because the last condition of (H3) holds. Moreover,

r = |f(t2, x2, v1(t2, x2), v1t(t2, x2), v1x(t2, x2))|

<

l∑
j=1

(Aj +Bj + Cj)L
pj

1 .

4. If

f(t, x, w1, w2, w3) =

l∑
j=1

(
aj(t)w

pj

1 + bj(t)w
pj

2 + bj(t)w
pj

3

)
,

t ∈ [0,∞), x,w1, w2, w3 ∈ [0, 1], then

sup
t ∈ [0,∞), x ∈ [0, 1],
r ≤ w1, |w2|, |w3| < L1

|f(t, x, w1, w2, w3)| =
l∑

j=1

(Aj +Bj + Cj)L
pj

1 .

Hence and by the last two conditions of (H3), we get

l∑
j=1

(Aj +Bj + Cj)L
pj

1 ≤ r <

l∑
j=1

(Aj +Bj + Cj)L
pj

1 ,

which is impossible.

4 An Example

Let

l = 2, p1 =
3

5
, p2 = 0, R1 =

3

1010
, r =

4

3 · 1010
, L1 =

2

1010
, r1 =

1

1012
,

m =
1

2
, ϵ = 50, A =

1

1010
, A1 =

2

1010
, A2 =

(
4

3 · 1010

) 3
5

, B1 = B2 = C1 = C2 = 0.

Then

R1 =
3

1010
<

5

1010
= ϵ

L1

20
, r1 < L1 < R1, r1 <

L1

20
=

1

1011
.

Also,

A

2R1 + 2r +

l∑
j=1

(Aj +Bj + Cj)R
pj

1

 =
1

1010

(
6

1010
+

8

3 · 1010
+

2

1010

(
3

1010

) 3
5

+

(
4

3 · 1010

) 3
5

)

<
1

1011
=

L1

20
.
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Next,

A

2L1 + 2r +

l∑
j=1

(Aj +Bj + Cj)L
pj

1

 =
1

1010

(
4

1010
+

8

3 · 1010
+

2

1010

(
2

1010

) 3
5

+

(
4

3 · 1010

) 3
5

)

<
6

1011
=

(
4

5
−m

)
L1.

Consequently (H3) holds. Now, we will construct the function g in (H4). Let

h(x) = log
1 + s11

√
2 + s22

1− s11
√
2 + s22

, l(s) = arctan
s11

√
2

1− s22
, s ∈ [0, 1].

Then

h′(s) =
22
√
2s10(1− s22)

(1− s11
√
2 + s22)(1 + s11

√
2 + s22)

,

l′(s) =
11
√
2s10(1 + s20)

1 + s40
, s ∈ [0, 1].

Therefore

−∞ < lim
s→±∞

(1 + s+ s2)h(s) < ∞,

−∞ < lim
s→±∞

(1 + s+ s2)l(s) < ∞.

Hence, there exists a positive constant C1 so that

(1 + s+ s2)

(
1

44
√
2
log

1 + s11
√
2 + s22

1− s11
√
2 + s22

+
1

22
√
2
arctan

s11
√
2

1− s22

)
≤ C1,

(1 + s+ s2)

(
1

44
√
2
log

1 + s11
√
2 + s22

1− s11
√
2 + s22

+
1

22
√
2
arctan

s11
√
2

1− s22

)
≤ C1,

t ∈ [0,∞), s ∈ [0, 1]. Note that by [11](pp. 707, Integral 79), we have∫
dz

1 + z4
=

1

4
√
2
log

1 + z
√
2 + z2

1− z
√
2 + z2

+
1

2
√
2
arctan

z
√
2

1− z2
.

Let

Q(s) =
s10

(1 + s44)(1 + s+ s2)2(1 + s2)2
, s ∈ [0, 1],

and
g1(t, x) = Q(t)Q(x), t ∈ [0,∞), x ∈ [0, 1].

Then there exists a constant C2 > 0 so that

C2 ≥
∫ t

0

∫ x

0

g1(t1, s1)
(
1 + |x− s1|+ (x− s1)

2
)
×
(
1 + (t− t1) + (t− t1)

2
)
t21s

2
1ds1dt1, (t, x) ∈ [0,∞)× [0, 1].

Now, we take

g(t, x) =
1

1020C2
g1(t, x), (t, x) ∈ [0,∞)× [0, 1].



Multiple solutions of a class IBVPs for one-dimensional nonlinear wave equations 1159

Then

A =
1

1010
≥
∫ t

0

∫ x

0

g(t1, s1)
(
1 + |x1 − s1|+ (x1 − s1)

2
)

×
(
1 + (t− t1) + (t− t1)

2
)
(1 + t1 + t21)(1 + |s1|+ s21)ds1dt1, (t, x) ∈ [0,∞)× [0, 1].

Now, consider the IBVP

utt − uxx = w(t)
(
u− 4

3·1010
) 3

5 , (t, x) ∈ (0,∞)× [0, 1]

u(0, x) = 4
3·1010 , ut(0, x) = 0, x ∈ [0, 1],

u(t, 0) = ux(t, 1) = 0, t ≥ 0,

(4.1)

where

w(t) =


1

1010 (9t
2 − 9t+ 2), t ∈ [0, 1],

2
1010 , t > 1.

Next,

0 < r < L1, r =
4

3 · 1010
<

2

1010
·
(

2

1010

) 3
5

+

(
4

3 · 1010

) 3
5

= A1L
p1

1 +A2

and

r =
4

3 · 1010
≥ sup

t ∈ [0,∞)
4

3·1010 ≤ w1 < 2
1010

∣∣∣∣w(t)(w1 −
4

3 · 1010

)∣∣∣∣ = 2

1010
2

3 · 1010
.

We have that (H1)-(H4) hold. The IBVP (4.1) has two nontrivial nonnegative solutions.
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