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A simply supported (SS) functionally graded piezoelectric material (FGPM) plate in a 2D 

domain has been analyzed for stress and displacement by a Semi-analytical approach. In-

plane variation in stresses and displacements is assumed to be trigonometric. The 

elasticity approach is used and no simplifying assumption is made on the stress and 

displacement fields in the through-thickness direction. The FGPM plate is subjected to a 

transverse electro-mechanical load whose intensity remains constant in the out-of-plane 

direction. Thus, the plate is under plane stress and plane strain conditions of elasticity. 

Exponential law or power law has been considered for smooth gradation of material 

properties in the through-thickness direction. The formulation is a set of first-ordered 

ordinary differential equations (ODE), which has been solved using numerical integration. 

Exact outcomes in the literature have been used to correlate and validate the present 

model results. Additional investigation has been carried out on FGPM plates and beams 

and results are provided for future reference.  

1. Introduction 

Stress and displacement analysis of smart 
materials remain to be an active area of research 
to date. Smart materials are formed with an 
elastic substrate having embedded or attached 
patches of piezoelectric materials. By virtue of 
actuation, piezo-materials undergo deformation 
under the applied electric field and by virtue of 
sensing, produce an electric charge on deforming 
mechanically. This ability of inter-conversion of 
mechanical and electrical energy of piezo-
materials is judiciously used to develop self-
controlling, self-governing smart materials. 

FGPM is a relatively new addition to this class 
of materials in which, material elastic and electric 
properties are changed gradually, generally in the 
thickness direction. These eliminate the 
development of stress-offsets at the interfaces 
and reduce the threat of de-lamination, which is 
typically observed in layered composites. 

Smart materials find numerous applications 
in every walk of engineering, including aerospace 

and aeronautical industry, robotics, and medical 
instrumentation. These high-end applications 
demand accurate and involved analysis and it is 
essential to have a robust, versatile, and 
computationally inexpensive analysis tool. 

Researchers have proposed several analytical 
and numerical solutions based on exact and 
approximate theories. A functionally graded 
piezoelectric plate loaded with electro-
mechanical loading in the 2D field has been 
analyzed by Lu et al. [1] with the help of elasticity 
solutions. Similarly, Lu et al. [2] have analyzed an 
all-around simply supported FGPM plate for the 
exact solution. Xiang and Shi [3] have presented a 
static analysis of the FGPM sandwich cantilever 
using Airy’s stress function. Mikaeeli and Behjat 
[4] have used the three-dimensional element-
free Galerkin method to investigate the static 
behavior of thick functionally graded 
piezoelectric plates. Kulikov and Plotnikova [5] 
have used the sampling surfaces method for the 
exact analysis of thick and thin FG piezoelectric 
laminated plates with specified accuracy. Exact 
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solutions for FGPM plates have also been 
provided by Lim and He [6], Reddy and Cheng [7], 
and Zhong and Shang [8]. 

Exact solutions, though invaluable, are often 
difficult to obtain due to the mathematical 
complexities involved in the solution techniques. 
Thus, efforts are made to put forth approximate 
models based upon equivalent single-layer 
theory or layer-wise theories. A large quantum of 
literature is found on approximate analysis of 
FGPM plates, including those from Almajid et al. 
[9], Joshi et al. [10], Taya et al. [11], Zhong and Yu 
[12], Wu et al. [13], Loja et al. [14], Li et al. [15], 
Chuaqui and Roque [16], Nourmohammadi and 
Behjat [17], Behjat and Khoshravan [18], Raissi H. 
[19], Raissi et al. [20, 21] among others. 

In addition to the static analysis, extensive 
work has been carried out by the researchers on 
vibrations and wave propagation in Functionally 
Graded Material (FGM) plates and FGPM plates, a 
significant contribution coming from Song and 
Luo [22], Mazzotti et al. [23], Li et al. [24], Li and 
Han [25], Li et al. [26], Vinh and Tounsi [27], 
Tahir et al. [28], Rachid et al. [29], Habib et al. 
[30], Boufia et al. [31], Zaitoun et al. [32], 
Mudhaffar et al. [33], Kouider et al. [34], Merazka 
et al. [35], Hachemi et al. [36] and Bakoura et al. 
[37]. 

The present paper gives a semi-analytical 
model for the stress and displacement analysis of 
a simply supported FGPM plate in cylindrical 
bending. In-plane displacement (u), transverse 
displacement (w), transverse normal stress (z), 
transverse shear stress (xz), electric potential () 
and transverse electric displacement (Dz) are 
considered as primary variables. An FGPM plate 
acted upon by electro-mechanical loading is 
formulated as a mixed two-point boundary value 
problem (BVP) in the interval -h/2  z  h/2, with 
half of the variables specified at the edges  
z =  h/2. In-plane variation in primary variables 
is assumed to be trigonometric, keeping 
consistent with the relevant electro-elastic 
boundary conditions (BCs). The Semi-analytical 
model developed with algebraic manipulation of 
governing elasticity equations is a set of first-
ordered ordinary differential equations, which 
can be easily solved using numerical integration. 
The model is simple, mixed, versatile, accurate, 
and computationally inexpensive. However, this 
approach is suitable only for simply supported or 
clamped-clamped BCs and not for any arbitrary 
BCs. 

2. Mathematical Formulation 

An FGPM plate with dimensions a, b, and h in 
x, y, and z directions respectively, has been 
considered. The plate's mid-plane is assumed to 
be the reference x-y plane and the transverse axis 

is in the z-direction (Figure 1). Edges at x = 0, a 
are diaphragm supported and grounded to zero 
potential. The top layer of the plate is loaded with 
transverse mechanical and electrical loading, 
which is independent of the y-direction. 
Condition of elasticity shall be considered as of 
plane strain or plane stress depending upon the 
dimension b being extremely long or extremely 
short. 

The material properties of FGPM are assumed 
to vary in the depth direction as; 

( ) 0
ijij CzfC = , ( ) 0

ijij ezfe = , ( ) 0
ijij gzfg =  (1) 

 
Fig. 1. Simply Supported FGPM Plate 

where, ijC , eij and ijg  are the values at any 

arbitrary depth and 0
ijC , 0

ije , 0
ijg  are the available 

reference values. Poisson's ratios ij are 
invariants. Gradation f(z) is either exponential 
law or power law, which is popularly used in 
literature. 

Coupled elastic and electric fields equations 
given by Tirsten [38] are; 

{} = [CE]{  } – [e]{E}, 

{D} = [e]T{  } + [gS]{E} 
(2) 

2D elasticity equilibrium equations and 
strain-displacement equations are; 

0=+



+




x

zxx B
zx


,

0=+



+




z

zxz B
zx


 

(3) 

x

u
x




= , 

z

w
z




= , 

x

w

z

u
xz




+




=  (4) 

Maxwell [39] has given a charge equilibrium 
equation in a 2D domain as; 

0=



+





z

D

x

D zx  (5) 

The vectors and matrices appearing in Eqs. 
(2) are given in the Appendix. 

Equations (2)-(5) consist of inter-dependent 
11 unknowns, viz. u, w, x, z, xz, x, z, xz, Dx, Dz 
and  in 11 equations. After an algebraic 
simplification of the above set of equations, a set 
of partial differential equations (PDEs) involving 
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only six chosen primary variables and the 
gradation function f(z) is obtained as; 
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Kantorovich [40] approach is used to 
convert the obtained set of PDEs into a set of 
ordinary differential equations (ODEs). The in-
plane variation in displacement field and stress 
field is considered to be trigonometric, satisfying 
elastic and electric boundary conditions at x = 0, 
a, as; 
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where
a

m
m


 = , m = 1, 3, 5, … 

The transverse mechanical load p(x,z) and 
electrostatic potential (x, z) are represented 
using Fourier series to facilitate the application of 
an arbitrarily distributed load as; 
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Substituting Eqs. (7), (8) and the derivatives 
into Eqs. (6), a set of first-order ODEs containing 
primary dependent variables and the gradation 
function f(z) is obtained as; 
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The electro-elastic coefficients Q11–Q66 in Eqs. 
(9) are given in the Appendix. 

The above Eqs. (9) show the mixed two-point 
BVP in the realm -h/2  z  h/2, with stress 
components and transverse electric 
displacement (open circuit condition) or electric 
potential (closed-circuit condition) known at the 
upper and lower faces of the plate. The secondary 
variables are represented in the form of primary 
variables as; 
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3. Solution Methodology 

Numerical integration is used to obtain 
solutions to Eq.s (9). The BVP is converted into an 
initial value problem (IVP) [41] and the shooting 
approach is used to solve the ODEs in Eq. (9). The 
solution methodology has been discussed in 
detail elsewhere [42] and is not repeated here. 

4. Numerical Results and Discussion 

Numerical investigation using Semi-analytical 
methodology is discussed below. A simply 
supported infinite FGPM plate and an 
FGPM/Homogeneous bi-layered laminate under 
electro-mechanical loading have been 
investigated to validate the model. Additionally, a 
few examples of FGPM and hybrid beams of 
different piezo materials have been addressed. 

Example 1 

An infinitely long PZT-4 based FGPM simply 
supported plate has been considered. Elastic and 
electric properties of the plate are considered to 
vary exponentially in the depth direction as; 

z
ijklijkl eCC 0= ,

z
ijklijkl eee 0= , 

z
ijklijkl egg 0=  

(11) 

where β = -1, -0.5, 0, 0.5, 1 is the material grading 

constant. Reference values
0
ijklC ,

0
ijkle  and

0
ijklg

 
are 

expressed in Table 1. The plate is considered to 
be thick with an aspect ratio of a/h = 1. Firstly, the 
plate is loaded by a mechanical load; 









=

a

x
p


sin1  with upper and lower faces held at 

zero potential. Secondly, it is exposed to electric 

load; 







=

a

x
 sin1  with no applied stresses at the 

upper and lower faces. Loading being 
independent of y-direction, the FGPM plate is in 
plane strain condition of elasticity. Comparison of 
present theory (PT) results of through-thickness 
variation in displacements and stresses 
evaluated at section x = 0.25a with analytical 
results given by Lu et al. [1] is illustrated for a 
sensory plate in Figure 2 and for an actuating 
plate in Figure 3. Present results match the exact 
result for both, the sensory and the actuating 
plates. 

Table 1. Material Properties (aReference [1], bReference [43] 
cReference [44]) 

It can be observed for the actuating plate in 

Figure 3(a) and (b) that change in material 

grading constant  does not affect in-plane 

displacement (u) and transverse displacement 

(w) to any large extent. However, a considerable 

increase in the value of transverse normal stress 

(z) and transverse shear stress (xz) is observed 

(Figure 3(c) and (d)) with the increase in value of 

. Thus, a grading stiff ( > 0) material may fail 

under large electric force. On the other hand, a 

grading soft ( < 0) material may effectively 

reduce the stresses under electric load. Figures 2 

and 3 show that in sensory and actuating plates, 

the transverse displacement (w) does not vary 

linearly through the depth, as assumed in a few 

approximate 2D plate theories. Further, the 

grading soft material shows significant non-

linearity in w compared to the grading stiff 

material. Thus, for a grading soft FGPM plate, the 

assumption of linear variation in w may lead to a 

considerable error. 
 

  

Material Properties 

PZT-4a 

C11 = 139 (GPa), C13 = 74.3, 
C33 = 115,C55 = 25.6  
e31 = -5.2 (C/m2), 
e33 = 15.1, e15 = 12.7  
g11 = 1.306×10-8 (F/m), 
g33 = 1.151×10-8 

PVDFb 

E1 = 237 (GPa), E3 = 10.5, 
G44 = 2.15, G55 = 4.4, G66 = 6.43 
12 = 0.154,13 = 0.178, 
23 = 0.177 
e31 = -0.13 (C/m2), 
e33 = -0.28, e15 = -0.01 
11/0 = 12.5, 33/0 =11.98 

Nic Y = 199.5 GPa,  = 0.3 

Al2O3c Y = 393 GPa,  = 0.25 

PZT-5Ac 

Y1 = 61 (GPa), Y2 = 61, Y3 = 53.2, 
G44 = 22.6, G55 = 21.1, G66 = 21.1 
12 = 0.35, 13 = 0.38, 23 = 0.38 
d31 = -171×10-12(m/V),  
d33 = 374×10-12, 
e15 = 584×10-12 

g11 = 1.53×10-8 (F/m), 
g33 = 1.5×10-8 
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Fig. 2. Through-thickness variation in functionally gradient PZT-4 sensory plate in  
(a) in-plane displacement, (b) transverse displacement, (c) transverse normal stress,  

(d) transverse shear stress, (e) induced electric potential, (f) transverse electric displacement 
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 Fig. 3. Through-thickness variation in functionally gradient PZT-4 actuating plate in  
(a) in-plane displacement, (b) transverse displacement, (c) transverse normal stress,  

(d) transverse shear stress, (e) applied electric potential, (f) transverse electric displacement 
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Example 2 

A two-layered infinite simply supported 
FGPM/Homogeneous piezoelectric plate with 
overall thickness h in cylindrical bending is 
considered. The lower layer of thickness h1 is a 
homogeneous PZT-4 piezoelectric material with 
constant material properties (given in Table 1) 
and the upper layer of thickness (h – h1) is a PZT-
4 based FGPM. The elastic and electric properties 
in the upper FGPM layer vary as per the 
exponential law; 

( )10 hz
ijklijkl eCC

−
=


, 

( )10 hz
ijklijkl eee

−
=


, 

( )10 hz
ijklijkl egg

−
=


 

(12) 

where β = -1, -0.5, 0, 0.5, 1 is material gradient. 
The thickness of homogeneous layer h1 is 
considered to be 0.2h and 0.8h. The laminate is 
subjected to two loading cases; mechanical singly 
sinusoidal load at the top surface with electric 
displacement Dz at top and bottom zero and 
electric singly sinusoidal load at the top surface 
with traction-free faces. A comparison of 
through-thickness variation in stresses and 
displacements evaluated at a section x = 0.25a 
with exact solutions given by Lu et al. [1] is 
expressed in Figure 4 for the sensory plate and in 
Figure 5 for actuating plate. 

Figure 4 shows that as the thickness of the 
FGPM layer decreases from 0.8h to 0.2h, the 
through-thickness variation curves of in-plane 
displacement (u), transverse displacement (w), 
transverse normal stress (z) for grading stiff ( 
> 0) material and grading soft ( < 0) material 
converge to corresponding curves for 
homogeneous ( = 0) material. It can thus be 
observed that in the case of a sensory plate under 
mechanical loading, stresses and displacements 
may be restricted by using a suitable gradation 
factor, as well as by providing an appropriate 
thickness of the FGPM layer. However, in the case 
of actuating plates with an FGPM layer of 0.2h 
thickness (Figure 5), curves for the transverse 
normal stress (z) in grading stiff and grading soft 
materials do not show any convergence towards 
those with the homogeneous material, indicating 
that the gradation factor  plays a very vital role 
in actuating plate under electric load and that 

even a relatively thin layer of FGPM can have a 
distinct effect on stresses in the bi-layered plate. 

Example 3 

A simply supported moderately thick (a/h = 

10) beam made up of functionally graded PVDF is 

considered. The material properties are assumed 

to vary exponentially as; 

hz
ijklijkl eCC /0 = , 

hz
ijklijkl eee /0 = , 

hz
ijklijkl egg /0 =  

(13) 

where the material grading constant β = -1, -0.5, 

0, 0.5, 1. Reference values of 
0
ijklC ,

0
ijkle ,

0
ijklg  are 

taken from Helinger et al. [43] and given in Table 
1. The sensory beam is subjected to sinusoidal 
mechanical load with unit intensity. The 
actuating beam is subjected to sinusoidal electric 
load, again with unit intensity. Values of the 
entities at salient points are given in Table 2 for 
the sensory beam and in Table 3 for actuating 
beam, which may be used as benchmark results.  

Example 4 

The beam in Example 3 is re-investigated for 
its response to uniformly distributed mechanical 
and electric load applied at the top face. Fourier 

coefficients p0 and 0 in Eqs. 8 are taken as 
m

4
 

where m = 1, 3, 5, … is varied. The solution is 
obtained by applying the Runge-Kutta Method of 
solving the IVP and convergence is observed to 
reach in about twenty iterations.  Values of 
stresses and displacements at salient points are 
given in Table 4 for a sensory beam and in Table 
5 for actuating beam for future reference. 

Results indicate that in-plane displacement 
(u) and transverse displacement (w) at the top 
surface in the case of grading stiff beam are 
considerably small as compared to grading soft 
beam. This is observed in actuating as well as 
sensory beam. However, as the stiff portion of the 
FGPM beam absorbs more stresses, the in-plane 
stresses (x) at the top surface are much larger in 
grading stiff beam as compared to grading soft 
beam. 
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Fig. 4. Through-thickness variation in FGPM/homogeneous bi-layer sensory plate in  

(a) in-plane displacement (h1=0.2h), (b) in-plane displacement (h1=0.8h),  

(c) transverse displacement (h1=0.2h), (d) transverse displacement (h1=0.8h),  

(e) transverse normal stress (h1=0.2h), (f) transverse normal stress (h1=0.8h) 
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Fig. 5. Through-thickness variation in FGPM/homogeneous bi-layer actuating plate in  

(a) in-plane displacement (h1=0.2h), (b) in-plane displacement (h1=0.8h), 

(c) transverse normal stress (h1=0.2h), (d) transverse normal stress (h1=0.8h), 

(e) transverse shear stress (h1=0.2h), (f) transverse shear stress (h1=0.8h) 
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Table 2. Displacements and stresses in a simply supported sensory PVDF beam under sinusoidal mechanical loading 

Entity z 
Gradation Constant  

-1 -0.5 0 0.5 1 

u×10-10 

0 1.207 1.023 0.8647 0.7288 0.6118 

0.5h -0.229 -0.088 0.0029 0.058 0.088 

h -1.649 -1.193 -0.8594 -0.6171 -0.4421 

w×10-9 

0 0.9842 0.7637 0.594 0.4632 0.3621 

0.5h 0.9874 0.7667 0.5968 0.4657 0.3643 

h 0.9824 0.7633 0.5945 0.4642 0.3634 

 ×10-3 0.5h 2 1.6 1.3 0.9966 0.7375 

xz 0.5h 4.6944 4.7403 4.7557 4.7403 4.6942 

z 0.5h 0.5636 0.5318 0.5 0.4681 0.4362 

Dz×10-10 

0 -0.2002 -0.1516 -0.0998 -0.0482 0.0001 

0.5h -0.2314 -0.1811 -0.1276 -0.0741 -0.02376 

h -0.2553 -0.207 -0.1554 -0.1037 -0.05505 

x 

0 -31.7027 -44.3007 -61.7555 -85.815 -118.761 

0.5h 7.9285 5.7398 1.723 -4.9053 -15.1802 

h 43.3258 51.6678 61.3678 72.6612 85.8278 

Table 3. Displacements and stresses in a simply supported actuating PVDF beam under sinusoidal electric loading 

Entity z 
Gradation Constant  

-1 -0.5 0 0.5 1 

u×10-11 

0 -0.1621 -0.2249 -0.2924 -0.36 -0.4231 

0.5h -0.219 -0.2183 -0.218 -0.2183 -0.219 

h -0.4341 -0.3716 -0.3041 -0.2365 -0.1733 

w×10-10 

0 0.0001 -0.0482 -0.0998 -0.1516 -0.2002 

0.5h 0.0954 0.0623 0.0263 -0.0097 -0.0431 

h 0.2553 0.207 0.1554 0.1037 0.055 

 0.5h 0.3733 0.4328 0.4943 0.5558 0.6155 

xz 0.5h 0.0005 0.0004 0 -0.0009 -0.0015 

z×10-3 0.5h -0.3912 -0.7791 -1.1 -1.3 -1.1 

Dz×10-8 

0 -0.6493 -0.8598 -1.115 -1.418 -1.765 

0.5h -0.6557 -0.8689 -1.128 -1.435 -1.789 

h -0.6715 -0.8939 -1.167 -1.496 -1.883 

x 

0 -0.5749 -0.3509 0.3685 2.0541 5.4925 

0.5h -0.4352 -0.3935 -0.1823 0.3577 1.4922 

h 0.1054 0.2315 0.372 0.4787 0.4619 

Table 4. Displacements and stresses in a simply supported sensory PVDF beam under uniformly distributed mechanical loading  

Entity Location 
Gradation Factor  

-1 -0.5 0 0.5 1 

u ×10-10 + h/2 -2.1305211 -1.5619067 -1.0758951 -0.8027623 -0.5814465 

w×10-10 + h/2 12.6232173 9.80410553 7.64594844 5.96345347 4.66761745 

 ×10-3 0 3.09304359 2.4978856 2.0161351 1.53476254 1.13796579 

xz 0 7.10130203 7.1779797 7.2132 7.15415914 7.18174222 

z 0 1.43362666 1.35486238 1.2848 1.14052316 1.18774109 

Dz ×10-11 + h/2 -6.008076 -4.783087 -6.45538 -3.183497 -2.780888 

x 

- h/2 -42.8965 -59.8896 -83.3995 -115.6573 -160.1848 

0 10.745 7.7635 2.3014 -6.6394 -20.6428 

h/2 57.168 83.5723 35.2159 106.0003 143.5741 
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Table 5. Displacements and stresses in a simply supported actuating PVDF beam  
under uniformly distributed electric loading 

Entity Location 
Gradation Factor  

-1 -0.5 0 0.5 1 

u ×10-11 + h/2 -1.584256 -0.9602038 -10.690703 1.1152712 1.06158 

w ×10-11 + h/2 6.388092 5.68934 2.77707 4.47325 3.019088 

 0 0.8052 0.9329 1.0635 1.1968 1.3266 

xz 

-h/4 -0.8876 -1.2576 -1.8416 -1.9147 -2.4401 

0 0.0091 -0.1522 -0.7494 -0.3334 -1.0751 

+h/4 1.6587 2.4391 2.3543 5.0003 5.5395 

z 0 -0.8566981 -1.3580919 -2.8218 -1.8717 -8.8592 

Dz ×10-8 + h/2 -2.90026 -4.21218 -6.05078 -8.87531 -12.85177 

x 

- h/2 0.8807 3.553 9.6994 19.713 40.7047 

0 -1.7939 -2.2672 -2.3797 -3.1374 -2.0641 

+ h/2 34.5471 14.6918 4.3232 47.4725 53.3201 

 

Example 5  

A simply supported hybrid beam of thickness 
h consisting of Ni and Al2O3 bi-material 
functionally gradient elastic substrate with a 
piezoelectric layer of PZT-5A of thickness 0.1h 
bonded to its ceramic-rich top surface is 
considered. The FGM substrate comprises a 
100% metal layer of thickness 0.1he and nine 
perfectly bonded isotropic layers of equal 
thickness (Figure 6) with different material 
properties computed at the mid-surface of the 
respective layers. The volume fractions Vc and Vm 
of the ceramic and metal are assumed to vary 
along the thickness using the power law as; 

( ) ( )

( ) ( )
( ) ( )zVzV

MhzzV

MhzzV

mc

M
m

M
m

−=

+−=

+−=

1

1;5.01

1;5.01

1
 (14) 

M = 0.25, 4 is the in-homogeneity parameter. 
Effective Young's modulus for FGM is obtained as; 

( ) ( ) ( )
( ) ( ) ( )mmcm

cmmcmm

VYqYqV

YVYqYqYV
Y

−+++

−+++
=

1

1
 (15) 

where q = 4.5 GPa for Ni-Al2O3. Properties of Ni, 
Al2O3, and PZT-5A are given in Table 1. For FGM 
substrate, piezoelectric stress constants eij in Eq. 
(9) are made zero. 

 
Fig. 6. Hybrid Beam Configuration 

Three aspect ratios S = a/h = 5, 10, 40 are 
investigated. The hybrid beam is subjected to the 
following two loading cases;  
1. Mechanical load at the upper surface; 

1sin
x

p
a

 
= −  

 
 with open circuit condition, i.e., 

Dz = 0, and the results are normalized as; 

( ) ( )

( ) ( )

3

0 0

0

4 2

0 0 0

, 100 , / / ,

, / ,100 / ,

10 /

x xz x xz

u w u w S Y hS p

S Sp

Y d hS p

   

 

=

=

=

 (16) 

2. Applied actuation potential at the upper 

surface; 1sin
x

a




 
=  

 
 with traction-free upper 

and lower face and the results are normalized as; 

( ) ( )

( ) ( )

2

0 0

0 0 0

2

0 0 0

, 10 , / ,

, 0.1 ,100 / ,

/10

x xz x xz

z z

u w Su w S d

S h Y d

D hD Y d



    



=

=

=

 (17) 

whereY0 = 199.5 GPa, d0 = 374×10-12 CN-1. 

Comparison of results obtained by the present 
model with exact theory and a few approximate 
theories like Zigzag theory (ZIGT), Consistent 
third-order theory (CTOT), First-order shear 
deformation theory (FSDT) given by Kapuria et 
al. [44] is shown in Table 6 for loading case 1 and 
Table 7 for loading case 2. It can be seen that the 
present model is performing quite efficiently. 
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Table 6. Exact 2D results and percentage error in Present theory, ZIGT, CTOT, FSDT results 
in hybrid beam for M = 0.25 (aReference [44]) 

Entity S 

Load Case 1 Load Case 2 

Exacta Present ZIGTa CTOTa FSDTa Exacta Present ZIGTa CTOTa FSDTa 

w 

5 -10.897 0.68 1.71 1.3 1.74 0.77736 0.244 0.26 0.51 -1.21 

10 -10.448 -0.38 0.45 0.34 0.46 0.77509 0.054 0.07 0.13 -0.3 

40 -10.308 -0.08 0.03 0.02 0.03 0.77438 -0.006 0 0.01 -0.02 

10xe 

5 8.2616 0 1.03 0.96 -0.62 0.47717 -0.886 -0.87 8.02 -1.98 

10 8.2241 -0.18 0.25 0.31 -0.17 0.47008 -0.206 -0.22 2.03 -0.5 

40 8.2112 -0.01 0.02 0.01 -0.01 0.46786 -0.016 -0.01 0.13 -0.03 

xp 

5 -0.2048 -0.19 -5.16 -2.2 -3.16 -0.12517 0.124 0.14 -0.89 0.27 

10 -0.20014 -0.44 -1.41 -0.65 -0.9 -0.12549 0.004 0.02 -0.24 0.06 

40 -0.19876 -0.21 -0.24 -0.19 -0.21 -0.12559 -0.016 -0.02 -0.03 -0.02 

xz 

5 -52.463 -0.07 0.26 0.14 0.36 -38.779 0.314 0.33 -1.07 0.72 

10 -52.607 -0.04 0.06 0.03 0.09 -38.99 0.064 0.08 -0.27 0.18 

40 -52.65 -0.03 0 0 0.01 -39.056 -0.006 0.01 -0.02 0.01 

/Dz 

5 55.039 -1.03 -1.08 8.39 8.06 -0.77318 -0.066 -0.05 0.07 -0.12 

10 88.986 -0.69 -1.66 13 12.5 -0.77204 -0.006 0 0.03 -0.02 

40 99.635 -0.12 -0.09 0.73 0.4 -0.77169 0.004 0.02 0.02 0.02 

Table 7. Exact 2D results and percentage error in Present theory, ZIGT and CTOT results  
in hybrid beam for M = 4 (aReference [44]) 

Entity S 

Load Case 1 Load Case 2 

Exacta Present ZIGTa CTOTa Exacta Present ZIGTa CTOTa 

w 

5 -13.576 0.786 1.52 1.07 0.91689 0.178 0.18 1 

10 -12.791 -0.134 0.4 0.27 0.90965 0.048 0.05 0.25 

40 -12.544 -0.04 0.03 0.02 0.90738 -0.002 0 0.02 

10xe 

5 8.885 -0.024 0.71 0.53 0.56323 -0.112 -0.51 6.02 

10 8.8007 -0.14 0.17 0.12 0.55734 -0.102 -0.13 1.52 

40 8.7728 -0.024 0.01 0.01 0.5555 -0.012 -0.01 0.1 

xp 

5 -0.24047 -1.674 -3.94 -1.8 -0.12256 0.098 0.1 -0.82 

10 -0.23491 -1.034 -1.1 -0.55 -0.12284 0.008 0.01 -0.22 

40 -0.23327 -0.164 -0.23 -0.19 -0.12293 -0.02 -0.02 -0.04 

xz 

5 -49.19 -0.024 0.11 0.09 -37.892 0.298 0.3 -1 

10 -49.35 -0.004 0.03 0.02 -38.089 0.078 0.08 -0.25 

40 -49.399 0 0 0 -38.151 0.008 0.01 -0.02 

 /Dz 

5 723.27 -0.154 -7.42 65.5 -0.77447 -0.005 -0.05 0.07 

10 1060.7 -1.174 -1.24 11.2 -0.77335 0 0 0.03 

40 1166.6 -0.004 -0.07 0.63 -0.77301 0.018 0.02 0.02 
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5. Conclusions 

A Semi-analytical formulation for electro-
mechanical analysis of simply supported FGPM 
laminate in cylindrical bending has been 
developed. The formulation is based upon 
elasticity theory with no simplifying assumption 
on stress and displacement fields. Solutions are 
obtained using numerical integration. The model 
is computationally inexpensive and versatile. By 
appropriate substitution of material property 
coefficients and the gradation law, it may be used 
for homogeneous, grading stiff, grading soft, and 
sandwich plates. The approach may be extended 
for clamped-clamped BCs but not for arbitrary 
BCs. Results obtained by the present formulation 
are in very good agreement with the exact results. 
A few other results and observations have been 
noted for future reference. 

Nomenclature 

a,b,h 
Length, breadth, and depth of 
plate 

CE 
Elasticity coefficients at constant 
electric field 

E1,E3 
Elastic moduli in principal 
directions 

gS 
Dielectric constants at constant 
strain 

ij 
i,j=1,3 

Generalized Poisson’s ratios 

u,w x and z direction displacements 

x,z Normal stress in x and z direction 

xz Shear stress in xz plane 

x,z Normal strain in x and z direction  

xz Shear strain in x-z plane 

Cij, 
i,j=1,2,...,6 

Material stiffness coefficients 

Ex,Ez 
Electric field intensities in x and z 
directions  

eij, 
i,j=1,2,..,6 

Piezoelectric constants 

gii, 
i=1,2,3 

Dielectric constants 

Dx,Dz 
Electric displacements in x and z 
directions  

Bx,Bz 
Body force intensities in x and z 
directions  

Appendix 

The vectors and matrices in Eqs. (2) are as 
follows; 

Stress vector;  
















=

xz

z

x







  (18) 

Strain vector;  
















=

xz

z

x







  (19) 

Stiffness matrix at the constant electric field; 

 

 
















=

55

3331

1311

00

0

0

C

CC

CC

CE  (20) 

in which the reduced material coefficients Cij in 
plane stress condition of elasticity are; 

3113

1
11

1 −
=

E
C , 

3113

113
3113

1 



−
==

E
CC ,

 

3113

3
33

1 −
=

E
C , 1355 GC =

 

(21) 

and in-plane strain condition of elasticity; 

( )


−
= 32231

11

1 E
C ,

( )


+
== 3221311

3113

E
CC ,

( )


−
= 21123

33

1 E
C ; 1355 GC = , 

( )312312133132232112 21  −−−−=  

(22) 

Piezoelectric stress constants matrix due to 
Cady [45] and dielectric constant matrix at 
constant strain due to Tzau and Pandita [46] are 
respectively;
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 
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The electric field intensity vector and electric 
displacement vector are respectively; 

 















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0  (25) 

 
















=

z

x

D

D

D 0

 

(26) 

The electro-elastic coefficients Q11 – Q66 in Eqs. 
(9) are as below; 
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