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Abstract

In this paper, an efficient method is developed for the approximate solution of a benchmark non-smooth dynamical
system. In the proposed method, the trapezoidal method is utilized for solving the Tacoma Narrows Bridge equation.
For this purpose, at first, the integral form of the dynamical equation is considered. Afterwards, the obtained integral
equation is discretized by the trapezoidal method. The accuracy and performance of the proposed method are examined
by means of some numerical experiments.
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1 Introduction

One of the most challenging problems in engineering which has been attracted the attention of many engineers,
physicists, and mathematicians is the Tacoma Narrows Bridge problem. The Tacoma Narrows Bridge was a suspension
bridge in the State of Washington which suffered collapse in a strong wind on the morning of November 7, 1940 (see
Fig. 1). In many physics textbooks, the event is presented as an example of elementary forced mechanical resonance,
but it was more complicated in reality. Accordingly, many researchers considered the reasons of the collapse which we
can refer to the remarkable reference [1] in this regard. This paper will not discuss the reasons of this collapse, but
instead a simple mathematical model of the problem is considered. It should be noted that the presented model is a
very simplified one-dimensional model which can not consider all of the role-playing parameters of the problem. The
interested readers are referred to [6] for more complicated models.

Now, consider the following Tacoma Narrows Bridge equation which is taken from [5, 3]. The problem is

mÿ(t) = g(t) + F (y), 0 ≤ t ≤ 3π,

y(0) = 0, ẏ(0) = 1,

where

F (y) =

{
−αy, y ≥ 0,
−βy, y < 0,
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Figure 1: Collapse of the Tacoma Narrows Bridge.

and the constant parameters are considered as m = 1, α = 4, β = 1 and g(t) = sin(4t). For more details on the
history and how to model this problem, the interested readers are referred to [4, 6, 3]. The problem has the following
analytical solution

y(t) =


( 23 − 1

6 cos(2t)) sin(2t), 0 ≤ t ≤ π
2 ,

( 75 − 4
15 sin(t) cos(2t)) cos(t),

π
2 ≤ t ≤ 3π

2 ,
(− 11

15 − 1
6 cos(2t)) sin(2t),

3π
2 ≤ t ≤ 2π,

(− 23
15 − 4

15 cos(t) cos(2t)) sin(t), 2π ≤ t ≤ 3π.

It is noted that, this problem is actually a non-smooth dynamical system which has a smooth solution. It is simple
to show that, by using a substitution

y1 = y,

y2 = ẏ,

the order of the problem is reduced to one and the following system of first-order initial value problems is derived
ẏ1(t) = y2(t),

ẏ2(t) =
1
m (g(t)−

{
αy1(t), y1(t) ≥ 0,
βy1(t), y1(t) < 0,

,

y1(0) = 0, y2(0) = 1.

(1.1)

The non-smooth dynamical systems whose right hand side of their dynamical systems or trajectories may not be
differentiable everywhere are utilized to model a wide variety of phenomenon, especially in mechanical and control
systems [7, 9, 8]. It is necessary to mention that, due to non-smoothness in the right hand side of their dynamical
systems or in their solution, the numerical approximation of non-smooth dynamical systems is a very difficult task.
The aim of this paper is to present a method for an efficient numerical solution of the non-smooth dynamical equation
of the Tacoma Narrows Bridge model. The next section is about introducing this method.
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2 The proposed approach

Let’s go back to the non-smooth initial value problem (1.1). In particular, the non-smooth initial value problem
(1.1) can be considered as an initial value problem of the form{

ẏ(t) = f(t,y(t)), t0 ≤ t ≤ tf ,
y(t0) = y0,

(2.1)

where, y = [y1, . . . , yp]
T : [t0, tf ] → Rp and f = [f1, . . . , fp]

T : [t0, tf ]× Rp → Rp. It is worthwhile to note that, in the
Eq. (2.1), the function f(t,y(t)) is a non-smooth function with respect to t or y. Furthermore, it is assumed that,
the Eq. (2.1) has a unique solution. Now, by integrating the dynamical equations in the Eq. (2.1) from t0 to t, the
equivalent system of Volterra integral equations is induced as

y(t) = y(t0) +

∫ t

t0

f(τ,y(τ))dτ = y0 +

∫ t

t0

f(τ,y(τ))dτ, t0 ≤ t ≤ tf . (2.2)

In the following, the trapezoidal integral formula for approximating the Volterra integral equations (2.2) is reviewed.
For this purpose, at first, an equally spaced grid

ti = ih, i = 0, 1, . . . , N,

is considered, where, hN ≤ tf and h(N + 1) > tf . Now, for n > 0, we can write

y(tn) = yn = y0 +

∫ tn

t0

f(τ,y(τ))dτ, n = 1, 2, . . . , N. (2.3)

As a general approach, the integral term in the Eq. (2.3) can be approximated by the numerical integration such
as ∫ tn

t0

f(τ,y(τ))dτ ≃ h

n∑
j=0

wn,jf(tj ,y(tj)), n = 1, 2, . . . , N, (2.4)

where, the quadrature weights hwn,j are allowed to vary with the grid point tn. So, the Eq. (2.3) is approximated by

yn ≃ y0 + h

n∑
j=0

wn,jf(tj ,y(tj)), n = 1, 2, . . . , N. (2.5)

Obviously, the Eq. (2.5), defines yn implicitly. In other words, the Eq. (2.5) is a set of algebraic equations which
can be solved by the root finding methods.

It is noted that, in this paper, the Eq. (2.5) is solved by the simple fixed point iteration method [2] where h is
supposed to be sufficiently small. As we can see in the numerical illustrations section, using the fixed point iterations
greatly increased the speed of the method. So, as a result, the Eq. (2.5) will find the following form

y(k+1)
n ≃ y0 + h

n−1∑
j=0

wn,jf(tj ,yj) + hwn,nf(tn,y
(k)
n ), k = 0, 1, . . . (2.6)

for some given initial estimation of y
(0)
n . There are many possible schemes for being in the Eq. (2.5). In this paper,

the fantastic trapezoidal numerical method will be used. It is worthwhile to note that, the trapezoidal rule has the
form ∫ α+h

α

F (s)ds ≃ h

2
[F (α) + F (α+ h)].

So, in Eq. (2.4) we have ∫ tn

t0

f(τ,y(τ))dτ ≃ h

2
f(t0,y0) + h

n−1∑
j=1

f(tj ,yj) +
h

2
f(tn,yn),

and consequently looking at the Eq. (2.6), the trapezoidal method will lead to the following iterative equation

y(k+1)
n ≃ y0 +

h

2
f(t0,y0) + h

n−1∑
j=1

f(tj ,yj) +
h

2
f(tn,y

(k)
n ), k = 0, 1, . . . (2.7)

It is emphasized again that, the Eq. (2.7) is solved by the simple fixed point iteration method where h is supposed to
be sufficiently small. This leads the proposed method being very fast.
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3 Numerical illustrations

This section is devoted to the numerical illustrations and the effectiveness of the presented method is shown.
Noted that, all computations are performed on a 2.53 GHz Core i5 PC Laptop with 4 GB of RAM running in Matlab
R2016a.

Now, consider the non-smooth initial value problem (1.1) again. This problem is solved by using the presented
method. The approximated solution for N = 6000 discretization points is shown in Figure 2 alongside the exact
solution, and the absolute error of the approximated solution on the interval 0 ≤ t ≤ 3π. Moreover, the approximated
solutions for different values of y and different values of discretization points N , are shown in Table 1. Also, for
exploring the dependence of the error of the approximated solution on the parameter N , the presented method is
applied on this problem for various values of N . In Figure 3, an overview of the rate of convergence by plotting the
Euclidean norm of error, EN , as a function of N can be seen. Obviously, if N increases, then the Euclidean norm of
error will become smaller. Furthermore to better show the efficiency of the method, the CPU time of the presented
method versus N is shown in Figure 4 and the log-linear graph for better vision, is plotted. As we can see, the
presented method has desirable speed.
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Figure 2: Solution of the Tacoma Narrows Bridge equation.
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Figure 3: Euclidean norm of error versus N .
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Figure 4: CPU time of the presented method versus N .

Table 1: Comparison the different values of y, between the proposed method and the analytical solution.

t N The proposed method CPU time(s) Analytical solution Absolute error

0 500 0 0.087 0 0

π/3 1000 0.64948838 0.276 0.64951905 3.0673e-05

π/4 1500 0.66665205 0.493 0.66666667 1.4620e-05

3π/4 2000 -0.98992890 0.786 -0.98994949 2.0590e-05

3π/2 2500 -0.00001513 1.166 0 1.5128e-05

π 3000 -1.39998939 1.583 -1.4 1.0610e-05

3π/5 3500 -0.49602001 2.032 -0.49602756 7.5500e-06

6π/5 4000 -1.17180962 2.553 -1.17180948 1.400e-07

2π 4500 0.00000804 3.108 0 8.040e-06

3π/8 5000 0.55473719 3.778 0.55473785 6.6000e-07

9π/4 5500 -1.08422513 4.517 -1.08423040 5.2700e-06

3π 6000 -0.00000551 5.397 0 5.5100e-06

3π/4 6500 -0.98994754 6.098 -0.98994949 1.9500e-06

3π/2 7000 -0.00000193 6.974 0 1.9300e-06

3π/5 7500 -0.49602565 7.816 -0.49602756 1.9100e-06

6π/5 8000 -1.17180951 8.805 -1.17180948 3.0000e-08

9π/4 8500 -1.08422819 9.918 -1.08423040 2.2100e-06

2π 9000 0.00000201 11.098 0 2.0097e-06

9π/5 9500 0.74642344 12.203 0.74642355 1.1000e-07

12π/5 10000 -1.39488200 13.478 -1.39488289 8.9000e-07

π 10500 -1.39999913 14.863 -1.4 8.7000e-07

3π 11000 -0.00000164 15.831 0 1.6400e-06
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4 Conclusion

In this paper, the fantastic trapezoidal method is proposed for the numerical solution of the non-smooth Tacoma
Narrows Bridge equation. The method can be easily applied to any type of non-smooth initial value problems.
According to the numerical illustrations, the accuracy and the speed of the method is satisfactory. Furthermore, by
using the simple iteration method for solving the root finding problem appeared in the method, the CPU time of
the method is significantly reduced. Further research in the usage of the presented method to solve the non-smooth
boundary value problems will be interesting.

References

[1] G. Arioli and F. Gazzola, A new mathematical explanation of what triggered the catastrophic torsional mode of the
Tacoma Narrows Bridge, Appl. Math. Model. 39 (2015), no. 2, 901–912.

[2] R. Burden and J. Faires, Numerical analysis, Available Titles CengageNOW Series, Cengage Learning, 2004.

[3] M. Ghaznavi and M.H. Noori Skandari, An efficient pseudo-spectral method for nonsmooth dynamical systems,
Iran. J. Sci. Technol. Trans. A: Sci. 42 (2018), no. 2, 635–646.

[4] A. C Lazer and P.J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections
with nonlinear analysis, SIAM Rev. 32 (1990), no. 4, 537–578.

[5] S. Mahmoud and X. Chen, A verified inexact implicit Runge-Kutta method for nonsmooth ODEs, Numer. Algo-
rithms 47 (2008), no. 3, 275–290.

[6] P.J. McKenna, Large torsional oscillations in suspension bridges revisited: fixing an old approximation, Amer.
Math. Month. 106 (1999), no. 1, 1–18.

[7] M.A. Mehrpouya and S. Fallahi, A modified control parametrization method for the numerical solution of bang-bang
optimal control problems, J. Vibr. Control 21 (2015), no. 12, 2407–2415.

[8] Mohammad A Mehrpouya, A modified pseudospectral method for indirect solving a class of switching optimal
control problems, Proc. Inst. Mech. Engin. Part G: J. Aerospace Engin. 234 (2020), no. 9, 1531–1542.

[9] M.A. Mehrpouya and M. Khaksar-e Oshagh, An efficient numerical solution for time switching optimal control
problems, Comput. Meth. Differ. Equ.9 (2021), no. 1, 225–243.


	Introduction
	The proposed approach
	Numerical illustrations
	Conclusion

