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Abstract

In this research, a semilinear fractional system involving a new operator is tackled. The existence of a distributional
solution is demonstrated and the Leray-Schauder degree method is used to deal with the existence of this system.
For the uniqueness of the solution, we use the contraction principle with some assumptions made on the semilinear
term Φ1 and Φ2. Then, using an example and the finite difference method a numerical investigation of this system is
conducted.
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1 Introduction

Classical partial differential equations can be generalized to fractional partial differential equations (FPDEs). In
recent years, fractional differential equations have received a lot of attention from researchers and this was due to its
applications in various field, such as: image processing [11], mechanics [3], biophysics [4], finance [14].

In this research, we study existence and uniqueness results for a new class of semi-linear fractional system by using
the Leray-Schauder degree theory. This problem has been studied in [1], where the authors studied the existence
of weak solution for a semilinear elliptic system of non-local equation involving the fractional Laplacian. Also, S.
Dob et al in [7] study the existence and the uniqueness of weak solution for the non-linear fractional elliptic system
using fixed point theorem, we notice that the problem mentioned abouve can be seen as the fractional setting of the
problem in [13], where H. lakhal et al. studies existence of weak solutions in the case of the classical Laplacian. What
distinguishes our work from the rest of the works mentioned previously is that, a new class of fractional problem is
used. This new class is so interesting that it owns new and spry features, in addition to that; it gives more accurate
and clearer results in the numerical study and the best weak formula where it appears as the main element in it.
Unlike fractional Laplacian. It is also, the fractional gradient similar to the ordinary gradient in appearance.

The fractional Laplacian has many of definitions, regardless of the well-known fractional Laplacian one. In our
work, the concept of distributional Riesz fractional gradient is used. In [18, 19] Shieh and Spector have considerd a
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new class of fractional partial differential equation based on the distributional Riez fractional derivatives, and they
examined the the existence and the uniqueness of results of the linear fractional problem relating the distributional
Riesz fractional gradient, proving it with Lax-Milgram theorem. Studies on these issues have continued since then
(see for example [15, 16, 2, 17]).
Now, we define the fractional gradient γ-gradient Dγ of order γ ∈ (0, 1), as follows:
▷ for ϑ ∈ Lp(Rd), p ∈ (1,∞), we have

Dγ
j ϑ =

∂

∂xj
(I1−γ ∗ ϑ), 0 < γ < 1, j = 1, . . . , d,

where
∂

∂xj
is taken in the distributional sense, for all v ∈ C∞

c (Rd),

〈
∂γϑ

∂xγ
j

, v

〉
= −

〈
(I1−γ ∗ ϑ), ∂v

∂xj

〉
= −

∫
Rd

(I1−γ ∗ ϑ) ∂v
∂xj

dx,

▷ In addition, for ϑ ∈ C∞
c (Ω), we wrote γ-gradient (Dγ) (see Section 1, p.3 in [18]) by

Dγϑ = I1−γ ∗Dϑ.

with Iγ denoting the Riesz potential of order γ, 0 < γ < 1:

(Iγ ∗ ϑ)(x) = cd,1−γ

∫
Rd

ϑ(y)

|x− y|d−γ
dy, which cd,γ = 2γπ− d

2
Γ(d+γ+1

2 )

Γ( 1−γ
2 )

.

For more detaile about fractional gradient s-gradient see ([15, 5, 18, 19, 20]) and the referenses therien. As it is shown
in [18]. Dγ has nice properties for ϑ ∈ C∞

c (Rd), namely it coincides with the fractional Laplacian as follows:

(−∆)γϑ = −Dγ .Dγϑ.

Where, for 0 < γ < 1,

(−∆)γϑ(x) = c2d,γ lim
ϵ→0

∫
Rd

ϑ(x)− ϑ(y)

|x− y|d+2γ
Xϵ(x, y)dy =

1

2
c2d,γ

∫
Rd

ϑ(x+ y) + ϑ(x− y)− 2ϑ(x)

|y|d+2γ
dy.

Furthermore, Schikorra et al. in [21] found that Dγ .(Dγu(x)) is a fractional particular type of 2-Laplacian, which
is defined by

divγ(Dγu(x)) = Dγ .(Dγu(x)) =

d∑
j=1

∂γ

∂xγ
j

∂γ

∂xγ
j

u(x).

In the present research, we apply Leray-Schauder degree theory to prove some existence results in a Bessel Potential
space. This work was inspired by [16], where we developed an equation into the following semilinear fractional elliptic
system 

−Dγ .(Dγu) + Φ1(x, u, v) = Ψ1(x) in Ω,

−Dγ .(Dγv) + Φ2(x, u, v) = Ψ2(x) in Ω,

u = v = 0 on Rd/Ω.

(1.1)

Where Ω ⊂ Rd is a bounded open domain, with Lipshitz boundary, γ ∈ (0, 1) with 2γ < d, (Ψ1,Ψ2) ∈ (L2(Ω)×L2(Ω))
and Φ1(x, k, p),Φ2(x, k, p) : Ω×R×R → R measurable on x ∈ Ω and continuous on k, p ∈ R. As well {−Dγ .(Dγ(u))}
is a nonlocal operator defined in [15] in the duality sense. The main benefit of this nonlocal operator is its rotational
invariance. It is well-known in harmonic analysis that the only higher dimensional operator is translational and
rotational invariant is the Riesz operator.

The problem studied in [16] is a special case of the problem (1.1) where the authors studied the existence and the
uniqueness results for semilinear fractional problem involving the non-local operator −Dγ .(Dγ(u)). Then, Abada et
al. in [2] were pioneers in studying the existence and the uniqueness of distributional solution for a nonlinear problem
including the distributional Riesz derivative and they suggest Leray-Schauder degree theorem. At last, Slimani et al.
in [17] used fixed point theorem to prove the existence result for convection-reaction fractional problem. It is worth
noting that our problem is more broad than the previous work mentioned above, it is complementary.
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The outline of the article is as follows. First, in the coming section we give some preliminary results. Section
3 contains a fixed point formulation of our system and the statement of results. In section 4 we prove existence of
the distributional solution for the system (1.1) by using the Leray-Schauder degree theory, and in section 5 we give
some assumptions on functions Φ1 and Φ2 to prove the uniqueness of distributional solution. In section 6 we present
a numerical example to illustrate the usefulness of the finite difference method. Finally, we end this research by a
conclusion.

2 Preliminaries

In this section, we will introduce some fractional Sobolev spaces Xγ,2(Rd), Lγ,2(Rd) and Lγ,2
0 (Ω) in a bounded

domain Ω ⊂ Rd with Lipschitz boundary. For more details (see [18, 15]).

Definition 2.1. Let γ ∈ (0, 1). if ϑ ∈ C∞
c (Rd), we define the space

Xγ,2(Rd) = C∞
c (Rd)

∥.∥
Xγ,2(Rd) ,

where the norm
∥ϑ∥2Xγ,2(Rd) = ∥ϑ∥2L2(Rd) + ∥Dγϑ∥2L2(Rd).

Definition 2.2. Let γ ∈ R+. We will defined The Bessel potential space as follows:

Lγ,2(Rd) = gγ(L
2(Rd)).

Where the Bessel potential gγ are defined (see Section 2, p.7 in [18] ) follow:

gγ(x) =
1

(4π)
γ
2 Γ(γ2 )

∫ +∞

0

e
−π|x|2

δ e
−δ
4π δ

γ−d
2

dδ

δ
,

in the sense that every ϑ ∈ Lγ,2(Rd) can written as

ϑ = gγ ∗ f,

for some f ∈ L2(Rd). With norm ∥ϑ∥Lγ,2(Rd) = ∥f∥L2(Rd).

Definition 2.3. Let Ω ⊂ Rd be open, γ ∈ (0, 1). We define the space

Lγ,2
0 (Ω) = {ϑ ∈ Lγ,2(Rd);ϑ = 0 in Rd/Ω}.

Theorem 2.4. (see [18]).If γ is a non-negative integer and 1 < p < ∞, then Lγ,p(Rd) coinsides with the space
W γ,p(Rd), the norms in the two spaces being equivalent. This conclusion holds for any real γ ∈ (0, 1) if p = 2.

Remark 2.5. We notice that, from Theorem 2.4 records the result of Calderón mentioned in the introduction in the
integer setting, and more generally, in combination with (Theorem 1.7 in [18]) shows that,

Xγ,2(Rd) = Lγ,2(Rd) = W γ,2(Rd).

Taking the space L2(Ω)× L2(Ω), with the norm

∥(ϑ, v)∥L2(Ω)×l2(Ω) = ∥ϑ∥L2(Ω) + ∥v∥L2(Ω).

Next, we consider the space Lγ,2
0 (Ω)× Lγ,2

0 (Ω), with the norme denote by ∥(., .)∥Lγ,2
0 (Ω)×Lγ,2

0 (Ω)

∥(ϑ, v)∥Lγ,2
0 (Ω)×Lγ,2

0 (Ω) = ∥ϑ∥Lγ,2
0 (Ω) + ∥v∥Lγ,2

0 (Ω).
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Proposition 2.6. (Fractional Poincaré inequality, Lemma 3.2 of [15]). Let γ ∈ (0, 1). Then there exists a constant
CP = C(d,Ω)/γ > 0 such that

∥ϑ∥L2(Ω) ≤ CP ∥Dγϑ∥L2(Rd),

for all ϑ ∈ Lγ,2
0 (Ω).

Remark 2.7. Our remark is that:

� From the Proposition 2.6, we conclude that the norms
(
∥ϑ∥2L2(Rd) + ∥Dγϑ∥L2(Rd)

) 1
2 and ∥Dγϑ∥L2(Rd) are equiv-

alent norms in Lγ,2
0 (Ω).

� The space Lγ,2
0 (Ω) with the inner product

〈
ϑ, v

〉
Lγ,2

0 (Rd)
=

∫
Rd

Dγϑ.Dγvdx,

is a Hilbert space.

Theorem 2.8. [18] (Fractional Sobolev inequality). Let 1 < p < ∞ and γ ∈ (0, 1) be such that γp < d. Then there
exists a constant C = C(d, p, γ) > 0 such that

∥ϑ∥Lp∗ (Rd) ≤ C∥Dγϑ∥Lp(Rd),

for all ϑ ∈ Lγ,p(Rd), where p∗ = dp
d−γp .

Proposition 2.9. [15] For 0 < γ ≤ 1 and 1 ≤ q ≤ 2∗, where 2∗ =
2d

d− 2γ
. Then, by the Sobolev-Poincaré inequalities,

we have the embeddings
Lγ,2
0 (Ω) ↪→ Lq(Ω).

We recall that those embeddings are compact for 1 ≤ q < 2∗.

Remark 2.10. For given ϑ, v ∈ Lγ,2
0 (Ω) and A : Rd → Rd×d is a (not necessarily symmetric) matrix, Ω ⊂ Rd is a

bounded open set with Lipschitz boundary, we put the bilinear form

bA(ϑ, v) =

∫
Rd

ADγϑ(x).Dγv(x)dx.

Depending on the expansion of the results in [6], [9], [10], [12] and [20] we obtain

〈
−Dγ .(ADγϑ), v

〉
=

∫
RN

ADγϑDγv,

when ADγϑ ∈ [L2(Rd)]d.

Proposition 2.11. [15]
(
bA, L

γ,2
0 (Ω)

)
is a closed, coercive, regular Dirichlet form.

Definition 2.12. We say that u, v ∈ Lγ,2
0 (Ω) is a distributional solution for the problem (1.1) if for any ϕ1, ϕ2 ∈

Lγ,2
0 (Ω), we have{∫

Rd D
γu(x).Dγϕ1(x)dx = λ

∫
Ω
Ψ1(x)ϕ1(x)dx− λ

∫
Ω
Φ1(x, u, v)ϕ1(x)dx, ∀ϕ1 ∈ Lγ,2

0 (Ω).∫
Rd D

γv(x).Dγϕ2(x)dx = λ
∫
Ω
Ψ2(x)ϕ2(x)dx− λ

∫
Ω
Φ2(x, u, v)ϕ2(x)dx, ∀ϕ2 ∈ Lγ,2

0 (Ω).
(2.1)
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3 Fixed point formulation of the proplem (1.1) and Statement results

In this section, in order to prove the result, let us assume the semilinear function Φ1(x, k, p) and Φ2(x, k, p) satisfies
the following hypothesis

(H1) Growth hypothesis

|Φ1(x, k, p)| ≤ a1(x) + h1|k|+ r1|p| ∀k, p ∈ R, a.e. x ∈ Ω,

|Φ2(x, k, p)| ≤ a2(x) + h2|k|+ r2|p| ∀k, p ∈ R, a.e. x ∈ Ω,

where a1, a2 ∈ L2(Ω), and h1, h2, r1, r2 ∈ R+.

(H2) Sign hypothesis:

Φ1(x, k, p)k ≥ 0 ∀k, p ∈ R a.e x ∈ Ω.

Φ2(x, k, p)p ≥ 0 ∀k, p ∈ R a.e x ∈ Ω.

▷ Now we will write the following linear problem.

For u, v ∈ L2(Ω), we define the following linear problem
−Dγ .(Dγu) = λΨ1(x)− λΦ1(x, u, v) in Ω,

−Dγ .(Dγv) = λΨ2(x)− λΦ2(x, u, v) in Ω,

u = v = 0 on Rd/Ω,

(3.1)

where Ψ1,Ψ2 ∈ L2(Ω).

Proposition 3.1. Thanks to hypothesis (H1), the problem (3.1) has a unique distributional solution (u, v) ∈ Lγ,2
0 (Ω)×

Lγ,2
0 (Ω).

Proof . For all (u, v) ∈ L2(Ω)× L2(Ω), we have Φ1(., u, v),Φ2(., u, v) ∈ L2(Ω). We say (u, v) ∈ Lγ,2
0 (Ω)× Lγ,2

0 (Ω) is
a distributional solution of (3.1) if{∫

Rd D
γu(x).Dγϕ1(x)dx = λ

∫
Ω
Ψ1(x)ϕ1(x)dx− λ

∫
Ω
Φ1(x, u, v)ϕ1(x)dx, ∀ϕ1 ∈ Lγ,2

0 (Ω).∫
Rd D

γv(x).Dγϕ2(x)dx = λ
∫
Ω
Ψ2(x)ϕ2(x)dx− λ

∫
Ω
Φ2(x, u, v)ϕ2(x)dx, ∀ϕ2 ∈ Lγ,2

0 (Ω).
(3.2)

With

a1(., .) : L
γ,2
0 (Ω)× Lγ,2

0 (Ω) → R

(u, ϕ1) 7→ a1(u, ϕ1) =

∫
R
Dγu(x).Dγϕ1(x)dx,

l1(.) : L
γ,2
0 (Ω) → R

w 7→ l(ϕ1) = λ

∫
Ω

Ψ1(x)ϕ1(x)dx− λ

∫
Ω

Φ1(x, u, v)ϕ1(x)dx ∀λ ∈ [0, 1].

And

a2(., .) : L
γ,2
0 (Ω)× Lγ,2

0 (Ω) → R

(v, ϕ2) 7→ a2(v, ϕ2) =

∫
R
Dγv(x).Dγϕ2(x)dx,

l2(.) : L
γ,2
0 (Ω) → R

w 7→ l(ϕ2) = λ

∫
Ω

Ψ2(x)ϕ2(x)dx− λ

∫
Ω

Φ2(x, u, v)ϕ2(x)dx ∀λ ∈ [0, 1].
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Next, we prove the bilinear form a1(., .) and a2(., .) are coercive, ∀v ∈ Lγ,2
0 (Ω)

a1(v, v) =

∫
R
|Dγv(x)|2dx

= ∥v∥2
Lγ,2

0 (Ω)
,

thus, a1(., .) is coercive.
In the same way, we prove that a2(., .) is coercive.
Then, for prove the bilinear form a1(., .), a2(., .) and the linear form l1(.), l2(.) are continuous. Using the Cauchy-
Schwarz inequality, for all u, ϕ1 ∈ Lγ,2

0 (Ω)

|a1(u, ϕ1)| ≤ ∥Dγu∥L2(Rd)∥Dγϕ1∥L2(Rd)

= ∥u∥Lγ,2
0 (Ω)∥ϕ1∥Lγ,2

0 (Ω).

Therefore a1(., .) is continuous.
For all ϕ1 ∈ Hγ

0 (Ω). According to Proposition 2.6 and the Hölder inequality and hypothesis (H1), we have

|l1(ϕ1)| ≤ ∥Ψ1∥L2(Ω)∥ϕ1∥L2(Ω) +

∫
Ω

|Φ1(x, u, v)||ϕ1(x)|dx

≤ CP ∥Ψ1∥L2(Ω)∥ϕ1∥Lγ,2
0 (Ω) + CP

(
∥a1∥L2(Ω) + h1∥u∥L2(Ω) + r1∥v∥L2(Ω)

)
∥ϕ1∥Lγ,2

0 (Ω).

Finally
|l1(ϕ1)| ≤ CP

(
∥a1∥L2(Ω) + h1∥u∥L2(Ω) + r1∥v∥L2(Ω) + ∥Ψ∥L2(Ω)

)
∥ϕ1∥Lγ,2

0 (Ω), (3.3)

hence, l1(.) is continuous.
In the same way, we prove that a2(., .) and l2(.) are continous. As result, we may apply the Lax-Milgram theorem and
we conclude the problem (3.1) has a unique distributional solution (u, v) ∈ Lγ,2

0 (Ω)× Lγ,2
0 (Ω). □

The following theorem is main result

Theorem 3.2. Under the hypothesis (H1) and (H2), the problem (1.1) has a distributional solution (u, v) ∈ Lγ,2
0 (Ω)×

Lγ,2
0 (Ω).

The following operator is well defined H : [0, 1] × L2(Ω) × L2(Ω) → Lγ,2
0 (Ω) × Lγ,2

0 (Ω) such that H(λ, u, v) = (u, v)
where (u, v) is the solution of (3.1).
We observe that problem (1.1) is equivalent to the problem{

(u, v) ∈ L2(Ω)× L2(Ω),

H(1, u, v) = (u, v).
(3.4)

4 Several Lemmas and Main Result

In the present section, we will use the Leray-Shauder degree theory to obtain existence result of the system (1.1).

Lemma 4.1. (Priori estimate) We will show that
∃R > 0, ∀(u, v) ∈ L2(Ω)× L2(Ω) such that{

H(λ, u, v) = (u, v)

λ ∈ [0, 1], (u, v) ∈ L2(Ω)× L2(Ω)
⇒ ∥(u, v)∥L2(Ω)×L2(Ω) < R+ 1.

Proof . Let H(λ, u, v) = (u, v) = (u, v), ∀λ ∈ [0, 1], which mean that{∫
Rd D

γu(x).Dγϕ1(x)dx = λ
∫
Ω
Ψ1(x)ϕ1(x)dx− λ

∫
Ω
Φ1(x, u, v)ϕ1(x)dx, ∀ϕ1 ∈ Lγ,2

0 (Ω).∫
Rd D

γv(x).Dγϕ2(x)dx = λ
∫
Ω
Ψ2(x)ϕ2(x)dx− λ

∫
Ω
Φ2(x, u, v)ϕ2(x)dx, ∀ϕ2 ∈ Lγ,2

0 (Ω).
(4.1)
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We take ϕ1(x) = u(x) and ϕ2(x) = v(x), according the hypothesis (H2), we obtain{∫
R |Dγu(x)|2dx ≤ ∥Ψ1∥L2(Ω)∥u∥L2(Ω)∫
R |Dγv(x)|2dx ≤ ∥Ψ2∥L2(Ω)∥v∥L2(Ω).

Moreover, from the Proposition 2.6, implies that{
∥u∥L2(Ω) ≤ C2

P ∥Ψ1∥L2(Ω)

∥v∥L2(Ω) ≤ C2
P ∥Ψ2∥L2(Ω),

(4.2)

taking the sum of the two inequalities of (4.2), we obtain

∥(u, v)∥L2(Ω)×L2(Ω) ≤ C2
P ∥Ψ1∥L2(Ω) + C2

P ∥Ψ2∥L2(Ω), (4.3)

thus
∥(u, v)∥L2(Ω)×L2(Ω) < R+ 1.

We can deduce from this that for all t ∈ [0, 1] there are no solutions to the equation H(t, u, v) = (u, v) in the boundary
of the sphere B(0, R+ 1) = {v ∈ L2(Ω) : ∥(u, v)∥L2(Ω)×L2(Ω) < R+ 1.}. □

Lemma 4.2. Under the hypothesis (H1), H: [0, 1]× L2(Ω)× L2(Ω) → L2(Ω)× L2(Ω) is continuous.

Proof . Let {λn, un, un}n∈N ⊂ [0, 1] × L2(Ω) × L2(Ω) which converges to (λ, u, v) in [0, 1] × L2(Ω) × L2(Ω) when
n → +∞. We will show that H(λn, un, vn) converges to H(λ, u, v), we pose H(λn, un, vn) = (un, vn) and H(λ, u, v) =
(u, v), we obtain{∫

Rd D
γun(x).D

γϕ1(x)dx =
∫
Ω
λnΨ1(x)ϕ1(x)dx−

∫
Ω
λnΦ1(x, un, vn)ϕ1(x)dx, ∀ϕ1 ∈ Lγ,2

0 (Ω).∫
Rd D

γvn(x).D
γϕ2(x)dx =

∫
Ω
λnΨ2(x)ϕ2(x)dx−

∫
Ω
λnΦ2(x, un, vn)ϕ2(x)dx, ∀ϕ2 ∈ Lγ,2

0 (Ω),
(4.4)

and {∫
Rd D

γu(x).Dγϕ1(x)dx =
∫
Ω
λΨ1(x)ϕ1(x)dx−

∫
Ω
λΦ1(x, u, v)ϕ1(x)dx, ∀ϕ1 ∈ Lγ,2

0 (Ω).∫
Rd D

γv(x).Dγϕ2(x)dx =
∫
Ω
λΨ2(x)ϕ2(x)dx−

∫
Ω
λΦ2(x, u, v)ϕ2(x)dx, ∀ϕ2 ∈ Lγ,2

0 (Ω),
(4.5)

We make the diffirence between (4.4) and (4.5), we obtain
∫
Rd

(
Dγun −Dγu

)
.Dγϕ1dx =

∫
Ω
(λn − λ)Ψ1ϕ1dx−

∫
Ω
(λΦ1(x, u, v)− λnΦ1(x, un, vn))ϕ1dx,

∀ϕ1 ∈ Lγ,2
0 (Ω).∫

Rd

(
Dγvn −Dγv

)
.Dγϕ2dx =

∫
Ω
(λn − λ)Ψ2ϕ2dx−

∫
Ω
(λΦ2(x, u, v)− λnΦ2(x, un, vn))ϕ2dx,

∀ϕ2 ∈ Lγ,2
0 (Ω).

(4.6)

We take ϕ1(x) = un(x) − u(x) and ϕ2(x) = vn(x) − v(x) and apply the Cauchy-Schwarz inequality and Proposition
2.6, we obtain {

∥un − u∥L2(Ω) ≤ C2
P

(
|λn − λ|∥Ψ1∥L2(Ω) + ∥λΦ1(., u, v)− λnΦ1(., un, vn)∥L2(Ω)

)
∥vn − v∥L2(Ω) ≤ C2

P

(
|λn − λ|∥Ψ2∥L2(Ω) + ∥λΦ2(., u, v)− λnΦ2(., un, vn)∥L2(Ω)

)
,

(4.7)

we have (un, vn) → (u, v) in L2(Ω)× L2(Ω) implies that
un → u a.e on Ω

|un| < G a.e on Ω,

or G ∈ L2(Ω),

and


vn → v a.e on Ω

|vn| < K a.e on Ω,

or K ∈ L2(Ω),

from the hypothesis (H1), we obtain{
Φ1(x, un, vn) → Φ1(x, u, v), a.eon Ω

|Φ1(x, un, vn)| < a(x) + h1G+ r1K ∈ L2(Ω) a.e on Ω,
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and {
Φ2(x, un, vn) → Φ2(x, u, v), a.eon Ω

|Φ2(x, un, vn)| < a(x) + h2G+ r2K ∈ L2(Ω) a.e on Ω,

From Lebesgue convergence theorem, Φ1(x, un, vn) → Φ1(x, u, v) in L2(Ω) and we have (λn)n∈N converges to λ when
n → +∞. Therfore (un, vn) converges to (u, v) in L2(Ω)×L2(Ω). So H is continuous from [0, 1]×L2(Ω)×L2(Ω) into
L2(Ω)× L2(Ω). □

Lemma 4.3. Under the hypothesis (H1), {H(λ, u, v), t ∈ [0, 1], (u, v) ∈ BR+1} is relatively compact in L2(Ω)×L2(Ω).

Proof . Let (λn)n∈N ⊂ [0, 1] and (un, vn)n∈N ⊂ BR+1{∣∣ ∫
Rd D

γun(x).D
γun(x)dx

∣∣ =
∣∣ ∫

Ω
λnΨ1(x)un(x)dx−

∫
Ω
λnΦ1(x, un, vn)un(x)dx

∣∣∣∣ ∫
Rd D

γvn(x).D
γvn(x)dx

∣∣ =
∣∣ ∫

Ω
λnΨ2(x)vn(x)dx−

∫
Ω
λnΦ2(x, un, vn)vn(x)dx

∣∣,
applying the Cauchy-Schwarz inequality, implies that{

∥un∥2L2(Ω) ≤ ∥Ψ1∥L2(Ω)∥un∥L2(Ω) + ∥Φ1(., un, vn)∥L2(Ω)∥un∥L2(Ω)

∥vn∥2L2(Ω) ≤ ∥Ψ2∥L2(Ω)∥vn∥L2(Ω) + ∥Φ2(., un, vn)∥L2(Ω)∥vn∥L2(Ω).

From the hypothesis (H1) the sequence {Φ1(x, un, vn)}n∈N and {Φ2(x, un, vn)}n∈N are bounded in L2(Ω) and the
Proposition 2.6, we obtain {

∥un∥Lγ,2
0 (Ω) ≤ CP

(
∥Ψ1∥L2(Ω) + ∥Φ1(., un, vn)∥L2(Ω)

)
.

∥vn∥Lγ,2
0 (Ω) ≤ CP

(
∥Ψ2∥L2(Ω) + ∥Φ2(., un, vn)∥L2(Ω)

)
.

(4.8)

By the combination of two inequalities of the equation (4.8), we obtain

∥(un, vn)∥Lγ,2
0 (Ω)×Lγ,2

0 (Ω) ≤ M,

whereM = CP

(
∥Ψ1∥L2(Ω) +R1

)
+CP

(
∥Ψ2∥L2(Ω) +R2

)
. Consequently {(un, vn)}n∈N is bounded in Lγ,2

0 (Ω)×Lγ,2
0 (Ω)

so (un, vn) ⇀ (u, v) in Lγ,2
0 (Ω) × Lγ,2

0 (Ω), according to Proposition 2.9 we conclude that there is a subsequence of
{(unk

, vnk
)}k∈N which converges to (u, v) in L2(Ω)× L2(Ω). □

Now we show the proof of Theorem 3.2, where it given existence of distributional solution for problem (1.1).

Proof .[Proof of Theorem 3.2] Thanks to the previous lemmas 4.1,4.2 and 4.3 we concluded that d(Id−H(t, ., .), B̄R+1, 0)
well defined, by the homotopy invariance property, we find

d(Id −H(1, ., .), BR+1, 0) = d(Id −H(0, ., .), BR+1, 0)

= d(Id, BR+1, 0) = 1 ̸= 0,

therefore
(u, v)−H(1, u, v) = 0 ⇔ (u, v) = H(1, u, v).

Hence we have showed that (u, v) is a solution of (1.1). □

5 Uniqueness of distributional solution

In this section, we will make some assumption about the functions Φ1 and Φ2 to prove the uniqueness of distribu-
tional solution the problem (1.1).

There are Φ1 and Φ2 Lipschitz continuous functions with respect to the second variable, that is means there exists con-
stants c1, c2 ∈ R+ for almost every x ∈ Ω and for any k = (k1, k2), k̃ = (k̃1, k̃2), l = (l1, l2), l̃ = (l̃1, l̃2) ∈ L2(Ω)×L2(Ω),{

∥Φ1(x, k)− Φ1(x, k̃)∥L2(Ω) ≤ c1∥k − k̃∥L2(Ω)×L2(Ω)

∥Φ2(x, l)− Φ2(x, l̃)∥L2(Ω) ≤ c1∥l − l̃∥L2(Ω)×L2(Ω).
(5.1)

As a result, proving that H is contraction is sufficient to show that H admet a unique fixed point
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Lemma 5.1. The operator H is contraction from L2(Ω)× L2(Ω) to L2(Ω)× L2(Ω) for all λ ∈ [0, 1].

Proof . Let (u1, u2), (v1, v2) ∈ L2(Ω)× L2(Ω) and for all λ ∈ [0, 1], we have{∫
Rd D

γu1(x).D
γϕ1(x)dx = λ

∫
Ω
Ψ1(x)ϕ1(x)dx− λ

∫
Ω
Φ1(x, u1, v1)ϕ1(x)dx∫

Rd D
γv1(x).D

γϕ2(x)dx = λ
∫
Ω
Ψ2(x)ϕ2(x)dx− λ

∫
Ω
Φ2(x, u1, v1)ϕ2(x)dx,

and {∫
Rd D

γu2(x).D
γϕ1(x)dx = λ

∫
Ω
Ψ1(x)ϕ1(x)dx− λ

∫
Ω
Φ1(x, u2, v2)ϕ1(x)dx∫

Rd D
γv2(x).D

γϕ2(x)dx = λ
∫
Ω
Ψ2(x)ϕ2(x)dx− λ

∫
Ω
Φ2(x, u2, v2)ϕ2(x)dx.

We make the difference between the two previous systems and we take ϕ1 = u1 − u2, ϕ2 = v1 − v2 and apply
Cauchy-Schwarz inequality, we ontain∥u1 − u2∥2Lγ,2

0 (Ω)
≤ ∥Φ1(., u1, v1)− Φ1(., u2, v2)∥L2(Ω)∥u1 − u2∥L2(Ω)

∥v1 − v2∥2Lγ,2
0 (Ω)

≤ ∥Φ2(., u1, v1)− Φ2(., u2, v2)∥L2(Ω)∥v1 − v2∥L2(Ω)

Thanks to Proposition 2.6, and hypothesis (5.1), we get{
∥u1 − u2∥L2(Ω) ≤ CP c1∥(u1, v1)− (u2, v2)∥L2(Ω)×L2(Ω)

∥v1 − v2∥L2(Ω) ≤ CP c2∥(u1, v1)− (u2, v2)∥L2(Ω)×L2(Ω),
(5.2)

by adding the two inequalities of (5.2), we arrive at

∥(u1, v1)− (u2, v2)∥L2(Ω)×L2(Ω) ≤ CP (c1 + c2)∥(u1, v1)− (u2, v2)∥L2(Ω)×L2(Ω).

That is means

∥H(λ, u1, v1)−H(λ, u2, v2)∥L2(Ω)×L2(Ω) ≤ CP (c1 + c2)∥(u1, v1)− (u2, v2)∥L2(Ω)×L2(Ω)

we conclude that if CP (c1 + c2) < 1 then H is a contraction.
Finally, we arrived to the following result: H is a contraction if CP (c1 + c2) < 1 and applying Banach contraction
principle Theorem it results that H admits a unique fixed point (u, v) ∈ L2(Ω) × L2(Ω), hence the problem (1.1)
admet a unique distributional solution.

□

6 Numerical Example

The numerical example are based on the finite difference method (FDM) for the numerical approximation of the
solution to the nonlinear fractional elliptic system (1.1), the next results were shown after a lot of mathematical
calculations. For more informations (see [8])

In this Section, we present the numerical simulations, we use the following system
−D

1
2 .(D

1
2u(x, y)) + Φ1(x, y, u(x, y), v(x, y)) = Ψ1(x, y) in Ω,

−D
1
2 .(D

1
2 v(x, y)) + Φ2(x, y, u(x, y), v(x, y)) = Ψ2(x, y) in Ω,

u = v = 0 on R2 \ Ω,
(6.1)

where Ω =]0, 1[×]0, 1[, the functions Φ1 and Φ2 are written in terms of u and v as follows

Φ1(x, y, u(x, y), v(x, y)) = −4x(y − 1)2u
1
2 − 4x2(y − 1)v

1
2 ,

Φ2(x, y, u(x, y), v(x, y)) = −4y2(x− 1)v
1
2 − 4y(x− 1)2u

1
2 ,

and we can write the second terms Ψ1 and Ψ2 as next

Ψ1(x, y) = −4x2y2(y − 1)− 8x2(y − 1)y2(x− 1)− 4x4(y − 1) + 8x4y(y − 1),
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Ψ1(x, y) = −4yx2(x− 1)2 − 8yx2(x− 1)2(y − 1)− 4y3(x− 1)2 + 8y3x(x− 1)2.

In this particular case, the solution can be computed exactly and it reads as follows,

u(x, y) = x4(y − 1)4,

v(x, y) = y4(x− 1)4.

The computational results are shown for our model in Table 1. We can notice that in the two-dimensional case,
the predicted convergence rate is reached shortly. Since the computations are lengthy, we have tested our system only
with some numbers of steps N . In Fig. 3, we show the computational errors evaluated for different values of N .

/ / u v /
N h max-error max-error r
35 0.0278 1.3650× 10−11 1.1657× 10−14 0.0417
40 0.0244 3.0754× 10−12 3.5565× 10−15 0.0366
45 0.0217 1.0939× 10−12 1.2084× 10−15 0.0326
60 0.0164 5.3331× 10−13 6.9390× 10−17 0.0246
65 0.0152 3.6230× 10−13 2.7303× 10−17 0.0227

Table 1: Computational error and estimated convergence rate r for the matrix transformation method applied to the finite difference
approximation of (6.1).

Figure 1: Plot of the absolute error. Figure 2: Plot of the absolute error of u. Figure 3: Plot of the absolute error of v.

7 Conclusion

In this research, we study the existence and the uniqueness of solution for semilinear fractional elliptic system
involving new operator. From the positive reports we received from evaluation of [16]. Some future works we will
continue the research in this line, extending the study from Lebegue space to Morrey spaces Lp,λ for suitable p and λ
and including also the numerical study of systems.
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