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Corrosion is one of the most important and common factors 
in the destruction of structures. Among all kinds of 
structures, corrosion of submerged structures is of great 
importance and prevalence due to the impossibility of 
direct visibility, high reconstruction cost and special 
environmental conditions. The work done in the field of 
corrosion of these structures has mainly dealt with 
modeling the problem in the form of mathematical 
formulation or using soft computing methods. The work 
that has established the connection between these two 
methods has not been done, to the best of our knowledge. 
This article aims to develop a model in order to estimate 
the chloride diffusion coefficient in rebar corrosion in 
submerged concrete structures. Present study seeks to 
address the estimation of chloride diffusion coefficient, 
which is one of the determinant factors in computing the 
corrosion time/rate of rebar’s. In this article, using the 
Monte Carlo sampling method and the formulas available 
for chloride diffusion coefficient, we produced 2000 
artificial data samples. A variety of methods such as 
support vector machines (e.g., linear, quadratic, cubic, 
Gaussian), K-nearest neighbors (fine, medium, coarse 
KNN), and two methods of ensemble learning (bagged 
tree, subspace discriminant) are applied to predict the 
chloride diffusion coefficient. The results indicated that the 
quadratic support vector method (with 93.5% accuracy) is 
the best technique in estimating the chloride diffusion 
coefficient. Best KNN model (medium KNN) and best 
ensemble method (bagged tree) have accuracy of 59.9% 
and 81.3%, resp. 
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1. Introduction 

The process of corrosion and destruction in a 

structure is generally divided into three stages. 

The first stage, which occurs in a very long 

time, is the time of the sample exposure until 

the chlorine or sulfate is fully dispersed at the 

surface of the structure. The second stage is 

the process of chlorine diffusion into the 

structure, and the exposure time of steel and 

rebar buried inside the concrete, during which 

the rebar is affected by destructive factors, 

resulting in forming corrosion cell in the 

structure. In the third stage, metal corrosion 

begins after the cell formation, which causes a 

destruction and area reduction in structure and 

rebar, resulting in creating a negative effect on 

the structural strength. Moreover, it is 

necessary to strengthen and repair the 

damaged structure in advance before 

conducting the third stage. Hence, it is 

essential to estimate and predict when the 

metal corrosion may begin. In this regard, 

detailed inspection and monitoring are 

required for structural performance and 

structural behavior. Fig. 1 presents a picture of 

a deteriorated rebar due to corrosion. 

 
Fig. 1. a picture of a deteriorated rebar due to 

corrosion. 

The corrosion rate depends on many 

parameters such as the initial diameter of the 

steel bar, the density and, weight of the steel 

lining, Faraday constant, steel elbow profile, 

the bandgap flexibility, Poisson ratio, concrete 

elastic modulus, creep coefficient, concrete 

thickness, concrete expansion coefficient, 

rebar penetration depth, corrosion product 

density, thickness of corrosion products for 

production, tensile stress on concrete, 

corrosion-resistant material, porous bonding 

thickness around steel/concrete, interface, 

chlorine concentration at surface, water to 

cement ratio and exposure time [1]. 

In this regard, the small number of effective 

parameters reduces the accuracy of the model 

and is not practical in some cases. In [2], for 

example, the corrosion procedure formula, 

known as the fib model (2006), was modeled 

for the Persian Gulf environment, and it was 

found that the formula is not accurate enough 

to model and estimate corrosion time in the 

concerned environment as a result of 

disregarding some parameters which act 

differently in different environments. Applying 

artificial intelligence-based methods, 

combining formulas, applying dissimilar 

formulas to generate samples, and 

interpolating the results in some unknown 

examples would contribute to solving the 

problem. 

It is noteworthy to mention that soft 

computing methods are powerful tools in 

finding the relationship between the corrosion 

rate and the factors affecting it. Atha and 

Jahanshahi [3] applied deep learning and 

neural network methods to detect corrosion. 

Moreover, corrosion flow in steel was 

investigated in [4] as such; the neural network 

was applied to find steel corrosion in concretes 

without cross reinforcement. In [3], artificial 

neural networks, support vector machines, 

regression and classification trees, linear 

regression and collective learning methods [5] 
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were used in order to compute the corrosion 

and pitting rates. 

Jiménez-Come et al. [6] adopted artificial 

intelligence-based methods to model steel 

corrosion behavior applying Classification 

Trees (CT), Discriminant Analysis (DA), K-

Neighbors (K-NN), Back-Propagation Neural 

Networks (BPNN), and Support Vector 

Machine (SVM) have been used. Furthermore, 

the researchers applied the aforementioned 

tools to inquire about the effect of chloride 

solutions NaCl and MgCl as well as different 

environmental conditions such as chlorine ion 

concentration, temperature, and pH on 

corrosion behavior. 

The Influence of Environmental Factors on 

Concrete Evaporation Rate is modeled in [7]. 

In [8], the neural network and fuzzy logic were 

to estimate the corrosion rate of a solution 

containing 3.5% by weight of salts. Chen and 

Zang [9] proposed an artificial immune pattern 

recognition (AIPR) method to classify the 

damages to the structure and detect the main 

parameters controlling chloride diffusion, 

applying long-range data using ensemble 

learning methods. To this end, the models 

were taught to use a dataset consisting of 

variables that described the composition of 

concrete mix materials, new and hard 

properties, field conditions, and chloride 

profiles. The hardening properties of SCCs, 

including compressive strength, flexural 

strength, tensile strength, water absorption, 

and electrical resistance, were contemplated as 

well in their study. Taffese and Sistonen [10] 

provided an artificial neural network (ANN) 

model to model the concrete corrosion 

processes in sewage ducts. Recent advances in 

computing approaches lead to successful 

employing soft computing and reliability 

based methods in civil engineering context 

[11–18]. 

Researchers in [4] employed resistivity and 

resistivity measurement methods in 

accordance with neural networks to evaluate 

the steel corrosion rate in concrete while 

disregarding reinforcement. The results 

revealed that the corrosion density of steel-

reinforced concrete could be predicted by 

applying an artificial neural network based on 

the parameters determined by two methods 

measuring non-destructive strength. In [19], 

some approaches based on a different neural 

network were suggested to assess corrosion at 

metal surfaces. In addition, soft computing 

approaches were successfully implemented by 

different researchers in the context of civil 

engineering for shear strength prediction of 

reinforced concrete shear wall [20], modeling 

of asphalt mixtures dynamic [21], forecasting 

sensitivity of treated subgrade soil [22], 

Durability and Resistance forcasting of 

Cement [23], moment capacity estimation of 

ferrocement members [24], etc. 

In this paper, we estimated the ion-chloride 

penetration coefficient applying soft-

computation methods. To the best of our 

knowledge, no study has researched the use of 

the artificial intelligence-based methods in 

estimating the chloride ion diffusion 

coefficient. Furthermore, as a result of the lack 

of appropriate datasets in this field (existing 

data are almost less than 100 training 

examples), an approach based on Markov 

Chain Monte Carlo (MCMC) sampling is used 

to generate 2000 data samples using diffusion-

related formulas addressed in literature. 200 

samples of this generated dataset are 

represented in Appendix 1. Regarding the 

objectives of this study, support vector support 

(SVM), K-nearest neighbors (KNN), and 
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ensemble learning methods were adopted. In 

the support vector machine method, four 

variants of SVM (namely linear, quadratic, 

cubic and Gaussian kernels) were considered. 

In the KNN, fine, medium, and coarse KNNs 

were adopted. Ensemble bagged tree and 

subspace discriminant was also examined in 

the ensemble learning method. MATLAB 

software was applied for modeling in the 

present study as well. In estimating the 

chloride diffusion coefficient, the SVM with 

quadratic order kernel and the accuracy of 

93.5% was selected as the best method. 

The outline of this article is as follows: In the 

second section, a brief overview of artificial 

intelligence-based methods is proposed. The 

third section describes a base model and the 

formulas used in the corrosion procedure. 

Section 4 is devoted for proposed 

methodology to produce artificial dataset for 

ANN models. Section 5 evaluates the accuracy 

of the developed models. Section 6 discusses 

about profits and limitations of proposed 

methodology, and the last section will 

conclude the study. 

2. An Overview of Soft Computing-

Based Methods 

Artificial neural networks (ANNs) are 

developed based on the mathematical models 

derived from the activity of neurons in the 

human neural network, in which a collection 

of sampled data is provided to train a network 

of layered neurons. The term ‘training’ refers 

to finding missing parameters that make an 

input have a specified output. The most 

common type of parameter is the synaptic 

weights of each neuron, reflecting the degree 

of significance for each of the input features in 

begetting the output. These weights act like the 

coefficients of a decision hyper plane 

equation, which separates the data from a 

specific output category from data from the 

other categories.  

 

Fig. 2. General scheme of an artificial neural 

network. 

Fig. 2 depicts the general schematic of 

artificial neural networks. What makes various 

neural network methods unique is the 

relationship between neurons, the network 

training method, manner of determining the 

values of the interface weights, and the type of 

mobility function for each neuron. The 

methods applied in this article are discussed 

below in brief. 

2.1. Support Vector Machine 

The supervised neural network methods 

require input training data and their expected 

output. Each input sample has several 

attributes that contain significant features 

affecting the output. An ANN is to compute 

the degree of significance of each input in 

producing an output value. In some neural 

networks, the concern is to provide a structure 

for the neural network in such a way that the 
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estimation error is minimized. In the SVM as a 

particular kind of neural network, 

nevertheless, in addition to reducing the 

estimation error, increasing the margin of the 

decision page for each of the classes is of the 

essence [25]. This feature enables the SVM to 

be better generalized to non-training data. The 

SVM loss function is defined as (Eq. 1). Fig. 3 

depicts how to separate input data applying the 

SVM decision surface. It also reveals the 

importance of increasing the margin between 

the decision surface and the data in different 

classes. 

min
1

2
||𝜔||

2
+ 𝐶 ∑ 𝜁𝑖

𝑛

𝑖=1

, 

𝑠. 𝑡. 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜁𝑖 ,   𝜁𝑖 ≥ 0. 𝑖 =
1, … , 𝑚.                                                                (1) 

Where, C is as a regularization term, balancing 

two criteria of maximum margin (𝜔) and 

minimum error (𝜁).  Moreover, x, w, b are 

input vector, weight matrix and bayas vector, 

resp.  

 
Fig. 3. Schematic representation of how to divide 

input data into two categories of output using the 

SVM decision surface. 

2.2. K-Nearest Neighbors 

KNN is a non-parametric classification 

method. It is an instance-based learning 

algorithm in which the function is 

approximated locally. An input data is 

assigned to the class or category, which is 

most common among its k nearest neighbors. 

And if k=1, the input is simply assigned to the 

class, to which the nearest neighbor belongs. 

Neighbors and nearest neighbors are computed 

applying the criterion 1/d, where d is a 

distance criterion. 

2.3. Ensemble Learning 

In machine learning, ensemble methods 

consists of a concrete finite set of alternative 

models to improve the predictive performance 

of the whole system than what could be 

obtained from any of the constituent learning 

algorithms alone. Machine learning ensemble 

typically allows for some flexible structure to 

exist among those alternatives. 

Different methods for ensemble learning have 

been proposed in literature. Ensemble bagged 

tree, and ensemble subspace discriminant are 

two wellknown ensemble methods. In 

ensemble bagged tree, firstly some 

bootstrapped datasets are generated.  For each 

bootstrapped set, the number of elements 

selected is the same as the original training 

dataset, but elements are chosen randomly 

with replacement. Thereafter, each of the 

bootstrapped datasets is given to an instance of 

the learning model used by the ensemble (e.g., 

a decision tree) to be trained on. 

Subspace discriminant is another ensemble 

algorithm that combines the predictions from 

multiple decision trees trained on different 
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subsets of columns in the training dataset. 

Randomly varying the columns used to train 

each contributing member of the ensemble has 

the effect of introducing diversity into the 

ensemble and, in turn, can lift performance 

over using a single decision tree. 

3. Introducing the Corrosion Model 

Given the different environmental conditions 

in different geographical regions and the use 

of distinct materials in different countries, the 

introduction and implementation of a uniform 

global bylaw are not possible; consequently, 

there have been many studies on the rate and 

time of corrosion in different countries. In this 

paper, assuming the full saturation of concrete, 

chloride emission was contemplated as the 

main cause of chloride penetration in concrete. 

In the following, we will review two famous 

models of corrosion ([26],
 
[27]), which data 

generation using the combination of these two 

models in the MCMC framework, has led us to 

an artificially rich dataset for applying 

artificial intelligence methods. 

The load and resistance factor design (LRFD) 

of corrosion in chloride-based corrosion is 

estimated applying the following equation 

[26], [28]: 

𝑔(𝑋, 𝑡) = 𝐶𝑡ℎ − 𝐶𝑠 (1 − 𝑒𝑟𝑓
𝑥

2√𝐷𝑡
)              (2) 

If t is separated, we have (3): 

𝑡 =
𝑥2

4𝐷[𝑒𝑟𝑓−1(1−
𝐶𝑡ℎ
𝐶𝑠

)]
2                                     (3) 

In Equations (2) and (3), the variable Cth 

represents the threshold chloride 

concentration, Cs stands for the concentration 

of surface chloride (in concrete weight 

percentage), X is the depth of coating (in 

millimeters), D indicates the chlorine diffusion 

factor (in millimeter/year), and t is the 

exposure time (in year). 

In order to elaborate on the effects of 

environmental factors (e.g., the actual ambient 

temperature and test temperature) on the 

diffusion coefficient, Equations (4) and (5) are 

used [27]. It is noteworthy to mention, 

nonetheless, that the emission factors derived 

from this equation can exclusively be used for 

ages up to 25 years, and times above 25 years 

would take uncertain values. This point is 

deliberated in the next section in terms of 

producing random samples and applying them 

in training/testing the ANN data. 

𝐷 = 𝐷𝑟𝑒𝑓 ∗ (
𝑡𝑟𝑒𝑓

𝑡
)

∝

                                       (4) 

𝐷𝑟𝑒𝑓 = 𝐷𝑅𝐶𝑀 ∗ 𝑒𝑥𝑝 (𝑏𝑒 ∗ (
1

𝑇𝑟𝑒𝑓
−

1

𝑇𝑟𝑒𝑎𝑙
))    (5) 

Where the variable 𝑡𝑟𝑒𝑓 represents the age of 

the concrete in the RCM test (in years), and 𝑡 

is the age of the sample concrete (in years). 

𝑇𝑟𝑒𝑓 and 𝑇𝑟𝑒𝑎𝑙 display the ambient temperature 

and the actual temperature of the environment 

(in terms of Kelvin), respectively. Moreover, 

𝑏𝑒and ∝ are two coefficients. 

The statistical information for some of  the 

variables (Cth, Cs, x, Tref , Treal, be, Drcm, 

Tref,   a) in this study was set in consonance to 

[29], and the distributions of D is set in 

accordance with [30] as depicted in Table 1. 

In this table, there are more than one mean and 

a standard deviation for some variables such as 

𝐶𝑡ℎ. In the case of these variables, the test and 
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training samples are produced uniformly from 

each of the proposed distributions. Regarding 

the parameter t, given that its values range 

from 0 to 25, we applied the normal 

distribution with a mean and standard 

deviation of 10 and 5. This is due to the 

positive values below 10 are more likely to be 

selected than the values ranging from 20 to 25. 

Furthermore, if the random number generator 

generates a t with a negative value or a value 

above 25, these values will be reproduced 

randomly. 

Table 1. The statistical information of  variables 

studied according to [29,30]. 

Coefficient Mean STD 

Cth 

0.03 

0.07 

0.05 

0.09 

0.009 

0.021 

0.015 

0.027 

Cs 

0.6 

0.8 

1 

1.2 

0.12 

0.16 

0.2 

0.24 

X 

55 

70 

85 

100 

27.5 

35 

42.5 

50 

Tref 298 -- 

Treal 307.9125 -- 

be 4800 700 

Drcm 37.212 18.606 

tref 0.328 -- 

a 1.37 0.04 

D 

35.81 

7.1 

24.6 

43.2 

7.162 

14.2 

41 

86.4 

 

4. Implementation and Evaluation 

4.1. Proposed Method 

In order to apply supervised learning methods, 

it is requisite to have training data and their 

target output. Each input sample has several 

attributes containing the main features 

affecting the output. In our proposed method, 

the chloride diffusion coefficient was the 

expected output. A thorough review of the 

literature revealed the output characteristics, as 

described in Section 3. Accordingly, 10 inputs 

and 1 output characteristics were contemplated 

for each sample. 

Each input data may take different values. In 

order to produce the training data, we acquired 

the properties of each input data applying 

Table 1 that presents the distribution for each 

of the variables affecting the diffusion 

coefficient. In this regard, normal distributions 

were used to generate the data randomly. 

Considering the data, the chlorine diffusion 

coefficient, as an output, was computed by 

Equation (4). Given that the appropriate 

distribution of D is illustrated in Table 1 

according to [30], D was assumed to be in 

range from 0 to 400. Hence, the data with a D 

value above 400 were considered as 

incompatible data and removed from the 

training cycle. Moreover, zero-value is 

inconsistent for D, as it will causes t to be 

infinite. In practice, there were only a few 

inconsistent data (0 to 3 out of 2000 samples) 

in each run of data production procedure. 

Since the supervised learning-based methods 

map the input to one of the limited set of 

output categories based on the features of the 

input data, it is requisite to discretize the 

output data as well. As the data was more 

dispersed in lower quantities, the categories 
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were not homogeneously distributed. The 

breakdown applied for values of D<1 is 

affiliated to the four categories 0, 0.2, 0.4, and 

0.8. For greater values, any data between 

(𝑛 − 1)2 and 𝑛2 belonged to the category 

(𝑛 − 1)2. In general, a maximum of 2000 

samples and 23 output categories were 

included in the study. To be more precise, 200 

samples of the dataset produced by MCMC are 

presented in Appendix 1. 

The data were imported to the SVM, KNN and 

Ensemble Learning methods for evaluation. In 

order to evaluate the accuracy of applying 

these methods, the data should be divided into 

two train and test data sets. In this paper, the k-

fold method (k = 10) was used for this 

purpose, implying that the data (2000 samples) 

are divided into k batches. For k times, a batch 

is dismissed as the test data. After training the 

neural network with the other nine classes, the 

test data was reused to evaluate the accuracy 

of the method. Conclusively, the average 

precision of the batches was set as the overall 

accuracy of the method. The general flowchart 

of the proposed method is illustrated in Fig. 4. 

 

 
Fig. 4. Flowchart of the Proposed Methodology.

5. Evaluation Results 

To evaluate the proposed methodology of 

using MCMC to relate multiple corrosion 

formulas and producing artificial dataset, 

some classifiers are used. The SVM, KNN, 

and ensemble learning methods were applied 

to compute the diffusion coefficient based on 

11 other variables (t, tref, Tref, Treal, Cth, 

Cs, a, be, d, Drcm, Dref). We used 

classification learner application of Matlab 

R2020 for classifiers. The accuracy of each 

method is examined below. 

Apply ANN Models According to Fig. 2 

Generate t According to Eq.3 

Sample a Value for Tref, Treal, be According to Distributions of Table 1 

Generate Dref According to Eq.5 

Remove the Data Instance if it is Incompatible 

Producing 2000 

Data Instances?  

Discretization of D Values to be used as Classes 

No 

Yes 

Sample a Value for X, Cth, Cs, D According to Distributions of Table 1 

Generate D According to Eq.4 
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5.1 Support Vector Machine 

In this section, four versions of the support 

vector machine (namely linear, quadratic, 

cubic, and Gaussian kernels) were adopted to 

estimate the diffusion coefficient of chlorine. 

In Table 2, the parameters of each SVM 

method are presented.  

Table 2. The Parameters of the SVM Models. 

 

Parameter 

Value 
Parameter 

SVM 

Models 

Gaussian Kernel function 

Gucci SVM 

1 
Box constraint 

level 

Manual Kernel scale mode 

0.83 
Manual kernel 

scale 

One-vs-

one 
Multiclass method 

yes Standardize data 

Quadratic Kernel function 

Second-

class SVM 

1 
Box constraint 

level 

Auto Kernel scale mode 

1 
Manual kernel 

scale 

One-vs-

one 
Multiclass method 

yes Standardize data 

Cubic Kernel function 

Cubic SVM 

1 
Box constraint 

level 

Auto Kernel scale mode 

1 
Manual kernel 

scale 

One-vs-

one 
Multiclass method 

yes Standardize data 

Liner Kernel function 

SVM linear 

1 
Box constraint 

level 

Auto Kernel scale mode 

1 
Manual kernel 

scale 

One-vs-

one 
Multiclass method 

yes Standardize data 

 
Fig. 5. Accuracy diagram of different versions of 

the SVM method in predicting chlorine 

penetration. 

Fig. 5 indicates the accuracy of each of the 

SVM models. As depicted in this figure, 

SVM with a quadratic kernel function has the 

best performance for predicting the data. 

Accuracy of this SVM model is 93.5%. linear 

and cubic SVM have acceptable 

performance, as well. However, the 

performance of Gaussian kernel has been 

poor. This may be due to the high complexity 

of this function and the lack of setting of its 

hyper-parameters. 

5.2. K-Nearest Neighbors 

In the K-nearest neighbor method, as a data 

classification method, three different versions 

were applied for classification: Fine KNN, 

medium KNN, and coarse KNN. In Table 3, 

the parameters of each KNN method are 

portrayed. The accuracy of each of the KNN 

versions is also illustrated in Fig. 6. Accuracy 

of all of these models are in range 50-60%. 

In comparison to SVM models, this may 

indicate that KNN models are not appropriate 

for this dataset. 

 
Fig. 6. Accuracy of Different KNN Models in 

Predicting Chlorine Penetration. 

0

50

100 51.6 
93.5 89.1 90.2 

E
v

a
lu

a
ti

o
n

 

A
cc

u
ra

cy
 (

%
) 

SVM Models 

45
50
55
60

Fine

KNN

Medium

KNN

Coarse

KNN

51.3 

59.9 
55.6 

E
v

a
lu

a
ti

o
n

 

A
cc

u
ra

cy
 (

%
) 

KNN Models 



 S.A. Habibi et al./ Journal of Rehabilitation in Civil Engineering 11-3 (2023) 88-106 97 

 

Table 3. Parameters of the KNN Models. 

Parameter 
Value 

Parameter 
KNN 
Model 

1 
Number of 
neighbors 

Fine KNN 
Euclidean Distance metric 

Equal Distance weight 

yes Standardize data 

10 
Number of 
neighbors 

Medium 
KNN 

Euclidean Distance metric 

Equal Distance weight 

yes Standardize data 

100 
Number of 
neighbors 

Coarse 
KNN 

Euclidean Distance metric 

Equal Distance weight 

yes Standardize data 

 

5.3. Ensemble Learning Method 

In this section, two ensemble learning 

methods (namely ensemble bagged tree and 

the subspace discriminant) were used. The 

accuracy of each of these methods is 

displayed in Table 3. The ensemble learning 

methods are usually applied as these methods 

can combine the advantages of several 

learning methods. If a good method is 

combined with a few bad or moderate 

methods, the result is not necessarily more 

accurate than the best one. Table 4 indicates 

the parameters of each ensemble learning 

method. The accuracy of ensemble learning 

methods in predicting chlorine penetration is 

shown in Fig. 7. As can be seen in the figure, 

the accuracy of subspace KNN-based 

ensemble method is 45.4% which is poor. As 

seen in the previous section, all KNN 

classifiers have poor performance in this 

regard, as well. However, bagged tree 

ensemble learning (with 81.3% accuracy) has 

better performance. Of course, the 

performance of decision tree-based methods 

has been weaker than SVM-based methods, 

as well. 

Table 4. Parameters of the Used Ensemble 

Learning Methods. 

Parameter 
value Parameter Ensemble 

Method 

Bag Ensemble 
method 

Ensemble 
bagged tree 

Decision tree Learner type 

20 
Maximum 
number of 

splits 

30 Number of 
learners 

0.1 Learning rate 

1 Subspace 
dimension 

subspace Ensemble 
method 

Ensemble 
subspace 

Discriminant 

Discriminant Learner type 

20 
Maximum 
number of 

splits 

30 Number of 
learners 

0.1 Learning rate 

6 Subspace 
dimension 
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Fig. 7. Accuracy of Ensemble Learning 

Methods in Predicting Chlorine Penetration. 

In the following, for general comparison, the 

accuracy of the aforementioned methods are 

graphed (Fig. 8). Fig. 9 displays the 

computation time required for each of the 

proposed methods. Generally, SVM models 

are accurate models with high computation 

time. KNN models are poor but fast models. 

Ensemble learning methods are in the middle 

in terms of speed and accuracy 

 
Fig. 8. Accuracy Diagram of Different 

Methods in Predicting Chlorine Penetration. 

 

Fig. 9. Computation Time (Training + 

Prediction) of Different Methods. 

The results obtained so far were valid for 10-

fold cross validation method utilizing all 

data. In the following, we separated 75% of 

the data as train data from the rest of the data 

and calculated the mean squared error 

(MSE), mean absolute error (MAE) and 

accuracy of each method, separately. The 

results of this comparison is illustrated in 

Table 5. As can be seen in this table, fine 

KNN and ensemble-bagged tree methods 

100% fitted on the train data, but they have 

low accuracy on the test data. It can be said 

that over fitting has happened in these two 

methods and the model has low 

generalizability. For Test data, SVM-based 

methods still have the best accuracy and the 

lowest amount of errors (MSE and MAE). 

Among these, quadratic SVM has obtained 

the best results for test data. 
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Table 5. Evaluation of methods for 75%/25% split of train/test data. 

Model/Criteria Train Test 

 MSE MAE Acc. MSE MAE Acc. 

Fine Gaussian 

SVM 
2.49E+03 11.6203 85.7333 3.16E+03 16.8744 50 

Quadratic 

SVM 
673.1722 4.1989 90.2 648.5966 5.264 83 

Cubic SVM 313.1837 1.6295 97.3333 854.7752 6.7536 75.4 

Linear SVM 1.11E+03 7.652 75.7333 655.5325 6.0624 77 

Fine KNN 0 0 100 898.5326 11.6276 35.2 

Medium KNN 1.48E+03 11.9573 52.9333 844.5578 10.3352 48 

Coarse KNN 2.43E+03 15.5292 50.1333 2.95E+03 16.4544 50 

Ensemble-

Bagged Tree 
0 0 100 1.44E+03 8.6156 73.4 

Ensemble-

Subspace 

KNN 

1.98E+03 14.1332 50.4 1.68E+03 12.7764 50.6 

 

6. Discussion 

In this paper, it was proposed to benefit from 

the MCMC approach and corrosion models, 

to construct artificial dataset. This dataset is 

utilized to train ANN-based models for 

corrosion prediction. 

Note that the, optimal performance of ANN-

based models requires data and the amount of 

data is very effective on the accuracy of these 

methods. Considering the high cost of 

producing real or laboratory data, using the 

proposed methodology can be effective in 

reducing the cost of data production. 

Moreover, by using this method, it is possible 

to use a large number of corrosion-related 

formulas, to produce a dataset that considers 

many factors affecting corrosion. 

Of course, along with these advantages, the 

proposed method also has limitations. 

Among other methods, the validity of the 

generated artificial data is lower than the 

laboratory data. Also, correlation of corrosion 

formulas may not have been studied and 

produced data may be weak from this point 

of view. Of course, in any case, this method 

can be used in estimating the corrosion time 

depending on many variables, and also in 

introducing new models of this subject. 

7. Conclusion 

Contemplating the significance of the 

chloride diffusion coefficient in estimating 

the corrosion rate and corrosion time, the 

problem with estimating this factor is 

discussed in this paper. To this end, artificial 

intelligence methods attributed to the 
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supervised learning were applied, and the 

training data samples for each of the effective 

parameters in the chloride diffusion 

coefficient were produced using the 

distributions of parameters proposed in the 

literature. Consequently, the chlorine 

diffusion coefficient was computed as the 

expected output data in supervised learning. 

The data were used for three types of 

machine learning methods (namely SVM, 

KNN and ensemble learning). Among other 

methods, the accuracy of detecting the 

correct output category was estimated to be 

93.5% for the best version of the SVM (i.e., 

quadratic SVM). In the KNN, the best 

accuracy was observed for the medium KNN 

method with a precision of 59.9%. In the 

case of ensemble learning methods, the 

ensemble bagged tree method was 81.3% 

accurate. In general, it can be concluded that 

the quadratic SVM has the best accuracy to 

predict ion chloride diffusion, reflecting the 

significance of artificial intelligence-based 

methods in terms of corrosion. 
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Appendix 1. 200 instances of data samples generated by MCMC and used to train the ML models. 

 
D t Cs Cth d Tref Treal tref a be Drcm 

1 1.682 3.24 0.562 0.024 20.283 298 307.913 0.328 1.442 5221.82 31.409 

2 0.247 10.24 0.443 0.026 11.932 298 307.913 0.328 1.416 4257.65 21.246 

3 0.518 14.44 0.405 0.025 58.812 298 307.913 0.328 1.401 4406.87 67.579 

4 0.391 11.56 0.474 0.022 37.527 298 307.913 0.328 1.361 3925.93 32.709 

5 0.321 10.24 0.444 0.018 33.624 298 307.913 0.328 1.367 3481.02 26.796 

6 0.446 11.56 0.515 0.03 18.964 298 307.913 0.328 1.389 3844.99 41.529 

7 0.165 21.16 0.438 0.028 68.993 298 307.913 0.328 1.389 4768.27 34.678 

8 0.76 4 0.575 0.044 15.622 298 307.913 0.328 1.464 4688.94 23.017 

9 0.647 12.96 0.549 0.024 50.068 298 307.913 0.328 1.34 4749.04 57.106 

10 0.85 7.84 0.547 0.023 15.167 298 307.913 0.328 1.358 5088.52 41.699 

11 0.585 11.56 0.652 0.032 51.611 298 307.913 0.328 1.401 4557.8 54.826 

12 0.517 4.84 0.58 0.038 29.268 298 307.913 0.328 1.391 4228.28 15.152 

13 0.667 10.24 0.568 0.042 88.929 298 307.913 0.328 1.328 4899.7 40.594 

14 0.81 11.56 0.368 0.025 51.4 298 307.913 0.328 1.346 5871.55 56.426 

15 0.947 4.84 0.594 0.027 80.076 298 307.913 0.328 1.375 5191.45 27.756 

16 1.129 7.84 0.864 0.033 31.303 298 307.913 0.328 1.418 5862.83 64.359 

17 0.163 17.64 0.663 0.03 75.839 298 307.913 0.328 1.379 4417.44 26.602 

18 0.109 17.64 0.684 0.025 59.382 298 307.913 0.328 1.46 4144.44 23.802 

19 0.754 5.76 0.437 0.036 0.562 298 307.913 0.328 1.358 5261.48 25.994 

20 0.466 9 0.637 0.031 45.787 298 307.913 0.328 1.375 4523.04 28.415 

21 0.327 14.44 0.511 0.037 56.381 298 307.913 0.328 1.355 4602.43 37.386 

22 0.529 9 0.657 0.028 25.3 298 307.913 0.328 1.351 4333.48 30.04 

23 10.115 1.96 0.424 0.037 72.524 298 307.913 0.328 1.4 4478.92 87.395 

24 0.309 11.56 0.745 0.036 50.65 298 307.913 0.328 1.373 5472.23 23.172 

25 0.68 10.24 0.452 0.028 97.294 298 307.913 0.328 1.327 5142.3 43.743 

26 0.492 12.96 0.531 0.018 27.669 298 307.913 0.328 1.408 5002.32 51.325 

27 0.774 4.84 0.77 0.034 48.495 298 307.913 0.328 1.356 5516.17 16.564 

28 0.297 6.76 0.674 0.029 40.318 298 307.913 0.328 1.323 4305.31 11.095 

29 0.779 9 0.46 0.041 44.858 298 307.913 0.328 1.398 5683.15 47.15 

30 0.466 11.56 0.792 0.028 33.079 298 307.913 0.328 1.311 5262.77 29.143 

31 5.309 1.96 0.487 0.033 43.649 298 307.913 0.328 1.324 4388.27 46.814 

32 0.715 12.96 0.668 0.029 57.504 298 307.913 0.328 1.367 5558.1 66.376 

33 0.36 10.24 0.666 0.025 12.401 298 307.913 0.328 1.344 3955.3 25.599 

34 0.267 16 0.885 0.03 57.745 298 307.913 0.328 1.391 5151.4 37.884 

35 1.204 3.24 0.733 0.034 73.276 298 307.913 0.328 1.272 4471.6 17.715 

36 0.557 9 0.594 0.028 64.163 298 307.913 0.328 1.376 5112.53 32.292 

37 1.66 5.76 0.564 0.025 55.307 298 307.913 0.328 1.34 5002.83 46.458 

38 0.59 4.84 0.254 0.036 65.808 298 307.913 0.328 1.469 4533.97 19.196 

39 0.396 7.84 0.719 0.022 71.361 298 307.913 0.328 1.397 5514.19 19.043 

40 0.334 17.64 0.413 0.018 43.278 298 307.913 0.328 1.337 5330.89 39.01 

41 1.449 4.84 0.562 0.031 60.247 298 307.913 0.328 1.354 4408.54 34.491 

42 0.323 23.04 0.712 0.02 87.169 298 307.913 0.328 1.363 5671.4 59.838 

43 0.164 4 0.643 0.016 17.549 298 307.913 0.328 1.438 3827.95 5.17 

44 0.783 11.56 0.632 0.031 81.55 298 307.913 0.328 1.346 5710.05 52.168 

45 12.363 1 0.53 0.035 65.846 298 307.913 0.328 1.397 5367.89 53.693 

46 3.013 2.56 0.511 0.025 81.123 298 307.913 0.328 1.372 5785.43 36.784 

47 0.462 10.24 0.575 0.034 69.001 298 307.913 0.328 1.375 4672.97 35.196 

48 1.46 5.76 0.702 0.018 65.559 298 307.913 0.328 1.334 4864.17 39.479 

49 0.191 16 0.52 0.03 38.536 298 307.913 0.328 1.371 4478.39 27.384 
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50 1.12 6.76 0.618 0.02 48.582 298 307.913 0.328 1.371 5029.79 42.234 

51 0.579 14.44 0.551 0.022 37.852 298 307.913 0.328 1.404 3946.73 78.415 

52 0.686 6.76 0.499 0.022 38.22 298 307.913 0.328 1.431 3729.13 36.629 

53 0.478 11.56 0.486 0.009 46.769 298 307.913 0.328 1.421 4862.91 44.876 

54 0.241 14.44 0.601 0.037 56.188 298 307.913 0.328 1.387 4644.76 31.209 

55 0.541 11.56 0.654 0.014 24.744 298 307.913 0.328 1.391 4663.6 49.89 

56 1.43 9 0.418 0.03 58.989 298 307.913 0.328 1.362 4703.49 82.442 

57 1.04 7.84 0.511 0.033 44.645 298 307.913 0.328 1.365 5464.3 52.207 

58 0.119 14.44 0.675 0.022 44.977 298 307.913 0.328 1.369 4119.58 14.811 

59 4.471 1.96 0.517 0.03 44.683 298 307.913 0.328 1.365 4959.69 39.66 

60 0.396 9 0.658 0.049 45.718 298 307.913 0.328 1.384 4589.86 23.921 

61 0.238 14.44 0.699 0.039 86.365 298 307.913 0.328 1.399 4532.65 30.954 

62 2.173 5.76 0.476 0.026 44.735 298 307.913 0.328 1.39 4941.38 70.104 

63 0.161 10.24 0.679 0.023 77.565 298 307.913 0.328 1.418 4651.01 13.919 

64 1.03 7.84 0.585 0.027 55.615 298 307.913 0.328 1.388 3678.99 65.611 

65 0.611 11.56 0.642 0.021 18.475 298 307.913 0.328 1.325 5062.96 44.399 

66 2.27 2.56 0.469 0.035 41.397 298 307.913 0.328 1.37 4619.24 29.793 

67 0.42 12.96 0.637 0.027 54.224 298 307.913 0.328 1.355 4140.46 44.047 

68 9.688 1.44 0.538 0.008 66.982 298 307.913 0.328 1.418 4749.23 57.128 

69 0.412 12.96 0.633 0.042 46.382 298 307.913 0.328 1.406 3945.18 52.741 

70 0.571 10.24 0.506 0.032 62.767 298 307.913 0.328 1.299 4500.73 30.971 

71 0.671 10.24 0.424 0.038 82.173 298 307.913 0.328 1.334 4961.24 43.841 

72 5.35 1.96 0.569 0.028 32.099 298 307.913 0.328 1.327 4553.34 44.842 

73 0.237 11.56 0.505 0.025 27.159 298 307.913 0.328 1.377 4232.65 20.367 

74 0.286 9 0.641 0.025 39.897 298 307.913 0.328 1.379 4841.06 18.568 

75 0.998 7.84 0.544 0.008 57.857 298 307.913 0.328 1.401 4527.25 63.283 

76 1.702 3.24 0.705 0.035 63.577 298 307.913 0.328 1.418 5172.24 26.628 

77 0.136 17.64 0.626 0.052 23.137 298 307.913 0.328 1.374 4393.99 21.347 

78 0.3 14.44 0.545 0.031 40.608 298 307.913 0.328 1.384 4677.37 38.018 

79 0.327 14.44 0.619 0.035 62.21 298 307.913 0.328 1.308 4677.62 29.622 

80 0.447 14.44 0.635 0.041 69.835 298 307.913 0.328 1.349 4379.59 47.769 

81 15.71 1 0.688 0.033 80.063 298 307.913 0.328 1.366 4851.49 59.446 

82 2.304 4.84 0.601 0.04 18.111 298 307.913 0.328 1.399 3338.21 81.509 

83 0.222 14.44 0.237 0.042 52.966 298 307.913 0.328 1.4 5003.31 29.072 

84 0.278 19.36 0.694 0.02 12.102 298 307.913 0.328 1.348 5740.44 39.353 

85 0.719 11.56 0.696 0.035 52.782 298 307.913 0.328 1.3 5369.4 43.261 

86 1.289 9 0.629 0.04 60.188 298 307.913 0.328 1.356 5609.11 72.233 

87 0.249 12.96 0.528 0.03 94.443 298 307.913 0.328 1.367 4699.23 25.412 

88 0.465 5.76 0.563 0.033 46.694 298 307.913 0.328 1.344 3629.25 18.307 

89 0.617 7.84 0.552 0.038 78.557 298 307.913 0.328 1.388 4754.48 32.876 

90 3.104 3.24 0.654 0.04 30.697 298 307.913 0.328 1.359 5356.08 43.793 

91 0.683 10.24 0.562 0.031 13.982 298 307.913 0.328 1.336 4299.12 45.916 

92 0.444 7.84 0.497 0.035 91.991 298 307.913 0.328 1.396 3700.96 28.718 

93 0.46 14.44 0.577 0.015 70.159 298 307.913 0.328 1.357 4960.11 51.974 

94 0.122 16 0.51 0.035 81.594 298 307.913 0.328 1.467 3788.99 26.321 

95 0.433 5.76 0.568 0.016 63.368 298 307.913 0.328 1.437 4349.26 19.553 

96 0.705 4.84 0.416 0.033 14.149 298 307.913 0.328 1.339 3967.6 20.255 

97 0.595 10.24 0.618 0.03 73.056 298 307.913 0.328 1.397 5395 41.489 

98 0.276 10.24 0.515 0.025 55.427 298 307.913 0.328 1.382 4355.29 22.183 

99 0.937 4.84 0.823 0.033 61.619 298 307.913 0.328 1.323 5016.08 22.384 

100 0.777 5.76 0.743 0.038 58.024 298 307.913 0.328 1.379 3501.5 34.397 
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101 0.179 10.24 0.668 0.032 23.126 298 307.913 0.328 1.365 4462.11 12.713 

102 0.377 9 0.502 0.025 77.158 298 307.913 0.328 1.369 4449.89 23.122 

103 0.403 10.24 0.562 0.019 36.871 298 307.913 0.328 1.353 3704.34 31.717 

104 1.062 11.56 0.537 0.033 51.606 298 307.913 0.328 1.4 5063.99 92.697 

105 0.782 9 0.721 0.019 23.18 298 307.913 0.328 1.378 5633.11 45.457 

106 0.887 6.76 0.773 0.022 33.76 298 307.913 0.328 1.358 5650.35 34.398 

107 0.435 7.84 0.68 0.03 12.704 298 307.913 0.328 1.35 5060.87 18.565 

108 0.897 9 0.704 0.013 66.855 298 307.913 0.328 1.413 5826.25 58.43 

109 0.506 9 0.813 0.029 46.555 298 307.913 0.328 1.383 4116.31 33.008 

110 0.303 11.56 0.63 0.013 66.594 298 307.913 0.328 1.353 3587.33 26.097 

111 0.197 11.56 0.476 0.046 24.456 298 307.913 0.328 1.487 4750.28 27.617 

112 0.556 7.84 0.559 0.031 40.354 298 307.913 0.328 1.468 4503.25 38.605 

113 1.179 7.84 0.619 0.032 29.012 298 307.913 0.328 1.403 5042.04 60.591 

114 9.704 1.96 0.371 0.031 37.655 298 307.913 0.328 1.367 5576.55 69.425 

115 0.822 10.24 0.579 0.043 53.613 298 307.913 0.328 1.291 5095.57 45.597 

116 3.676 4 0.67 0.03 58.89 298 307.913 0.328 1.438 5355.15 77.527 

117 0.351 5.76 0.598 0.041 60.151 298 307.913 0.328 1.368 4882.59 12.605 

118 0.461 7.84 0.572 0.038 96.321 298 307.913 0.328 1.383 5237.08 25.147 

119 3.351 4 0.564 0.012 86.26 298 307.913 0.328 1.323 4840.36 57.661 

120 0.455 14.44 0.74 0.029 55.643 298 307.913 0.328 1.401 5737.43 53.052 

121 0.612 10.24 0.663 0.024 55.233 298 307.913 0.328 1.396 4883.45 45.682 

122 0.276 12.96 0.579 0.045 62.943 298 307.913 0.328 1.369 4757.66 25.363 

123 0.564 10.24 0.5 0.018 59.685 298 307.913 0.328 1.402 5326.79 41.089 

124 0.658 11.56 0.914 0.034 82.241 298 307.913 0.328 1.351 5377.45 45.471 

125 1.442 7.84 0.49 0.026 92.754 298 307.913 0.328 1.373 4909 71.691 

126 1.873 6.76 0.667 0.022 64.6 298 307.913 0.328 1.37 5739.24 75.761 

127 0.157 17.64 0.63 0.032 71.699 298 307.913 0.328 1.443 4711.37 29.747 

128 0.236 16 0.566 0.017 49.129 298 307.913 0.328 1.386 4316.65 32.45 

129 0.376 11.56 0.659 0.023 43.572 298 307.913 0.328 1.406 4218.37 38.765 

130 0.571 9 0.416 0.044 58.077 298 307.913 0.328 1.426 5181.35 37.55 

131 2.024 5.76 0.585 0.025 0.888 298 307.913 0.328 1.319 5143.01 52.234 

132 1.719 1.44 0.552 0.026 42.577 298 307.913 0.328 1.413 4081.43 13.231 

133 0.222 16 0.638 0.025 42.183 298 307.913 0.328 1.387 5231.27 28.041 

134 0.295 9 0.739 0.042 85.052 298 307.913 0.328 1.4 5747.22 17.169 

135 0.507 12.96 0.722 0.049 18.739 298 307.913 0.328 1.346 5686.23 43.51 

136 0.186 16 0.527 0.02 43.103 298 307.913 0.328 1.406 4543.1 30.202 

137 3.171 2.56 0.726 0.025 50.883 298 307.913 0.328 1.419 4148.54 40.685 

138 0.795 5.76 0.427 0.051 24.87 298 307.913 0.328 1.381 3995.78 29.424 

139 1.072 7.84 0.552 0.027 56.145 298 307.913 0.328 1.406 5393.55 58.727 

140 1.304 5.76 0.637 0.014 60.416 298 307.913 0.328 1.332 4734.66 41.856 

141 2.366 3.24 0.403 0.033 37.92 298 307.913 0.328 1.392 4756.14 45.614 

142 0.045 10.24 0.364 0.022 45.674 298 307.913 0.328 1.393 4191 3.501 

143 1.169 6.76 0.374 0.011 67.955 298 307.913 0.328 1.279 5088.93 37.087 

144 0.575 6.76 0.434 0.031 73.919 298 307.913 0.328 1.46 4828.45 28.798 

145 0.555 9 0.542 0.035 57.262 298 307.913 0.328 1.41 5034.22 40.46 

146 0.225 10.24 0.806 0.021 44.495 298 307.913 0.328 1.366 4759.55 17.136 

147 0.145 4.84 0.618 0.014 78.83 298 307.913 0.328 1.38 4594.17 4.357 

148 0.813 9 0.502 0.011 49.066 298 307.913 0.328 1.345 5575.59 39.873 

149 1.024 4.84 0.673 0.042 57.283 298 307.913 0.328 1.401 4666.19 32.364 

150 0.932 7.84 0.636 0.036 72.931 298 307.913 0.328 1.338 4882.49 44.882 

151 0.949 11.56 0.738 0.039 70.884 298 307.913 0.328 1.347 4258.94 77.413 
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152 0.567 9 0.501 0.02 74.905 298 307.913 0.328 1.356 5672.23 29.05 

153 0.888 6.76 0.469 0.037 47.588 298 307.913 0.328 1.292 5302.59 27.974 

154 11.366 1 0.691 0.02 1.966 298 307.913 0.328 1.379 4063.74 51.805 

155 0.865 10.24 0.281 0.021 53.261 298 307.913 0.328 1.334 4832.61 51.254 

156 1.137 6.76 0.617 0.027 51.367 298 307.913 0.328 1.33 3707.1 51.504 

157 0.446 10.24 0.432 0.029 53.738 298 307.913 0.328 1.389 4591.73 35.714 

158 0.289 14.44 0.41 0.02 26.724 298 307.913 0.328 1.407 4310.96 38.632 

159 1.015 10.24 0.743 0.034 47.082 298 307.913 0.328 1.416 4378.6 95.765 

160 0.724 4.84 0.714 0.03 68.876 298 307.913 0.328 1.347 3604.31 18.749 

161 0.438 4.84 0.476 0.03 81.612 298 307.913 0.328 1.427 4457.45 14.636 

162 0.769 10.24 0.414 0.046 12.439 298 307.913 0.328 1.361 4212.41 58.646 

163 0.818 5.76 0.408 0.017 51.507 298 307.913 0.328 1.379 3961.7 30.24 

164 0.671 10.24 0.666 0.036 17.46 298 307.913 0.328 1.317 5425.37 34.834 

165 1.125 4.84 0.378 0.031 88.891 298 307.913 0.328 1.466 4079.16 41.07 

166 0.272 11.56 0.43 0.023 91.208 298 307.913 0.328 1.468 4398.86 34.88 

167 0.684 6.76 0.641 0.022 81.318 298 307.913 0.328 1.341 4496.46 28.345 

168 0.167 6.76 0.587 0.014 51.77 298 307.913 0.328 1.402 4858.8 8.049 

169 0.103 10.24 0.681 0.02 38.937 298 307.913 0.328 1.272 4949.71 5.206 

170 0.368 7.84 0.507 0.011 54.857 298 307.913 0.328 1.378 4420.45 18.147 

171 0.239 10.24 0.615 0.027 68.62 298 307.913 0.328 1.408 4369.82 19.851 

172 0.654 9 0.589 0.033 71.023 298 307.913 0.328 1.373 5331 37.313 

173 0.389 10.24 0.809 0.033 44.069 298 307.913 0.328 1.368 4354.93 30.419 

174 0.218 19.36 0.547 0.024 7.502 298 307.913 0.328 1.331 4910.36 31.303 

175 23.107 1 0.497 0.028 72.263 298 307.913 0.328 1.35 5117.13 61.239 

176 2.274 6.76 0.619 0.027 53.032 298 307.913 0.328 1.349 5485.51 75.797 

177 0.334 17.64 0.591 0.039 18.7 298 307.913 0.328 1.377 5358.33 50.974 

178 0.38 12.96 0.454 0.028 37.385 298 307.913 0.328 1.486 5143.82 55.103 

179 0.62 14.44 0.577 0.028 64.75 298 307.913 0.328 1.324 5437.76 55.209 

180 0.488 11.56 0.601 0.032 22.144 298 307.913 0.328 1.293 5174.52 28.927 

181 0.114 12.96 0.765 0.033 33.164 298 307.913 0.328 1.401 5387.81 12.033 

182 0.912 7.84 0.448 0.019 59.818 298 307.913 0.328 1.365 5167.82 43.458 

183 0.319 14.44 0.451 0.013 60.622 298 307.913 0.328 1.434 4828.73 44.682 

184 7.813 1.44 0.355 0.03 36.111 298 307.913 0.328 1.396 4978.57 42.736 

185 0.097 11.56 0.711 0.039 51.021 298 307.913 0.328 1.331 4102.14 7.547 

186 0.61 14.44 0.679 0.024 72.044 298 307.913 0.328 1.315 5090.84 56.055 

187 0.331 11.56 0.427 0.032 17.875 298 307.913 0.328 1.399 4282.36 35.101 

188 0.229 10.24 0.481 0.017 60.451 298 307.913 0.328 1.409 5271.47 18.931 

189 0.534 12.96 0.529 0.01 60.194 298 307.913 0.328 1.344 4703.69 51.822 

190 0.26 9 0.518 0.031 38.366 298 307.913 0.328 1.39 5302.92 16.384 

191 0.8 7.84 0.654 0.037 44.854 298 307.913 0.328 1.406 5172.5 43.065 

192 0.473 14.44 0.613 0.024 46.998 298 307.913 0.328 1.335 5362.27 45.699 

193 0.085 21.16 0.61 0.028 47.403 298 307.913 0.328 1.356 5336.6 14.644 

194 0.476 7.84 0.718 0.026 38.436 298 307.913 0.328 1.4 4937.52 25.905 

195 0.137 14.44 0.458 0.033 67.73 298 307.913 0.328 1.387 3359.9 19.974 

196 1.441 6.76 0.662 0.033 73.726 298 307.913 0.328 1.335 5230.95 50.446 

197 0.91 10.24 0.828 0.021 32.545 298 307.913 0.328 1.395 5285.49 65.546 

198 0.275 14.44 0.651 0.055 73.029 298 307.913 0.328 1.408 5026.99 35.866 

199 0.258 14.44 0.71 0.028 11.57 298 307.913 0.328 1.402 3579.64 36.753 

200 0.733 9 0.728 0.025 48.377 298 307.913 0.328 1.317 4608.03 37.829 
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