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Abstract

The traveling salesman problem is one of the well-known NP-hard problems, and there are various versions of the
problem with respect to its different specifications of the constraints and assumptions. Especially, the symmetric
traveling salesman problem has been considered in numerous routing models. The critical node detection problem
has received increasing attention throughout the routing models. The critical node has the most important role in
the routing problems, and if it is out of service then the optimal solution will be hit by a large undesirable cost. The
critical node is defined as the node whose deletion from the network results in the largest decrease in the optimal
cost. It is proved the critical node of the network is the critical node for the optimal tour, too. Thus, the critical
node is considered to obtain a good approximate solution in a reasonable iteration. The 2-opt heuristic is applied by
the critical node in the symmetric traveling salesman problem and the iterations are reduced significantly. Then, the
pseudo-critical node is defined and detected in the approximate solution, whose removal results in the largest decrease
of the approximate cost. So, the 2-opt heuristic is applied by the pseudo-critical node and the optimal or a nearby
optimal solution is obtained.
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1 Introduction

The critical node is an important issue for decision makers in the optimization models because it could impose
the largest difference in the optimal cost as well as the connectivity of the network as soon as it is out of service.
There are various definitions of the critical node according to its applications; however, the most addressed critical
(or important) node is related to the connectivity of the network with respect to a connectivity criteria [13, 8, 15, 2].
We consider the critical node as the node its removal results in the maximum decrease of the optimal cost, which is
as the distance based critical node. So, let C∗(n) be the optimal cost of network G = (N,A) and C∗(n − 1) be the
optimal cost of the reduced network Ḡ = (N̄ , Ā) by removing the critical node v̄ from G, then Ḡ = G \ v̄.
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In the general case the critical node detection problem (CNDP) is NP-complete [3] and it was shown for trees the
problem is NP-complete, too [7]. Since the present definition of the critical node is based on the difference in the cost
of the optimal solution, so it remains NP-complete, too. However, there are some polynomial time approximation
algorithms for the traveling salesman problem (TSP), where the costs are satisfying the triangle inequality [5, 10].

Shirdel and Abdolhosseinzadeh [16] formulated the the critical node problem as an established discrete time Markov
chain in the stochastic networks. Jiang et al. [8] applied a nonconvex quadratically constrained quadratic programming
model instead of integer linear programming model to formulate CNDP; they determined approximate solutions by
semidefinite programming technique. Santos et al. [15] studied p critical nodes problem according to the connectivity
of the network and the solution computationally were improved. Veremyev et al. [18] considered two deterministic
and probabilistic versions of CNDP, and they studied a mixed integer linear programming for the deterministic one,
and based on Markov chain process a scenario based formulation was presented for the probabilistic one. Aringhieri
et al. [2] studied some classes of CNDP where the objective function is impacted by the distances of the node pairs;
they showed in the general cases the problem is NP-complete. Li et al. [12] studied a bi-objective CNDP based on
the psychology of the decision makers and the pairwise connectivity of the network, and they proved the problem is
NP-Hard in the general case.

Chen et al. [4] considered the negative CNDP where the larger edge weights demonstrate the weaker relationship
between nodes; their objective was simultaneously the minimization of the pairwise connectivity and the maximization
of the weights between the network’s nodes. Alozie et al. [1] developed an algorithm for distance based CNDP for
separating the problem by breadth first search tree generation. Zhou et al. [19] considered node weighted critical node
problem, and they applied a local search procedure and a late acceptance strategy to find a local optimal solution.
Shukla [17] developed an algorithm to solve a three dimensional CNDP.

2 Distance critical node detection problem formulation

In this paper, the critical node is defined according to the most decreasing in the optimal cost of TSP, which is
known as the distance critical node detection problem (D-CNDP). The network G = (N,A) is a complete network
with symmetric arc costs, so cij = cji for all (i, j) ∈ A. Thus, it is assumed the arc costs cij are satisfying the
triangle inequality; by the assumption of the triangle inequality there are some approximate solution in polynomial
time [5, 9, 10].

Consider the following TSP formulation to obtain minimum Hamiltonian path in the network

min

n∑
i=1

n∑
j ̸=i,j=1

cijxij (2.1)

n∑
i=1,i̸=j

xij = 1, j = 1, 2, ..., n (2.2)

n∑
j=1,j ̸=i

xij = 1, i = 1, 2, ..., n (2.3)

∑
i∈V

∑
j ̸=i,j∈V

xij ≤ |V | − 1,∀V ⊊ {1, 2, ..., n}, |V | ≥ 2 (2.4)

The objective function 2.1 determines a minimum length Hamiltonian cycle; the constraints 2.2 and 2.3 imply any
node to traverse exactly once, and the last constraint 2.7 implies any pure subset of the nodes constructs a path. To
determine the critical node in the network the following formulation is presented the above problem should be solved
for any node i ∈ N , and in the reduced network G \ {i}, in the general form.

Theorem 2.1. The critical node for the original network G = (N,A) is the critical node for the optimal tour P ∗ in
G.

Proof . Let node v̄ be the critical node in the network G. if node v̄ is out of service in the network, then let P̄ ∗ be
the optimal tour in the reduced network Ḡ = G \ {v̄}. By triangle inequality, for P̃ = P \ {v̄} the following inequality
is satisfied by the costs of the reduced tour P̃ and the optimal cost of P ∗: C(P̃ ) ≤ C(P ∗).
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On the other hand, v̄ is the critical node and P̃ is a feasible solution for the reduced network Ḡ, by the definition
we have

C(P ∗)− C(P̄ ∗) = max∀vi∈N (C(P ∗)− C(P̄ ∗
i )) ⇒ C(P̄ ∗) = min∀vi∈N (C(P̄ ∗

i )) (2.5)

and obviously, C(P̄ ∗) ≤ C(P̃ ); where, P̄ ∗
i is the optimal solution in the reduced network Ḡi = G\{vi}. Let u be the

critical node of the optimal solution P ∗ and P̄u = P ∗ \ {u}, then C(P̄u) < C(P̃ ) and C(P ∗)−C(P̄u) > C(P ∗)−C(P̃ )
is a contradiction with 2.5 and that node v̄ is the critical node of network G; So, node v is the critical node of the
optimal solution P ∗, too. □

So, by theorem 2.1 the removal of the critical node in the optimal solution P ∗ in network G results the optimal
solution P̄ in the reduced network Ḡ; it should be noticed, the optimal solution P ∗ contains n nodes and the D-CNDP
could be solved in O(n), by the worst-case analysis. For example, consider the instance network ulysses16 (Figure
1(a)); node 11 is detected as the critical node both in the network and in the optimal solution (Figure 1(b)).

Figure 1: The instance network ulysses16 (a), the optimal solution (b)

For the instance network ulysses16 (see Figure 1 (a)), there are 16 nodes in the network with the symmetric and
2D Euclidean lengths for the arc costs; the critical node is detected as node 11 and the length of the optimal tour is
6859 and the optimal cost in the case the critical node 11 being out of service is obtained 5216.

Thus, in the symmetric traveling salesman problem (S-TSP), the forward direction costs of the arcs are equal to
the backward directions; network G = (N,A) is a complete network and the triangle inequality is satisfied by the arc
costs parameters.

Theorem 2.2. The optimal solution P ∗ of S-TSP in the original network G = (N,A) is reduced to the optimal
solution P̄ ∗ in the reduced network Ḡ = (N̄ , Ā), where v̄ is the critical node in G and Ḡ = G \ {v̄}.

Proof . Let P ∗ = {v1, v2, ..., vi−1, vi = v̄, vi+1, ..., vn}, by removal of the critical node vi = v̄ there is P̄ ∗ =
{v1, v2, ..., vi−1, vi+1, ..., vn}, by theorem 2.1 the critical node v̄ in the network G is the critical node in the opti-
mal solution P ∗, too. Thus, by 2.5 C(P̄ ∗) = min∀vi∈N (C(P̄ ∗

i )) and C(P̄ ∗) is the optimal cost in the reduced network
Ḡ. □

Therefore, by theorems 2.1 and 2.2 the distance based critical node is determined as the equation 2.6; let v̄ be the
critical node in G, then for any failure node vi ∈ N the critical node is

v̄ = argmax∀vi∈N{C(P ∗)− (C(vi−1, vi) + C(vi, vi+1)) + C(vi−1, vi+1)} (2.6)

where C(vi−1, vi), C(vi, vi+1) and C(vi−1, vi+1) are the costs of the arcs (vi−1, vi), (vi, vi+1) and (vi−1, vi+1), respec-
tively. Figure 2 shows the D-CNDP algorithm that implemented to find the critical node fo S-TSP in the complete
network with triangle inequality of the arc costs.

By Theorem 2.2, the optimal solution for network G is transformed into the optimal solution of the reduced
network Ḡ by removal the critical node from the optimal solution P ∗ (see Figure 2). So, in the instance net-
work ulysses16, the optimal solution 1,14,13,12,7,6,15,5,11,9,10,16,3,2,4,8 is transformed into the optimal solution
1,14,13,12,7,6,15,5,9,10,16,3,2,4,8, for the reduced network
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Figure 2: The D-CNDP algorithm

Input the optimal tour P ∗

Let C∗ be the optimal cost of P ∗

Let C̄∗ = ∞
for v = 1 to n = |P ∗| do

∆v = C(vi−1, vi) + C(vi, vi+1)− C(vi−1, vi+1)
Delete node v from P ∗

C̄(v) = C∗ −∆v

if C̄(v) < C̄∗ then
C̄∗ = C̄(v)
v̄ = v

end if
end for

2.1 Pseudo-critical node in the approximate solution

The TSP optimization models are in NP-hard classes, so it is not easy to obtain the exact optimal solutions.
However, Sahni and Gonzales [14] showed that the TSP without the triangle inequality could not be solved by a
constant ratio ρ-approximation algorithm. However, there is a 2-approximation solution by the triangle inequality
assumption [6]. So, Christofides [5] provided a 3/2-approximation algorithm, and in some special cases the obtained
approximation ratio will be 4/3 by Held-Krap relaxation [9]. Then, our assumption is 1 ≤ ρ ≤ 2, and we applied
Christofides’ algorithm, regularly.

According to the complexity of S-TSP, the approximate solution for the problem is respected in the polynomial
time. So, the pseudo-critical node is defined similarly to the critical node, but it is related to the approximate solution.
Thus, ṽ is the pseudo-critical node with respect to the approximate solution P̃ , if its removal results the largest decrease
in the length of the approximate solution.

ṽ = argmax∀vi∈N{C(P̃ )− (C(vi−1, vi) + C(vi, vi+1)) + C(vi−1, vi+1)} (2.7)

Figure 3: The approximate solution for the instance network ulysses16

The 2-opt algorithm applies two point exchanges in a feasible tour for TSP, and it attempts to improve the tour
lengths alliteratively. We apply the 2-opt algorithm by the pseudo-critical node and it results in fewer iterations
against the general algorithm. For the instance network ulysses16, the obtained approximate solution by Christofides’
algorithm [5] is shown in Figure 3. The node 11 is detected as the pseudo-critical node. After 4 iterations of the
2-opt algorithm, the approximate solution 1,8,4,2,3,16,13,12,7,6,10,9,11,14,15,5 with length 7788 is transformed into
the optimal solution (see Figure 4).
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Figure 4: The instance network ulysses16 and the iterations of the 2-opt algorithm

References

[1] G.U. Alozie, A. Arulselvan, K. Akartunalı and E.L. Pasiliao Jr, Efficient methods for the distance-based critical
node detection problem in complex networks, Comput. Oper. Res. 131 (2021), 105254.

[2] R. Aringhieri, A. Grosso and P. Hosteins and R. Scatamacchia, Polynomial and pseudo-polynomial time algorithms
for different classes of the distance critical node problem, Discrete Appl. Math. 253 (2019), 103–121.

[3] A. Arulselvan, C.W. Commander, L. Elefteriadou and P. M. Pardalos, Detecting critical nodes in sparse graphs,
Comput. Oper. Res. 36 (2009), no. 7, 2193–2200.

[4] W. Chen, M. Jiang, C. Jiang and J. Zhang, Critical node detection problem for complex network in undirected
weighted networks, Phys. A: Statist. Mech. Appl. 538 (2020), 122862.

[5] N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, Carnegie-Mellon
University Pittsburgh Pa Management Sciences Research Group, 1976.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein Introduction to algorithms, 3rd ed., MIT Press, 2009.

[7] M. Di Summa, A. Grosso and M. Locatelli, Complexity of the critical node problem over trees, Comput. Oper.
Res. 38 (2011), no. 12, 1766–1774.

[8] C. Jiang, Z. Liu, J. Wang, H. Yu and X. Guo, An optimal approach for the critical node problem using semidefinite
programming, Phys. A: Statist. Mech. Appl. 471 (2017), 315–324.

[9] M. Held and R.M. Krap, The traveling salesman problem and minimum spanning trees, Oper. Res. 18 (1970),
no. 6, 1138–1162.

[10] J.A. Hoogeveen, Analysis of Christofides’ heuristic: Some paths are more difficult than cycles, Oper. Res. Lett.
10 (1991), no. 5, 291–295.

[11] S. Hore, A. Chatterjee and A. Dewanji, Improving variable neighborhood search to solve the traveling salesman
problem, Appl. Soft Comput. 68 (2018), 83–91.

[12] J. Li, P.M. Pardalos, B. Xin and J. Chen, The bi-objective critical node detection problem with minimum pairwise



296 Abdolhosseinzadeh, Alipour

connectivity and cost: Theory and algorithms, Soft Comput. 23 (2019), no. 23, 12729–12744.

[13] J. Rezaei, F. Zare-Mirakabad, S.A. MirHassani and S.A. Marashi, EIA-CNDP: An exact iterative algorithm for
critical node detection problem, Comput. Oper. Res. 127 (2021), 105138.

[14] S. Sahni and T. Gonzales, P-complete approximation problems, J. ACM 23 (1976), no. 3, 555–565.

[15] D. Santos, A. de Sousa and P. Monteiro, Compact models for critical node detection in telecommunication networks,
Electronic Notes Discrete Math. 64 (2018), 325–334.

[16] G.H. Shirdel and M. Abdolhosseinzadeh, The critical node problem in stochastic networks with discrete-time
Markov chain, Croatian Oper. Res. Rev. 7 (2016), no. 1, 33—46.

[17] S. Shukla, Reliable critical nodes detection for Internet of Things (IoT), Wireless Networks 27 (2021), no. 4,
2931–2946.

[18] A. Veremyev, K. Pavlikov, E. L. Pasiliao, M. T. Thai and V. Boginski, Critical nodes in interdependent networks
with deterministic and probabilistic cascading failures, J. Glob. Optim. 74 (2019), no. 4, 803–838.

[19] Y. Zhou, Z. Wang, Y. Jin and Z.H. Fu, Late acceptance-based heuristic algorithms for identifying critical nodes
of weighted graphs, Knowledge-Based Syst. 211 (2021), 106562.


	Introduction
	Distance critical node detection problem formulation
	Pseudo-critical node in the approximate solution


