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The correct materials selection in the design of aerospace structures reduces the weight 

and increases structural efficiency. Since the rotor in gas turbine engines has a significant 

weight, it is important to reduce its weight. The rotating disks in these rotors are subjected 

to mechanical and thermal loads and experience high-temperature gradients and angular 

velocities. This work aims to analyze the stress of a rotating disk made of carbon-carbon 

(C/C) composite to withstand mechanical and thermal loads and reduce the weight of the 

rotor. The behavior of constant thickness C/C composite disks is studied based on the Tsai-

Wu Failure Theory. To do so, first, the basic properties of the material, disk size, rotation 

speed, temperature distribution, and other requirements are determined. The differential 

governing equations are obtained by assuming the plane stress state, Hooke's law, and 

compatibility condition, and the stresses, strains, and displacements are obtained. 

Considering the safety factors of 1 and 1.5, the critical velocities are calculated using the 

Tsai-Wu failure theory. Finally, according to the information obtained from the analysis, 

the evaluation of disks with different layers is compared with other similar disks made 

with different materials. 

 

1. Introduction 

Rotating equipment, such as rotating disks, 
play a significant role in various industries, i.e., 
aerospace, automotive, and marine so it is 
important to do extensive investigations on their 
different aspects. In addition, rotating disks may 
experience different thermomechanical loading 
conditions makes studying their response of 
great importance. Rotating disks are vastly 
utilized in air engines, i.e., turbojets, mini 
turbojets, and turbofans, as a support for the 
blades of turbines and compressors. Engine 
structures, like other engineering structures, are 
built to meet required needs and always are 
constrained by design and performance 
limitations. Reducing the weight of an engine 
increases the overall efficiency and reduces the 
existing limitations and costs. Since the disks of 
an engine constitute a high portion of its weight, 
reducing their weight might enhance the 
performance. In this regard, researchers have 
presented new designs using optimization 
approaches and new materials to fulfill the 

strength-to-weight ratio needs. With the advent 
of low-weight and high-efficiency composites, 
attempts for optimizing the geometry and 
physical properties of rotating disks have been 
significantly increased. The availability of carbon 
fibers led to the development of improved 
materials now known as carbon-carbon (C/C) 
composites. The C/C composites consist of 
carbon fibers and carbon matrices. The attractive 
properties of carbon are combined with the high 
strength, versatility, and toughness of 
composites. The C/C composites were developed 
for elevated-temperature aerospace applications 
such as nose cones and rocket nozzles. These 
composites can be tailored to higher strengths 
and stiffness than other engineering metallic 
alloys and, unlike metals, can maintain these 
properties to high temperatures as indicated in 
Figure 1. 

The fabrication costs for C/C composites are 
high and this has limited their use to primarily 
aerospace and military applications at present. 
Therefore, a reduction in costs will be achieved 
by an improvement in the carbon yield. 
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Something like 63% by volume of the carbon-
carbon produced in the world is used in aircraft 
braking systems [1]. The C/C brake materials 
were originally developed by the Super Temp 
Division of B. F. Goodrich Inc. in the USA. It is now 
commercially advantageous to employ C/C 
brakes on civil subsonic aircraft. Furthermore, 
the use of C/C has been exploited or postulated 
for some land vehicles such as racing cars (Figure 
2), high-speed trains, and even main battle tanks 
(MBTs). Orthogonally woven 3-D carbon-carbon 
has been successfully employed in rocket throat 
manufacture of small radius and rocket motor 2-
D C/C exit cone assembly for many years (Figure 
3).  

 
Fig.1. Strength-to-density ratio for several classes of 

 high-temperature materials [2] 

 
Fig.2. Carbon disk clutch system of a Formula1 racing car [1] 

 

Fig.3. Rocket motor 2-D CC exit cone assembly [2] 

Approximately 30 years ago, C/C composite 
was developed to meet the anticipated needs of 
the emerging space programs for materials that 
were resistant to high temperatures and were 
able to maintain structural integrity while 
experiencing the thermal stresses of reentry from 
space. The utility of this material was first 
demonstrated in a major Space Shuttle 
application where it was performed on the wing 
leading edge and nose cap thermal protection 
system. C/C technology has matured 
considerably since the first Space Shuttle 
application. Although more advanced versions 
continue to perform well on the Space Shuttle, 
C/C has evolved as a versatile material for a wide 
variety of new applications. The extreme 
thermomechanical requirements of the Space 
Shuttle have been the impetus for evaluating the 
properties of low-density CC. The use of CC on the 
nose cap and leading edges of the Space Shuttle 
makes it imperative to know as much as possible 
about all the characteristics of this material 
(Figure 4).  

 
Fig.4. C/C areas on Space Shuttle arbiter [2] 

Rotating disks used in gas turbine engines are 
commonly used at high angular velocities and 
experience high stresses. Accordingly, 
determining the stress and displacement fields is 
considered a serious purpose in the design of 
these structures. Stress analysis of these 
components has a long research history and has 
been an important topic in engineering design. 
Manson [3] proposed a finite difference method 
for calculating elliptic stress in gas turbine disks. 
This method can take into account changes in 
material properties, thickness as well as 
temperature. Millenson and Manson [4] 
developed this method to take into account the 
effects of plastic flow and creep. Both of these 
methods are widely used in industry today.  Genta 
[5] modified the method proposed by Manson to 
be used in orthotropic materials. Timoshenko 
and Goodier [6] three-dimensionally analyzed a 
constant-thickness, isotropic disk. Using the 
semi-graphical method, Leopold [7] obtained the 
stress distribution on a disk of variable thickness. 
Lekhnitskii [8], Reddy and Srinath [9], 
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Gurushankar [10], Christensen and Wu [11], and 
Genta and Gola [12] were able to determine the 
stresses within orthotropic single-ply circular 
plates with stress-free outer boundaries, based 
on the theory of elasticity.  

Parkes [13] proposed a general solution for 
obtaining thermal stresses in solid disks or 
anisotropic hollow disks exposed to symmetrical 
temperature rise.  Foral and Newhouse [14] 
examined the performance of hoop-wound 
composite flywheel rotors. In this study, the 
energy stored criteria per unit swept volume, per 
unit rotor weight, and per unit material cost were 
used to evaluate the performance. After 
reviewing and designing many rotors, they 
eventually proposed the simple hoop wound 
rotor as a rotor easy to fabricate. Also, they 
presented a design approach that took into 
account the effect of different materials. In this 
study, it was shown that considering the effect of 
different materials can lead to increased energy 
storage. Tutuncu [15] in a study investigated the 
stress and deformation of rotating orthotropic 
circular plates under centrifugal force. In this 
study, the symmetric cross-ply and balanced 
laminates were investigated. However, the 
results of the paper show that the displacement 
in these problems is a function of radial 
coordinates.  Kogo et al. [16] obtained the critical 
speed of C/C composite rotating disks with 
cracks.  

Jain et al. [17] in one study, composite disks 
with uniform strength were examined. In this 
study, a method for designing such disks was 
proposed. In their study, the results obtained 
from the analytical solution were compared with 

the results of the finite element method analysis . 
Arnold et al. [18] analyzed a rotating disk as plane 
stress. The analytical model presented by them 
could analyze the rotor structure for surface 
tractions, body forces, and interfacial misfits. In 
this study, functional variables for disk design 
were presented. Sing and Ray [19] in one study 
investigated the creep effects on orthotropic 
aluminum-silicon carbide composite disks. In this 
study, the results obtained in this paper were 
compared with the results obtained from the Von 
Mises Yield Criterion. 

To obtain a closed-form solution based on 
polynomials, Callioglu [20] investigated the 
thermal stress on an empty disk. For this 
purpose, a hollow disk was analyzed 
parabolically for thermal loading varying. In this 
study, the temperature on the inner surface of the 
disk was different from the outer surface of the 
disk.  Koo [21] analyzed the disks for vibration. 
The critical velocity for the disks was also 
evaluated in this study. In this study, elastic 
stresses and fracture stresses were obtained for 
rotating cross-ply laminate disks. Callioglu et al. 

[22] proposed closed-form solutions to obtain 
the stress field in FGM disks that have a constant 
velocity. It was found that lower radial 
displacement is obtained by increasing elastic 
modulus from the inner radius to the outer one. 
On the other hand, the results of this paper show 
that by doing this correction, both radial and 
hoop stresses increase. Peng et al. [23] studied 
the elastic analysis of rotating functionally 
graded polar orthotropic disks. Zamaninezhad 
[24] obtained the exact solution of elastoplastic 
analysis of rotating disks made of functionally 
graded materials.  

In a study, Zheng [25] examined stress and 
displacement in a functionally graded fiber-
reinforced rotating disk. In this study, he 
considered angular thickness and velocity non-
uniform. Zheng et al. [26] studied the stress field 
in functionally graded (FG) rotating disks with 
non-uniform thickness and variable angular 
velocity numerically. They assumed the elastic 
modulus and mass density of the disks to be 
varying along the radius as a power-law function 
of the radial coordinate, while Poisson's ratio is 
kept constant. The numerical results additionally 
reveal that deceleration results in shear-stress 
development within the disks where a greater 
deceleration leads to greater shear stress. 
Furthermore, the shear stress can cause a shift in 
the location of the maximum Von Mises stress, 
where for small deceleration, maximum Von 
Mises stress is located somewhere between the 
inner and outer radii, while for large deceleration 
it is located at the inner radius. The modal 
analysis of rotating annular disks was 
accomplished by Shahriari et al. [27] using the 
generalized differential quadrature method 
(GDQM).  

Takkar et al. [28] studied the effect of polar 
and rectilinear orthotropic reinforcements, on 
rotating disk critical and bursting speeds, and 
stress distributions. They carried out Finite-
element (FE) modeling of the disk using shell 
elements and determined the bursting by 
applying Tsai–Wu failure criteria. Shishesaz et al. 
[29] studied the thermoelastic behavior of a 
functionally graded nanodisk based on the strain 
gradient theory. They assumed that the nanodisk 
thickness is constant, and a power-law model is 
adopted to describe the variation of functionally 
graded material properties. Shahriari et al. [30] 
suggested a model in the framework of rotating a 
thick-walled hollow circular cylinder with free-
clamp ends under centrifugal load for analysis of 
the compressors spool in a turbojet engine. 
Shahriari and Safari [31] applied four methods, 
variable material properties (VMP), Galerkin, and 
Runge-Kutta with two different rules to compute 
the amount of displacement, stress, and strain of 
a rotary functionally graded material (FGM) disk.  



Shahriari and Shojaei / Mechanics of Advanced Composite Structures 10 (2023) 271-282 

274 

Farukoglu and Korkut [32] examined the 
elastic limit stresses and failure of a rotating 
variable thickness disk composed of fiber-
reinforced material by utilizing the Tsai‐Wu 
criterion. In another work, Farukoglu and Korkut 
[33] constructed an analytical approach to 
examine the limit stresses of a multilayered fiber-
reinforced disk. Three different layer 
configurations are considered, which are 
decreasing, constant and increasing 
reinforcement from the inner to the outer radius 
of the disk. The multilayered disk is subjected to 
two boundary conditions, free-free and fixed-
free. Wang et al. [34] presented the amplitude 
and vibrational characteristics of a rotating fiber 
metal laminated micro-disk. Kaur et al. [35] 
presented the effect of thermal and particle 
gradients in a rotating composite disk with 
variable thickness using Sherby’s law. The values 
of tangential, radial stresses, and strain rates are 
calculated at different radii using mathematical 
modeling. It has been observed that with an 
increase in the variable thickness and particle 
gradient, the stresses and strain rates decrease, 
and determined that the creep deformation 
decreases with fluctuating thickness. Kaur and 
Gupta [36] investigated the effect of different 
particle sizes on a rotating composite disk in the 
presence of a thermal gradient. They used 
mathematical modeling to find the value of radial 
and tangential stress rates and strain rates.  

This paper aims to examine a rotating disk 
made of carbon composite in two layers of radial 
and circumferential and two modes, with and 
without applying heat. Composite disks in 
different layers and the same thickness have been 
compared and the components of stress, strain, 
displacement, and their strength coefficients 
have been calculated. Also, the best layer of the 
laminate disk is shown according to the 
performance of the disk from the analysis. Figure 
5 is a view of a type of layer of fibers in a disk, 
which is continuously repeated from the 
beginning to the end of the disk. 

  
Fig. 5. A view of a type of layer of fibers in a disk 

2. Governing Equations  

A rotating annular disk made of radially 
reinforced composite material with an inner 
radius of 𝑎 and an outer radius of 𝑏 is shown in 
Figure 1. The disk is supposed to be large and thin 
enough rotates with the angular velocity of ω. 
Considering the effect of thickness-shear stress, 
the equilibrium equations of the rotating disk can 
be expressed by Eqs. (1) and (2)[37]: 

𝜕

𝜕𝑟

 (𝜎𝑟 . ℎ. 𝑟) +
𝜕

𝜕𝜃

 (𝜏𝑟𝜃 . ℎ) − 𝜎𝜃ℎ 

+𝜌𝜔2𝑟2ℎ = 0 

(1) 

𝜕

𝜕𝑟
(𝜏𝑟𝜃 . ℎ. 𝑟) +

𝜕

𝜕𝜃
(𝜎𝜃 . ℎ) + 𝜏𝑟𝜃ℎ 

+𝜌�̇�𝑟2ℎ = 0 

(2) 

where σr, σθ, and τrθ are respectively the radial, 
circumferential, and shear stresses. Also, the 
radial and circumferential displacements are 
respectively denoted by 𝑢 and 𝑣. Due to rotational 
symmetry and constant velocity, the strain-
displacement relations are given by: 

𝜀𝑟 =
𝑑𝑢

𝑑𝑟
  , 𝜀𝜃 =

𝑢

𝑟
 , 𝛾𝑟𝜃 = 0 (3) 

in which 𝜀𝑟 , 𝜀𝜃 , and 𝛾𝑟𝜃 are radial, circumferential, 
and shear strains respectively. The strains can be 
generally related to the stresses and temperature 
gradients using the following equation: 

[

εr

εθ

γrθ

] = [𝑆]. [

σr

σθ

τrθ

] + 𝑇. [
𝛼𝑟

𝛼𝜃

0
] (4) 

where αr, αθ are thermal expansion coefficients in 
the r and θ directions and T is temperature, and 
[𝑆] the compliance matrix which can be 
expressed using Eq. (5): 

[𝑆] =

[
 
 
 
 
 
 

1

𝐸𝑟

−𝜈𝜃𝑟

𝐸𝜃

0

−𝜈𝑟𝜃

𝐸𝑟

1

𝐸𝜃

0

0 0
1

𝐺𝑟𝜃]
 
 
 
 
 
 

 (5) 

For a homogeneous isotropic material 
𝐸𝑟 = 𝐸𝜃 , 𝜈𝑟𝜃 = 𝜈𝜃𝑟 , and 𝛼𝑟 = 𝛼𝜃 . Substituting 
Eq. (5) into equation (4) and performing some 
simplifications, the stress components can be 
calculated as: 

𝜎𝑟 =
𝐸

1 − 𝜈2
[(𝜀𝑟 − 𝛼𝑇) + 𝜈(ε𝜃 − 𝛼𝑇)] 

(6) 

𝜎𝜃 =
𝐸

1 − 𝜈2
[(𝜀𝜃 − 𝛼𝑇) + 𝜈(ε𝑟 − 𝛼𝑇)] 
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Taking the constant thickness into account, 
and substituting Eq (6) into Eq (1) yields: 

𝑑𝜎𝑟

𝑑𝑟
+

𝜎𝑟 − 𝜎𝜃

𝑟
+ 𝜌𝜔2𝑟 = 0 (7) 

Substituting Eq (3) into Eq (7) and 
simplifications leads to the governing differential 
equation presented in Eq (8):  

𝑑2𝑢

𝑑𝑟2
+

1

𝑟
 
𝑑𝑢

𝑑𝑟
−

𝑢

𝑟2
= −

(1 − 𝜈2)𝜌𝜔2𝑟

𝐸
 (8) 

The general exact solution of the above 
differential equation is in the form of Eq (9) [37]:  

𝑢𝑐 = 𝐶1𝑟 +
𝐶2

𝑟
 (9) 

And the particular solution is obtained as 
follows: 

𝑢𝑝 = −(1 − 𝜈2)
𝜌𝜔2𝑟3

8𝐸
 (10) 

Accordingly, the total displacement of the disk 
might be expressed by Eq. (11): 

𝑢 = −
𝜌𝜔2𝑟3(1 − 𝜈2)

8𝐸
+ 𝐶1𝑟 +

𝐶2

𝑟
 (11) 

To calculate the constants, Eq. (6) is utilized in 
order to calculate the stresses as: 

𝜎𝑟 =
𝐸

1 − 𝜈2
[
−(3 + 𝜈)(1 − 𝜈2)𝜌𝜔2𝑟2

8𝐸

+ (1 + 𝜈)𝐶1

− (1 − 𝜈)
𝐶2

𝑟2
] 

(12) 

𝜎𝜃 =
𝐸

1 − 𝜈2
[
−(3 + 𝜈)(1 − 𝜈2)𝜌𝜔2𝑟2

8𝐸

+ (1 + 𝜈)𝐶1

+ (1 − 𝜈)
𝐶2

𝑟2
] 

Considering no tractions on the inner and 
outer surfaces of the disk, the radial stress is zero 
in the inner and outer radius, which results: 

𝐶1 = 𝜌𝜔2
(𝑎2 + 𝑏2)

𝐸
 .
(1 − 𝜈)(3 + 𝜈)

8
 

(13) 

𝐶2 = 𝜌𝜔2(
𝑎2. 𝑏2

𝐸
).

(1 + 𝜈)(3 + 𝜈)

8
 

Substituting the constants into Eq. (12) and 
considering ζ=r/re, β=ri/re, and σ0=ρω2re2: 

𝜎𝑟 = 𝜌𝜔2𝑟𝑒
2𝐾1 (1 + 𝛽2 −

𝛽2

ζ2
− ζ2) 

(14) 
𝜎𝜃 = 𝜌𝜔2𝑟𝑒

2{𝐾1 (1 + 𝛽2 +
𝛽2

ζ2
) − 𝐾2ζ

2} 

𝜏𝑟𝜃 = 0 

In this relation, the coefficients, 𝐾1 and 𝐾2, 
might be expressed as a function of the elements 
of the compliance matrix, as follows: 

𝐾1 =
2(𝑆11 + 𝑆22) + 𝑆66

6(𝑆11 + 𝑆22) + 4𝑆12 + 2𝑆66

 

      =
3(𝑆11 + 𝑆22) − 2𝑆12

8(𝑆11 + 𝑆22)
 

(15) 

𝐾2 =
𝑆66 − 4𝑆12

6(𝑆11 + 𝑆22) + 4𝑆12 + 2𝑆66

 

      =
𝑆11 + 𝑆22 − 6𝑆12

8(𝑆11 + 𝑆22)
 

In this paper, due to the arrangement of the 
composites and the structure of the disks, 
governing equations should be rewritten in the 
cartesian coordinates system as Eq (16) [20]: 

𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
−

𝜕𝑈

𝜕𝑥
= 0 

(16) 
𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦

𝜕𝑦
−

𝜕𝑈

𝜕𝑦
= 0 

where the potential function of body force, 𝑈, is 
given by the following formula: 

𝑈 = −
1

2
𝜌𝜔2(𝑥2 + 𝑦2) (17) 

The strain components concerning 
temperature and thermal expansion coefficients 
for a material are generally expressed by Eq. (18): 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
= 𝑆11𝜎𝑥 + 𝑆12𝜎𝑦 + 𝛼𝑥𝑇 

(18) 𝜀𝑦 =
𝜕𝑣

𝜕𝑦
= 𝑆12𝜎𝑥 + 𝑆22𝜎𝑦 + 𝛼𝑦𝑇 

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
= 𝑆66𝜏𝑥𝑦 + 𝛼𝑥𝑦𝑇 

In Eq. (18), αx and αy are respectively the 
thermal expansion coefficients in the x and y 
directions. In the Cartesian coordinate system, 
the compatibility equation states that: 

𝜕2𝜀𝑥

𝜕𝑦2
+

𝜕2𝜀𝑦

𝜕𝑥2
=

𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
 (19) 

Differentiating Eq. (16) with respect to 𝑥 and 
𝑦, yields. 

𝜕2𝜏𝑥𝑦

𝜕𝑥𝜕𝑦
= −

1

2
(
𝜕2𝜎𝑥

𝜕𝑥2
+

𝜕2𝜎𝑦

𝜕𝑦2
−

𝜕2𝑈

𝜕𝑥2
−

𝜕2𝑈

𝜕𝑦2
) (20) 

Using Eq. (20) in conjunction with Eqs. (18) 
and (19), the governing differential equation is 
obtained as: 
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𝑠22

𝜕4𝐹

𝜕𝑥4
+ (2𝑠12 + 𝑠66)

𝜕4𝐹

𝜕𝑥2𝜕𝑦2
 

   +𝑠11

𝜕4𝐹

𝜕𝑦4
= −(𝑠12 + 𝑠22)

𝜕2𝑈

𝜕𝑥2
 

      −(𝑠11 + 𝑠12)
𝜕2𝑈

𝜕𝑦2
− 𝛼𝑥

𝜕2𝑇

𝜕𝑦2
− 𝛼𝑦

𝜕2𝑇

𝜕𝑥2
 

(21) 

where F is the stress function that satisfies the 
following relations: 

𝜎𝑥 =
𝜕2𝐹

𝜕𝑦2
+ 𝑈 

(22) 𝜎𝑦 =
𝜕2𝐹

𝜕𝑥2
+ 𝑈 

𝜏𝑥𝑦 = −
𝜕2𝐹

𝜕𝑥𝜕𝑦
 

Considering the temperature distribution 
function and body force, the solution of Eq. (21) 
for F is comprised of general and particular 
solutions. The particular solution might be 
expressed as: 

𝐹1 = 𝐷1(𝑥
2 + 𝑦2)2 (23) 

where 𝐷1 can be obtained by substitution of Eq 
(23) into Eq (21) as: 

𝐷1 =
𝜌𝜔2(𝑠11 + 2𝑠12 + 𝑠22)

24(𝑠11 + 𝑠22) + 8(2𝑠12 + 𝑠66)
 

−
𝑇𝑚(𝛼𝑥 + 𝛼𝑦)

[12(𝑠11 + 𝑠22) + 4(2𝑠12 + 𝑠66)](𝑏
2 − 𝑎2)

 

(24) 

in which 𝑇𝑚 is the temperature difference in the 
inner and outer surfaces. The General solution for 
F might be calculated using Eq. (25): 

F2 = 𝐷2(𝑥
2 + 𝑦2) + 𝐷3ln (𝑥2 + 𝑦2) (25) 

The total stress function can be expressed as: 

𝐹 = 𝐷1(𝑥
2 + 𝑦2)2 + 𝐷2(𝑥

2 + 𝑦2) 

      +𝐷3 ln(𝑥2 + 𝑦2) 
(26) 

The constants D2 and D3 can be evaluated from 
the boundary conditions. The stress components 
are written as follows: 

𝜎𝑥 = 4𝐷1(3𝑦2 + 𝑥2) + 2𝐷2 

      +2𝐷3

𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
−

1

2
𝜌𝜔2(𝑥2 + 𝑦2) 

(27) 
𝜎𝑦 = 4𝐷1(3𝑥2 + 𝑦2) + 2𝐷2 

      +2𝐷3

𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
−

1

2
𝜌𝜔2(𝑥2 + 𝑦2) 

𝜏𝑥𝑦 = 4𝑥𝑦 (−2𝐷1 +
𝐷3

(𝑥2 + 𝑦2)2
) 

The stress components in cartesian 
coordinate can be transformed into their 
counterparts in the polar coordinate system 
using the following relations: 

𝜎𝑟 = 𝜎𝑥𝑚
2 + 𝜎𝑦𝑛2 + 2𝜏𝑥𝑦𝑚𝑛 

(28) 𝜎𝜃 = 𝜎𝑥𝑛
2 + 𝜎𝑦𝑚2 − 2𝜏𝑥𝑦𝑚𝑛 

𝜏𝑟𝜃 = −(𝜎𝑥 − 𝜎𝑦)𝑚𝑛 + 𝜏𝑥𝑦(𝑚2 − 𝑛2) 

where 𝑚 = 𝑥/𝑟, 𝑛 = 𝑦/𝑟, and 𝑟2 = 𝑥2 + 𝑦2. 
Introducing Eq. (27) into Eq. (28), the stress 
components in the polar coordinate system can 
be formulated as: 

𝜎𝑟 = 4𝐷1𝑟
2 + 2𝐷2 +

2𝐷3

𝑟2
−

1

2
𝜌𝜔2𝑟2 

(29) 
𝜎𝜃 = 12𝐷1𝑟

2 + 2𝐷2 −
2𝐷3

𝑟2
−

1

2
𝜌𝜔2𝑟2 

𝜏𝑟𝜃 = 0       

Considering zero radial stress at inner and 
outer radius, the following equations can be 
obtained for the sake of unknown coefficient, i.e., 
𝐷2 and 𝐷3: 

4𝐷1𝑎
2 + 2𝐷2 +

2𝐷3

𝑎2
−

1

2
𝜌𝜔2𝑎2 = 0 

(30) 

4𝐷1𝑏
2 + 2𝐷2 +

2𝐷3

𝑏2
−

1

2
𝜌𝜔2𝑏2 = 0 

which yields: 

𝐷2 = (−2𝐷1 +
1

4
𝜌𝜔2)(𝑎2 + 𝑏2) 

(31) 

𝐷3 = (2𝐷1 −
1

4
𝜌𝜔2)𝑎2𝑏2 

In this study the temperature at the inner and 
outer radius is supposed to be 4300°C and 
7000°C respectively, which varies as a quadratic 
function of radius as shown in Figure 6 and stated 
by Eq. (32): 

𝑇 = 𝑇𝑚

𝑟2 − 𝑎2

𝑏2 − 𝑎2
+ 430 (32) 

 

Fig. 6. Variation of temperature along the radius 
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The temperature function is entered as a 
quadratic function of the radius in the 
corresponding equations. It should also be noted 
that with every 1000 ℃ increase in temperature, 
the strength of carbon decreases by about 11% 
[38]. The change of mechanical and physical 
properties with temperature for each layer is 
discretely entered into the code and the function 
related to the changes of properties with 
temperature is extracted and included in the 
analysis. 

3. Validation for Calculation of 
Circumferential and Radial 
Stresses 

A Code was written for this research and 
compared with the basic reference [20] to 
evaluate. In the example given from reference 
[20], a glass-fiber/epoxy prepreg orthotropic 
rotating hollow disk is used in the solution. It is 
subjected to thermal loading that is varying 
parabolically from the inner surface to the outer 
surface along the radial section. The Mechanical 
properties of the composite material used in this 
reference are given in Table 1. In this example, 
the inner and outer radii are 40 and 100 mm 
respectively, and the density is 2.03 𝑒−6𝑘𝑔 𝑚𝑚3⁄ , 
and the speed is 94.25 rad/s. 

Table1. Mechanical properties of the composite 
 material used in reference [20] 

Mechanical properties 

Longitudinal elasticity 
modulus (MPa) 

𝐸1 26950 

Transverse elasticity 
modulus (MPa) 

𝐸2 21800 

Shear modulus (MPa) 𝐺12 7540 

Poisson’s ratio 𝜈12 0.15 

Thermal expansion 
coefficient (1 ℃⁄ ) 

𝛼𝑥  3.1 × 10−6 

Thermal expansion 
coefficient (1 ℃⁄ ) 

𝛼𝑦 5.5 × 10−6 

In this example, six different temperatures 
were used, 0, 50, 100, 150, 200, and 250°C and 
the material was investigated and analyzed. 
Figure 7 shows the circumferential stress and 
Figure 8 shows the radial stress in the solved 
example from reference [20]. 

 

Fig.7. Distributions of the circumferential stress components 
along the radial section of the disk in reference [20] 

 

Fig. 8. Distributions of the radial stress components along 
the radial section of the disc in reference [20] 

Figures 9 and 10 show respectively the 
circumferential stress and radial stress obtained 
from the code written in this research.  The 
comparison of the stresses resulting from this 
research and reference [20] shows the validity of 
the analytical codes.   As seen in these figures, 
when temperature is increased further, 𝜎𝜃 
decreases at the inner surface, whereas increases 
at the outer surface. The circumferential stress is 
found to be highest, 150.95 MPa, at the inner 
surface. 𝜎𝑟 is zero at both the inner and outer 
surfaces. 

 

Fig.9. Distributions of the circumferential stress components 
along the radial section of the disk in this research 
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Fig. 10. Distributions of the radial stress components along 
the radial section of the disc in  this research 

4. Results and Discussions  

In this paper, as shown in Figure 7, two kinds 
of fiber alignments, i.e., radial and 
circumferential, are considered. The materials 
parameters of the utilized composite material 
property of the material, the size of the disk, and 
the temperature are shown in Table 2. The 
loading condition as well as geometrical 
properties are presented in Table 3. The first 
letter in TC, TT, LC, and LT shows thickness and 
length, and the second letter shows compression 
and tensile in the composite. 

 
Fig. 11. (a) radially-reinforced and; (b) circumferentially-

reinforced composite disks 

Table 2. Property of composite used [38] 

LT 
(𝜎1

𝑡)𝑢𝑙𝑡  
MPa 

LC 
(𝜎1

𝑐)𝑢𝑙𝑡 
MPa 

TT 
(𝜎2

𝑡)𝑢𝑙𝑡  
MPa 

TC 
(𝜎2

𝑐)𝑢𝑙𝑡 
MPa 

250 350 80 130 

𝜐12 
α1 

(10−6)1/𝐶0 
α2 

(10−6)1/𝐶0 
(𝜏)𝑢𝑙𝑡  
MPa 

0.41 -0.3 5 10 

ρ 
E1 

GPa 
E2 

GPa 
G12 

GPa 

1800 100 15 30 

Table 3. Property and size of disk used 

ω(rad/s) To(°C) Ti(°C) 

900 700 430 

 b=ro(mm) a=ri(mm) 

 56 8 

For the considered cases, the material 
constants should be assigned using Eqs. (33) and 
(34), respectively: 

 𝐸𝑟 = 𝐸1,              𝐸𝜃 = 𝐸2, 

 𝐺𝑟𝜃 = 𝐺12, 𝜈𝑟𝜃 = 𝜈12 
(33) 

 𝐸𝑟 = 𝐸2,             𝐸𝜃 = 𝐸1, 

 𝐺𝑟𝜃 = 𝐺12,         𝜈𝑟𝜃 = 𝜈21 
(34) 

Equations (33) and (34) are respectively 
associated with radial and circumferential 
layouts. The radial displacement can then be 
calculated as 𝑢 = 𝜀𝜃 . 𝑟. The radial and 
circumferential stresses of both layouts are 
identical, as can be perceived from Eqs. (33) and 
(14). Figure 12 shows the radial and 
circumferential stresses as a function of radius. 
Referring to this figure, the maximum radial and 
circumferential stresses without taking the 
thermal effects into account are 1.3014 MPa and 
3.57 MPa respectively. Considering the thermal 
effects, these quantities are respectively 1.2258 
MPa and 3.3703 MPa. It is worth noting that the 
maximum circumferential stresses in both states 
have happened at the inner radius of the disk.  

 

Fig. 12. The radial and circumferential stresses as 
 a function of radius 

The radial and circumferential strains of 
radial and circumferential layouts are 
respectively illustrated in Figures 13 and 14. The 
maximum values of radial and circumferential 
strains in radial layout and without taking the 
thermal effects into account are about 5.21 ×
10−6 and 2.381 × 10−4 respectively. Considering 
the thermal effects, these quantities are about 
4.7128 × 10−6 and 2.2469 × 10−4 respectively. 

 

Fig. 13. Radial and circumferential strains in a radial layout 
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In circumferential layout, without taking the 
thermal effects into account, the maximum radial 
and circumferential strains are about 7.8558 ×
10−5 and 3.5733 × 10−5 respectively. However, 
considering the thermal effects, these values are 
about 7.3861 × 10−5 and 3.3703 × 10−5 
respectively. 

 

Fig. 14. Radial and circumferential strain  
in circumferential layout 

The displacement distribution of radial and 
circumferential configurations is respectively 
depicted in Figures 15 and 16. The maximum 
displacement calculated in radial layout without 
thermal effects is about 4.1197 𝜇𝑚 and by 
considering the thermal effects this value is about 
4.8358 𝜇𝑚. However, the maximum 
displacement in circumferential layout with 
thermal effects is 0.612 𝜇𝑚, while without 
thermal effects is about 0.725 𝜇𝑚. 

 

Fig. 15. Displacement in a radial layout 

 

Fig. 16. Displacement in circumferential layout 

5. Failure Theory 

As mentioned earlier, the Tsai-Wu failure 
theory is utilized in order to find the velocity at 
which the disk may fail. Based on this theory, the 
following relation must be satisfied [38]: 

𝐻1𝜎1 + 𝐻2𝜎2 + 𝐻6𝜏12 + 𝐻11𝜎1
2 

+𝐻22𝜎2
2 + 𝐻66𝜏12

2 + 2𝐻12𝜎1𝜎2 < 1 
(35) 

in which 𝐻1, 𝐻2, 𝐻6, 𝐻11, 𝐻22, 𝐻66, and 𝐻12  are 
defined as follows: 

𝐻1 =
1

(𝜎1
𝑇)𝑢𝑙𝑡

−
1

(𝜎1
𝐶)𝑢𝑙𝑡

 

(36) 

𝐻2 =
1

(𝜎2
𝑇)𝑢𝑙𝑡

−
1

(𝜎2
𝐶)𝑢𝑙𝑡

 

𝐻6 = 0    

𝐻11 =
1

(𝜎1
𝑇)𝑢𝑙𝑡  (𝜎1

𝐶)𝑢𝑙𝑡

 

𝐻22 =
1

(𝜎2
𝑇)𝑢𝑙𝑡  (𝜎2

𝐶)𝑢𝑙𝑡

 

𝐻66 =
1

(𝜏12)𝑢𝑙𝑡
2  

𝐻12 = −
1

2
√

1

(𝜎1
𝑇)𝑢𝑙𝑡(𝜎1

𝐶)𝑢𝑙𝑡(𝜎2
𝑇)𝑢𝑙𝑡(𝜎2

𝐶)𝑢𝑙𝑡

 

In radial layout, according to the utilized 
fracture theory and without and with taking 
thermal effects into account, the lowest strength 
factor is obtained as 22.3945 and 22.075 
respectively. Considering the safety factor of 1.5, 
the critical disk speed is obtained at about 3477 
rad/s. However, for the safety factor of 1, this 
speed is about 4259 rad/s. When the thermal 
effects are taken into account, these values are 
obtained as 3452.6 rad/s and 4228 rad/s 
respectively. 

For circumferential layout, without thermal 
effects, and the safety factor of 1.5 and 1, the 
critical speed is about 5786 rad/s and 7086rad/s 
respectively. These quantities are respectively 
calculated as 5744.6 rad/s and 7035 rad/s when 
the thermal effects are not neglected. It is 
worthwhile mentioning that in both layouts, the 
failure starts at the inner radius. 

6. Advantages of Using Carbon 
Composites 

In order to assess the benefits of using the 
disks fabricated from carbon composites over 
those produced from glass/epoxy [20], two disks 
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with the same size and volume are considered. In 
this case, the ratio of the mass is proportional to 
the ratio of their density: With consider the size 
of two disks can say that: 

𝑚1

𝑚2

=
𝜌𝑐−𝑐

𝜌𝑔−𝑒

=
1800

2030
= 0.8867 (37) 

in which 𝜌𝑐−𝑐  and 𝜌𝑔−𝑒  are the density of carbon 

and glass/epoxy composites respectively. 

In addition, the strength coefficient ratio is 
obtained as: 

𝑆𝑅𝑐/𝑐

𝑆𝑅𝑔/𝑒

=
22.39

9.57
= 2.34 (38) 

According to what was mentioned above, 
although the mass of the carbon disk is less than 
the glass/epoxy one, the strength coefficient is 
higher. 

7. Conclusion 

The laminate layer has high performance with 
less displacement and less circumferential strain. 
The amount of circumferential strain in all layers 
is in accordance with the Eq. (6) equation 
 𝜀𝜃 = 𝑆21𝜎𝑟 + 𝑆22𝜎𝜃 it will be counted. Since the 
values of radial and circumferential stresses and 
the S21 coefficient are equal in both layers, so the 
only difference in the circumferential strain of 
these two layers is in the S22 coefficient. This 
coefficient is related to 𝐸𝜃  and since this 
coefficient is higher in the peripheral layer 
therefore, it can be concluded that S22 is less in the 
peripheral stratification, which causes the 
circumferential strain to be less in the peripheral 
stratification, so this laminate layer has less 
displacement than the radial laminate layer, so a 
failure in this laminate occurs later.   Due to the 
disks in compressor or turbine sections of gas 
turbine engines may not be geometrically 
axisymmetric, for example, they may have 
connection holes or Corrugated hubs, the 
structural analysis of the composite disk with 
asymmetric geometry is suggested. Also, the 
frequency analysis of the composite disk with 
thermal gradient, and the asymmetric geometry 
are interesting and practical topics for 
researchers. 
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